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CONSTRUCTION OF FULL H-MATRICES
WITH THE GIVEN EIGENVALUES BASED ON
THE GIVENS MATRICES*
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Zhang?

Abstract The inverse eigenvalue problem is about how to construct a desired
matrix whose spectrum is the given number set. In this paper, in view of the
Givens matrices, we prove that there exist three classes of full H-matrices
which include strictly diagonally dominant full matrix, a-strictly diagonally
dominant full matrix and a-double strictly diagonally dominant full matrix,
and their spectrum are all the given number set. In addition, we design some
numerical algorithms to explain how to construct the above-mentioned full
H-matrices.
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1. Introduction

The inverse eigenvalue problem is about how to construct a matrix with desired
structure whose spectrum is the given number set. It arises in many application
areas such as system and control theory, structure analysis, geophysics, and so
on [1]. In recent years, the question has become an active topic and attracted
many researchers’ considerable attention that is paid to the nonnegative matrix
[8,13], the Jacobi matrix [4,9,14-18], the Toeplitz matrix [2,6] and the stochastic
matrix [5] etc.. However, few researchers study the inverse eigenvalue problem
on H-matrix. We all know that H-matrix plays an important role in numerical
analysis, mathematical physics, control theory [3,7] etc.. Therefore, it is worth
following with interest the inverse eigenvalue problem on H-matrix. In this paper,
motivated by the above facts and the properties of the full matrix [19], we focus on
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studying the inverse eigenvalue problem of the full H-matrix, i.e., given the number
set A = {A\1, A2, -+, A\, } satisfying some specified conditions, find or construct a
n x n full H-matrix A whose spectrum is the given number set A. According to the
equivalent conditions of the H-matrix, this paper mainly study the following three
classes of full H-matrices including strictly diagonally dominant full matrix, a-
strictly diagonally dominant full matrix and a-double strictly diagonally dominant
full matrix.

The remainder of the paper is organized as follows. Some known definitions and
conclusions are recalled in Section 2. In Section 3, based on the Givens matrices,
we construct the three classes of full H-matrices whose spectrum are all the given
number set. In Section 4, a numerical example is presented to illustrate the validity
of the obtained results. A brief conclusion is given in Section 5.

2. Some definitions and conclusions

Let R™*™ be the set of real n x n matrices. For A = (a;;)nxn € R"*", we denote

Fi(A) = Z |ai;l, Qi(A) = Z lajil, 1=1,2,--+,n.
J=1,j#i j=1,j#i

In what follows, we use Z™ to denote the set of positive integers and I,,, to denote the
m x m identity matrix and Op x4 to denote the p x ¢ zero matrix where m,p,q € Z™.
The following definitions are useful in this paper.

Definition 2.1 ( [19]). The matrix A = (ai;j)nxn € R™*™ is said to be a full matrix
ifa;; #0foralli,j=1,2,--  n.
Definition 2.2 ( [3,7]). Let A = (ai;)nxn € R™*™,

(i) A is said to be a row (column) strictly diagonally dominant matrix if |a;;| >

(ii) A is said to be an a-strictly diagonally dominant matrix, if there exists o €
[0,1] such that |a;;| > aP;(A) + (1 — )@Q;(A) for all i =1,2,--- | n;

(iii) A is said to be an a-double strictly diagonally dominant matrix, if there exists
a € [0, 1] such that |a;| |aj;| > (aP;(A)+(1—a)Qi(A)) (aP;(A)+(1—a)Q,;(A))
forall 4,7 =1,2,--- ,n with i # j.

As we all know that a matrix A is an H-matrix if A satisfies one of the following
conditions: (i) A is a strictly diagonally dominant matrix; (ii) A is an a-strictly

diagonally dominant matrix; (iii) A is an a-double strictly diagonally dominant
matrix.

Definition 2.3 ( [10]). n x n real matrix

ijifl 7i7j:1727"'an7i<j7

nxn
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is called a Givens matrix where 6 is the angle of the rotation.

Theorem 2.1 ([12]). Given anyn€Z"and any choice of real numbers ag, a1, , an,
the polynomial equation

anz" + -+ a1z +ag =0,
where the leading coefficient a,, is not equal to zero has at most n distinct roots.

Lemma 2.1 ( [11]). Let f(x) be a real function with respect to variable x. If
11I61+ flz)=a>0 ( lir(r)lJr f(z)=a< 0), then, there must exist a real number § > 0,
> T—

such that f(x) > § >0 (f(x) < § <0) for any real number x € (0,6).

3. The construction of the full H-matrices based on
the Givens matrices

In this part, we make use of the Givens matrices to construct the three classes of
full H-matrices whose spectrum are all the given number set. Firstly, we introduce
some properties of the Givens matrix. In the following, in order to illustrate easily,
cosf, sinf are abbreviated to ¢, s, respectively. In addition, without loss of generality,
we assume that 6 € (0, 3].

