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EXACT STATIONARY-WAVE SOLUTIONS IN
THE STANDARD MODEL OF THE

KERR-NONLINEAR OPTICAL FIBER WITH
THE BRAGG GRATING∗
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Abstract By using dynamical system method to the standard model of the
Kerr-Nonlinear optical fiber with the Bragg grating, under fixed parameter
conditions, all possible exact parametric representations of the bounded sta-
tionary wave solutions are obtained from the double sine-Gordon equation.
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1. Introduction

Merhasin, et al. [5] stated that periodic structures in optical waveguides known as
Bragg gratings (BGs), which provide for resonant reflection of light, and thus strong
linear coupling between counter-propagating waves, have been a subject of intensive
theoretical and experimental research, due to their numerous applications to opti-
cal sensors and various telecommunication devices (such as add-drop multiplexers,
dispersion compensators, narrowband filters, etc.), as well as their great potential
as media for fundamental studies of nonlinear optical dynamics.

A standard theoretical model of a Kerr-nonlinear medium equipped with the
BG is based on a system of coupled-mode equations for amplitudes of the counter-
propagating waves, U(x, t) and V (x, t), which are coupled linearly by the BG re-
flection, and nonlinearly by the cross-phase modulation, and also take into account
the self-phase modulation effect:

iUt + iUx +
(

1
2 |U |

2 + |V |2
)
U + κV = 0,

iVt − iVx +
(

1
2 |U |

2 + |V |2
)
V + κU = 0,

(1.1)

where U(x, t) and V (x, t) are amplitudes of counter-propagating waves, x and t are
the coordinates along the fiber and time, and κ (> 0) is the Bragg reflectivity [2,3,6].
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Chow, et al. [2] looked for a general stationary-wave solution of equation (1.1) as

U(x, t) = u(x) exp(−iωt), V (x, t) = v(x) exp(−iωt), (1.2)

with the frequency ω. Considering the reduction v(x) = −u∗(x), then, complex
function u(x) is sought for the Madelung form

u(x) = R(x) exp

[
1

4
iΨ(x)

]
. (1.3)

Substituting (1.2) and (1.3) into (1.1), it is easy to see that the amplitude satisfies

R2(x) =
1

6

[
Ψ′ − 4ω + 4κ cos

(
1

2
Ψ

)]
, (1.4)

with Ψ′ ≡ dΨ
dx and the phase obey the stationary version of the double sine-Gordon

equation

Ψ′′ = 8κω sin

(
1

2
Ψ

)
− 4κ2 sin(Ψ). (1.5)

Two families of exact periodic solutions of equation (1.1) were constructed in [2].
The solutions are named sn and cn waves, according to the elliptic functions used
in their analytical representation. Due to the dynamical behavior of equation (1.5)
has not been discussed by the above reference. The results given by [2] are not
complete, they did not find all exact solutions of equation (1.5). To realize the
complete study, in this paper, we use the dynamical system method [4] to give all
possible exact stationary-wave solutions of equation (1.5) depending on the changes
of the parameter pair (ω, κ).

The paper is organized as follows. In section 2, we consider the dynamical be-
havior of solutions of equation (1.5). In section 3, under given parameter conditions,
we investigate the exact explicit parametric representations for all solutions of (1.5).
In section 4, we give the main conclusion of this paper.

2. Bifurcations of phase portraits of the double sine-
Gordon equation (5)

Equation (1.5) is equivalent to the system

dΨ

dx
= y,

dy

dx
= 8κ

(
ω − κ cos

(
1

2
Ψ

))
sin

(
1

2
Ψ

)
. (2.1)

System (2.1) is a planar Hamiltonian system with the Hamiltonian quality

H(Ψ, y) =
1

2
y2 + 4κ[4ω cos

1

2
Ψ− κ cos Ψ] = h. (2.2)

Clearly, system (2.1) is 4π−periodic with respect to Ψ. Hence, the state (Ψ, y) can
be viewed on a phase cylinder S1×R, where S1 = [−Ψa, 4π−Ψa] with Ψa, 4π−Ψa

identified (as an example, see Fig. 1, where Ψa = 0 for ω > 0 and Ψa = −2π for
ω < 0.