3.1. Some properties of the Givens matrix

Theorem 3.1. For any natural number n > 2, we have

¢ —s% —¢cs? o —n3g2 (2

0 ¢ —s% ... =" 452 "3
n—1 (n) 0 0 c . _Cn—582 6"_48
i=1

0 0 0o --- c s

—5 —cs =25 -+ —c" 25 7t

nxn

Proof. We will adopt mathematical induction to finish the proof.

c s
(a) Forn =2, Rg)(H) _
—-sc
(b) Assume that
C —82 —052 _cn—482 Cn_?’s
0 ¢ —g2 ... —n=5g2 pn—dg
= (n—1) 0 0 c . —en—6g2 ;n—5g
= 77 |
i=1
0 O 0 --- c 5
5 —C§ —(25 - —eP3g en—2

(n—1)x(n—1)
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then,
n—1 n—1
[T &%) = B3 o) (H RE?(@))
i=1 i=2
) 1 le(n 1)
= RlZ (9)
O(n 1)x1 H Rzn 1(9)
c 000---0s 10 O 0o --- 0 0
0100---00 0 ¢ —s% —¢s?--- =" 452 (" 3g
0010---00 00 ¢ —§%. .- =" 5524
0000---10 00 O 0o --- c s
—s000---0c 0—s —cs —c%s -+ —c" 35 ("2
nxn nxn
c _82 —082 . _Cn—382 C"_QS
0 ¢ —§% . .. =" 452 "3
0 0 ¢ - —c"Pg2n4g
0 O 0o --- c S
—s —cs —c?s -+ —c" 25

nxn

O

Theorem 3.2. For the given real number set A = {)\1, )\2, <o A\n ) satisfying \; #
0,i=1,2,- ,n,n>2 and \; £ Xo. Let R,(60) = H H R(")( 9).

j=2i=1
(i) If n € {2i]i € Z*}, then we have
Gn(a) = RS(‘Q)dmg(Ah >\27 T 7>\n)Rn(9)
uP(s) euy)(s) uip(s) o uai(s)  cuf(s)
cuyy(s) ugp(s) euss(s) - cud () ug(s)
| we e o) e e ulh(s) eul)(s)
w1 (8) eug™y () iy 5(s) -y (s) € ;’1n<s>
g (s) uy(s) eul(s) - eulhi(s) uills) )
2 (00)
where ugf)(s),z =1,2,---,n are polynomials with respect to s, whose constant
terms are \;,i = 1,2, ,n and leading coefficients are A\ — Aa or Ag — Aq,
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uz(;)(s),i % j are polynomials with respect to s without constant term, whose
leading coefficients are A1 — Ao or Ao — Aq;

(1) If n € {2i + 1|i € Z*}, then we have

o (s) iy (s) wip(s) oo eofha(s) i (s)
o (s) 05 (s) evly(s) o willa(s) el (s)
| e @) o) el (s) ol (s)
el 1(8) vy o(s) eofly 5(s) - ol i () vy (o)
o (s) ey (s) ol (s) e el i(s) oli(s) )
£ (9576), 0
where vl(?)(s),i =1,2,---,n are polynomials with respect to s, whose constant
terms are \j,i = 1,2,--- ,n and leading coefficients are \y — Ao or Ao — A1,

’UE;L)(S),i # j are polynomials with respect to s without constant term, whose

leading coefficients are Ay — Ao or Ao — Aq.

Proof. We will adopt mathematical induction to finish the proof. Denote af =
)‘i - )\]a7'7,7 = 172a"' 7”,’1: 7é.7
(a) Formn =2,

a2 4\ )
G2(9) = Rg(@)diag(Al’ )\2)R2(9> _ ays 1 clafs)

c(a?s)  a2s?+ )\

Obviously, u{? (s) = —a2s? + A1, ul(s) = a2s% + Ao, u{d(s) = ul? (s) = a2s, so

uﬁ) (s) and uég)(s) are quadratic polynomials with respect to s with constant terms
A1 and Ag, respectively, whose leading coefficients are \; — Ay or Ay — A1, ug)(s) and

u(221)(s) are one-order polynomials with respect to s without constant term, whose

leading coeflicients are A\; — As.
(b) Formn =3,

i (s) evly (s) vy (s)
G3(0) = RY (0)diag(A1, A2, A3)Rs(0) 2 | cvfP(s) vl (s) cD(s) |

3 3 3
v$ (s) cvsy) () v (s)
where

oD (s) = a2s' — (0 +a)s® + A,

vg)(s) = —a?s® + 2035 +ads? — 2075 + (aF — ad)s® + Ay,

vé‘?(s) = a?s® —2a7s° — alst 4+ 2035 + (af + ad)s® + s,
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o ) = o (5) = ads’ — ads® — als? + o,

o 6) = ol (5) = ads” — ads’ = (o} + as® + 032 o

3 3 2.5 24_ 33, 292 3
vé3)(s) :v§2 (s) = ays® —2ais” —a3s” + ajs” + ays.

Obviously, vﬁ)(s), vg)(s) and vé?g)(s) are polynomials with respect to s, whose
constant terms are A1, Ay and A3, respectively, and leading coefficients are A\; — Ao
or Ay — A1, and vg)(s), vg)(s), véi)(s), vé‘?(s), vg)(s) and Uég)(s) are polynomials
with respect to s without constant term, whose leading coefficients are A\; — As.

(¢) Ifne{2ilieZ'}, thenn—1€{2i+1]i € ZT}. Assume that

n—1 n—1 n—1 n—1 n—1
oy () ey (s) vis (s) e i (s) vl as)
= -1 n—1 -1 =
cogi M (s) vgy (s) evgy () e w(s) vl ()
n—1 n—1 n—1 n—1 n—1

vii 1 (s) vy () o5 (s) o eoll () ugh(s)
anl(e): . . . . . . )

n—1 n—1 n—1 n—1 n—1
ol (s) v (s) cvy 53 (s) - ol a(s) evll'ph a(s)
(n—1) (n-1) (n-1) o () (n—1)

Un71,1(5) Cvnfl,Q(S) Un71,3(5) Cvnfl,n72(8) ’Unfl,nfl(s) (n—1)x(n—1)
where vgin_l)(s),i =1,2,---,n—1 are polynomials with respect to s, whose constant
terms are \;,i = 1,2,--- ;n — 1 and leading coefficients are A\ — A or Ay — Aq,
vgf_l)(s),i # j are polynomials with respect to s without constant term, whose

leading coefficients are A\ — Ay or Ay — A\;. Then by Theorem 3.1, we obtain

Gn(e) ZRZ(G)dlag(/\u e 7/\n—1a )\n)Rw (0)

A1
el (n) TR;J;l(G) O B R (0) O ot (n)
=([Tr0) o)
i=1 Oy 1 At Oy 1 i
A
n—1 T
Gn-1(0) O .
(H&ﬂ@ OO TR
i=1 OlX(n—l) )\n iy
C 0 0 0 s
_52 ¢ O 0 s
—cs? —s? c -0 —c2s
_cn_382 Cn—452 Cn—582 ¢ —Cn_2s
c"—QS Cn—SS Cn—48 s Cn_l

nxn
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vt (s) el (s) el () w T (s) 0
cv§i ™V (s) viy TV (s) oo vé"n s s () 0
el ;1’<> vy ;3<> el 5(s) el Sl i (s) 0
o1 (s) el 00s) - el (s) o i(s) 0
0 0 0 0 An n
¢ —s% —cs? 382 2
0 ¢ -—s2 n—4g2 =3
0 O c n—5g2 on—d
X
o o o0 -- c s
—s5 —cs —c?s - —c"2g L n
ul(s)  culy)(s)  uli(s) ul®) 1(s)  cuf)(s)
cuf(s)  usy(s) culy(s) o cud) y(s)  ull(s)
uf(s)  culy)(s)  ufy(s) uf) (s)  cull)(s)
U;n—)ll(s) (—)1 2(5) u’Eln—)l3(S) e 5:1)1 n—1(5) Cu’ELn—)ln(s)
cul)(s)  uly(s) eul(s) o cull) y(s)  uild(s)

nxn

It is easy to verify that u(”)( ), =1,2,---
whose constant terms are A\;, i =1,2,---

,n are polynomials with respect to s,
,n and leading coefficients are Ay — Ay or
Ao — A1, u ” ( ),i # j are polynomials with respect to s without constant term,
whose leading coefficients are A\; — Ag or Ay — A;. This shows that (ii) holds.

(d) Ifne{2i+1]i € ZT}, then n — 1 € {2i|i € Z*}. The following proof is
similar to (c), here it is omitted. In this case, we can prove that (i) holds. O

Theorem 3.3. For the given real number set A = {\1, Ao, -, A\ } satisfying \; #

0,i=1,2,--- ,n,n>2 and A\ # A2, we have

(i) The spectrum of the matriz G, (0) is the given set A;

(ii) There exists a real number 0 € (0, 5], such that for any real number 6 € (0,0),
n X n real matriz G, (0) is a full matriz;

(iii) Jim o5 (5)| = 0. 5, lim_|ol7(s)

= |>‘1|7Z =7
Proof.
(1) Since the Givens matrices RE;L)(G), ,j=1,2,---
T -1
trices, i.e., (RW (9)) - (Rg’) (9)) ij=1,2,-

¥

,n,1 < j are orthogonal ma-

,n,i < j,s0 RI(9) = (R,(0))~L.
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Therefore, G,,(0) = RL(9)diag(Ai, A2, -+, An)Rn(0) is similar to the n x n diago-
nal matrix diag(A1, Ae,- -+, A,), therefore, the spectrum of the matrix G,,(0) is the
given set A. This shows that (i) holds.