When |ω| ≥ κ, there exist two equilibrium points of (2.1) with O(0, 0) and
E1(2π, 0). For ω > 0 (< 0), O(0, 0) is a saddle point (a center), E1 is a center (a
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Figure 1. The phase cylinder of system (2.1).

saddle) (see Figs. 2(a) and 2(c)). When ω > 0, Ψ = 0 and Ψ = 4π are identified,
while when ω < 0, Ψ = −2π and Ψ = 2π are identified.

When 0 < |ω| < κ, there exist four equilibrium points of system (2.1) with
E±(±Ψ0, 0), O(0, 0), E1(2π, 0), where Ψ0 = 2 arccos (ω/κ) , Ψ = −Ψ0 and Ψ =
4π−Ψ0 are identified. The equilibrium points O and E1 are centers, E± are saddle
points (see Figs. 2(b), 2(d)).
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Figure 2. The phase portraits of system (2.1).

Especially, when |ω| = κ, for ω < 0 (> 0), equilibrium point O(0, 0) is a center
(a two-order saddle point), while equilibrium point E1(2π, 0) is a two-order saddle
point (a center), we have the phase portraits of system (2.1) shown in Fig. 3.
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Figure 3. The phase portraits of system (2.1) when |ω| = κ.

Let

h0 = H(0, 0) = 4κ(4ω − κ), h1 = H(2π, 0) = −4κ(4ω + κ),

h2 = H(±Ψ0, 0) = 4(2ω2 + κ2).
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Thus, we see from Fig. 2 and Fig. 3 that system (2.1) has the following dynamics.
1. The case |ω| ≥ κ.
When ω > 0 (< 0), for h ∈ [h1, h0) (h ∈ [h0, h1)), the level curve defined by

H(Ψ, y) = h gives rise to a family Γho of oscillating periodic orbits of system (2.1)
enclosing the center E1(2π, 0) (O(0, 0));

For h = h0 (h = h1), the level curves defined by H(Ψ, y) = h0 (h1) determine
two homoclinic orbits to the saddle point O(0, 0) (E1(2π, 0)) in the phase cylinder.

For h ∈ (h0,∞) (h ∈ (h1,∞)), the level curves defined by H(Ψ, y) = h give rise
to two families Γhr1 and Γhr2 of rotating periodic orbits of system (2.1) in the phase
cylinder.

2. The case 0 < |ω| < κ.
For h ∈ (h0, h2) and h ∈ (h1, h2) the level curves defined by H(Ψ, y) = h give rise

to two families Γho1 and Γho2 of oscillating periodic orbits of system (2.1) enclosing
the center O(0, 0) and E1(2π, 0), respectively.

For h = h2, the level curves defined by H(Ψ, y) = h2 determine four heteroclinic
orbits to the saddle point E±(0, 0) in the phase cylinder.

For h ∈ (h2,∞), the level curves defined by H(Ψ, y) = h give rise to two families
Γhr1 and Γhr2 of rotating periodic orbits of system (2.1) in the phase cylinder.

3. The parametric representations of all orbits of
system (2.1)

In this section, we use the Hamiltonian (2.2) and the first equation of system (2.1)
to calculate the parametric representations of all bounded orbits of system (2.1).
In fact, we have

x =

∫
dΨ

y
=

∫
dΨ√

2h− [32κ cos(Ψ/2) + 8κ2 cos Ψ]
=

∫
4dw√

a(h) + c(h)w2 + e(h)w4
,

(3.1)
where a(h) = 2h − 32κω + 8κ2, c(h) = 4[h − 12κ2], e(h) = 2h + 32κω + 8κ2.
Obviously,

a(h0) = 0, c(h0) = 64κ(ω − κ), e(h0) = 64ωκ;

a(h1) = −64ω, c(h1) = −64κ(ω + κ), e(h1) = 0;

a(h2) = 16(ω − κ)2, c(h2) = 16(ω2 − κ2), e(h2) = 16(ω + κ)2.

Let ∆ = c2 − 4ae = 512(8κ2ω2 + 4κ4 − hκ2) and

α2 =
1

2e
(−c+

√
∆), β2 =

1

2e
(−c−

√
∆), α2

1 = −α2, β2
1 = −β2. (3.2)

Notice that for h = h2 = 4(2ω2 + κ2), we have ∆ = 0.
By using the above results, under the different parameter conditions and cor-

responding to the different Hamiltonian h, we calculate the integral given by the
right hand of (3.1). It follows the following conclusions.

1. The case |ω| ≥ κ.
(i) First, we assume that ω > 0. In this case, if ω > κ, we have h1 < 0 < h0 < h2.

If ω = κ, then, h0 = h2 = 12ω2.
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When h ∈ (h1, h0), the family Γho of the oscillating orbits of (3.3) enclosing the
critical point E1(2π, 0) has the following parametric representation [1]:

Ψ(x) = 4 arctan

(
β1dn(Ωx, k)

ksn(Ωx, k)

)
, (3.3)

where Ω = ∆
1
4 , k = β1√

α2+β2
1

.

When h = h0 = 4κ(4ω − κ), the two homoclinic orbits have the following
parametric representations: for ω > κ,

Ψ(x) = 2π ± 4 arctan

[√
1− κ

ω
sinh

(
2
√
κ(ω − κ)x

)]
(3.4)

and for ω = κ,

Ψ(x) = ±4 arctan

(
1

2ωx

)
. (3.5)

(3.4) and (3.5) are called phase solitary waves.
When h ∈ (h0, h2), two families Γhr1, Γhr2 of the rotating orbits of system (2.1)

have the following parametric representations:

Ψ(x) = ±4 arctan

(
α1cn(Ωrx, kr)

sn(Ωrx, kr)

)
, (3.6)

where kr =

√
α2

1−β2
1

α1
, Ωr = α1

√
e.

When h = h2, two rotating orbits Γh2
r1 , Γh2

r2 of (2.1) have the following parametric
representations:

Ψ(x) = 2π ± 4 arctan

(√
ω − κ
ω + κ

tan
(√

ω2 − κ2x
))

. (3.7)

When h ∈ (h2,∞), we have ∆ < 0. Write that

ρ2 =
1

2e

(
−c+ i

√
|∆|
)
, ρ̄2 =

1

2e

(
−c− i

√
|∆|
)
.

Clearly, ρ2ρ̄2 = a(h)
e(h) , ρ

2 + ρ̄2 = c(h)
e(h) . Thus, two families Γhr1, Γhr2 of the rotating

orbits of system (2.1) have the following parametric representations:

Ψ(x) = ±4 arctan

(√
ρρ̄(1 + cn(Ωr0ξ, kr0))

1− cn(Ωr0ξ, kr0)

)
, (3.8)

where Ωr0 =
√
a(h), k2

r0 = − (ρ−ρ̄)2
4ρρ̄ .

(ii) Second, we assume that ω < 0. In this case, if |ω| > κ, we have h0 =
−4κ(4|ω|+ κ) < 0 < 4κ(4|ω| − κ) = h1 < h2. If |ω| = κ, then, h1 = h2.

When h ∈ (h0, h1), the family Γho of the oscillating orbits of system (2.1) enclos-
ing the critical point O(0, 0) has the following parametric representation:

Ψ(x) = 4 arctan

(
β1ksn(Ωξ, k)

dn(Ωx, k)

)
, (3.9)
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where Ω = ∆
1
4 , k = α√

α2+β2
1

.

When h = h1 = −4κ(4ω + κ), the two homoclinic orbits have the following
parametric representations: for |ω| > κ,

Ψ(x) = ±4 arctan

(√
|ω|
|ω| − κ

sinh
(

2
√
κ(|ω| − κ)x

))
. (3.10)

For |ω| = κ,

Ψ(x) = ±4 arctan
(

2
√
|ω|κx

)
. (3.11)

When h ∈ (h1, h2), two families Γhr1, Γhr2 of the rotating orbits of system (2.1)
have the following parametric representations:

Ψ(x) = ±4 arctan

(
β1sn(Ωrx, kr)

cn(Ωrx, kr)

)
, (3.12)

where Ωr =
α
√
e(h)

4 , k2
r =

α2−β2
1

α2 .

When h = h2, two rotating orbits Γh2
r1 , Γh2

r2 of system (2.1) has the following
parametric representations:

Ψ(x) = ±4 arctan

(√
|ω|+ κ

|ω| − κ
tan

(√
ω2 − κ2x

))
. (3.13)

When h ∈ (h2,∞), two families Γhr1, Γhr2 of the rotating orbits of system (2.1)
has the following parametric representation:

Ψ(x) = 2π ± 4 arctan

(√
ρρ̄(1 + cn(Ωr0x, kr0))

1− cn(Ωr0x, kr0)

)
, (3.14)

where Ωr0, kr0 and ρ, ρ̄ are the same as (3.8).
2. The case |ω| < κ.
(i) When ω > 0, h1 < h0 < h2.
When h ∈ (h1, h0), the family Γho2 of the oscillating orbits of system (2.1) en-

closing the critical point E1(2π, 0) has the same parametric representation as (3.3).
When h = h0, the oscillating orbit Γh0

o2 of system (2.1) enclosing the critical
point E1(2π, 0) has the parametric representation:

Ψ(x) = 4 arctan

(√
κ− ω
ω

csc
(

2
√
κ(κ− ω)x

))
. (3.15)

When h ∈ (h0, h2), two families Γho1 and Γho2 of the oscillating orbits of sys-
tem (2.1), enclosing respectively the critical point O(0, 0) and E1(2π, 0) have the
parametric representations:

Ψ(x) = 4 arctan(βsn(Ωo1x, ko1)), (3.16)

where Ωo1 =
α
√
e(h)

4 , k2
o1 = β2

α2 and

Ψ(x) = 4 arctan

(
α

sn(Ωo2x, ko2)

)
, (3.17)
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where Ωo2 = Ωo1, k
2
o2 = k2

o1.
When h = h2, four heteroclinic orbits Γh2

o1 and Γh2
o2 have the parametric repre-

sentations:

Ψ(x) = ±4 arctan

(√
κ− ω
ω + κ

tanh
(√

κ2 − ω2x
))

, (3.18)

and

Ψ(x) = 2π ± 4 arctan

(√
κ− ω
ω + κ

tanh
(√

κ2 − ω2x
))

. (3.19)

(3.18) and (3.19) are called phase kink waves and phase ani-kink waves.
When h ∈ (h2,∞), two families Γhr1, Γhr2 of the rotating orbits of system (2.1)

have the same parametric representations as (3.14).
(ii) When ω < 0, h0 < h1 < h2.
When h ∈ (h0, h1), the family Γho1 of the oscillating orbits of system (2.1) en-

closing the critical point O(0, 0) has the same parametric representation as (3.9).
When h = h1, the oscillating orbit Γh1

o1 of system (2.1) enclosing the critical
point O(0, 0) has the parametric representation:

Ψ(x) = 4 arctan

(√
|ω|

κ− |ω|
sin
(

2
√
κ(κ− |ω|)x

))
. (3.20)

When h ∈ (h1, h2), two families Γho1 and Γho2 of the oscillating orbits of system
(2.1) enclosing respectively the critical point O(0, 0) and E1(2π, 0) have the same
parametric representations as (3.16) and (3.17), respectively.

When h = h2, four heteroclinic orbits Γh2
o1 and Γh2

o2 have the parametric repre-
sentations:

Ψ(x) = ±4 arctan

(√
|ω|+ κ

κ− |ω|
tanh

(√
κ2 − ω2x

))
(3.21)

and

Ψ(x) = 2π ± 4 arctan

(√
|ω|+ κ

κ− |ω|
tanh

(√
κ2 − ω2x

))
. (3.22)

When h ∈ (h2,∞), two families Γhr1, Γhr2 of the rotating orbits of system (2.1)
have the same parametric representations as (3.14).

4. Conclusion

To sum up, we see from the above discussions that the following result holds.

Theorem 4.1. By taking Ψ(x) as one of (3.3)–(3.22) and letting R(x) given by
(1.4), i.e.,

R(x) =

√
1

6

[
Ψ′ − 4ω + 4κ cos

(
1

2
Ψ

)]
,

then, system (1) has 20 exact stationary-wave solutions

U(x, t) = R(x) exp

[
1

4
iΨ(x)

]
exp(−iωt), (4.1)

which depend on the parameter pair (ω, κ) and the Hamiltonian h.
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