(2) By Theorem 3.2, we only need to prove that there exists a real number
6 € (0, 3], such that for any real number 6 € (0,9), glj ( ) # 0,4, =1,2,--- ,n
Note that

1-(=n)its o™ 9 1= () s
) ¢ 2 (s)=(=s*+1)" 1 wu;.’(s),ne{2i e Z1},

_ U )
gzg ( )_ 1—(—1)ttJ (n) 1—(—1)%tJ (n)

c— =2 v (s)=(=s2+1)" = v (s),ne€{2i+1i € Zt}.
z]() ( ij

Since A1 # Mg, so the leading coefficients of all (gg-L)(s))g, 7,7 =1,2,--- ,n are not

equal to zero. By Theorem 2.1, there exist at most m;; € Z*,4,j7 = 1,2,--- |n
o ) 2
roots xy, x5 -+ (T35 4y = 1,2,--- ,n for the equations (gf}”(as)) =0,i,j =
1,2,-+- ,n. Wedenote S = {z¥]s =1,2,--- ,m;j;, i,j=1,2,--- ,n}. If SN(0,1] =
2
(), we adopt 6 = %, then for any 6 € (0,4), (g”)( )) #0,i,j =1,2,--- ,n, and
6),

for any 6 € (0, gl(]")( ) # 0,4, = 1,2,--- ,n further. If SN (0,1] # 0, let
a = min{y|ly € SN (0,1]}, then there exists a real number ¢ € (0, %] such that
2

sind = a. Thus, for any real number 6 € (0,4), (gl(]n)( )) #+0,4,5 = 1,2,--- ,m,
and for any real number 6 € (0, 6), gfjn)( )#0,i,7 =1,2,---  n further. This shows
that (ii) holds.

(3) It n € {2ili € Z*}, (")( ),i =1,2,--- ,n are polynomials with respect to
s with constant term \;,i =1,2,--- ,n, u( L)( ),i # j are polynomials with respect
to s without constant term. Note that § — 0% leads to sinf — 0, hence

li (n) ‘2/\1'7 i =1,2,-- ,n,
Jm g;;7(s)| = lim s)| = A, i n

. (n) L 9 1-(—1)iti (n) _ . .
Jm g, (s)] = lim | (=s"+ 1) w0 (s)| =0, i #

Ifne{2i+1i € Z1}, vz(zn)(s) i =1,2,--- ,n are polynomials with respect to
s with constant term \;,i =1,2,--- ,n, vfj )( ), # j are polynomials with respect

to s without constant term. Note that § — 07 leads to sinf — 0, hence

li (n) = (n) =\ i=1.2. ...
0_1>I61+ i ( ) 00+ ’U“ (S) | ‘7 ? » < ) 1,
() gy = 2y N EERE ol =0 i
Jim [679] = Jim |-+ )T )| <0, i
This shows that (iii) holds. O

Theorem 3.4. For the given real number set A = {A\1, Ao, -+, A\p} satisfying \; #
0,i = 1,2,---,n,n > 2, # X2 and k € R\ {0}, there exists a real number
6 € (0, %], such that for any real number 6 € (0,6), the n x n real matriz Dy (0)=
EM(2,1(k)G(0)E™(2,1(—k)) is a full matriz, where E™ (2,1(t)) denotes the n x
n elementary matriz derived by adding t (t = k or —k) times the first row to the
second row of I.
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Proof. For any real number k € R\ {0}, if n € {2i]i € Z1}, let
Dy (0) = E™(2,1(k)) G (0)E™ (2, 1(~F))

“11 () kcu12 ) cugg)(s) CU§Z)()
culy) @kuly (O—kusy) (©-k2cul’y) Qusy @+keutsy) ) - uly) G- Hheul)
= ) @) — keul) @ uBe el
culy) ) — kully @ uBe u;z)( )
2 [ 4(n)
It is easy to verify that all dgl)(s), 1,7 =1,2,--- ,n are not identically zero for any

ke R\ {0} and 6 € (0, ] by the proof of Theorem 3.2. Since
{old? @) = 0} = {alult (@) = V1 = 22ufy) ()}
2 2
< {ol (@) - (1= (@) =0}

By Theorem 2.1, there exist at most m1; € Z™ roots for the equation

™) 1201 — 22) (1 () = 0
ujy’ (x) (1=a7) (ugp'(2)) =0.
So, there exist at most m; roots for dg )( ) = 0. Similarly, there exist at most
mi1 € ZT,i = 3,4,--- ,n roots for d£1 () = 0,i = 3,4,--- ,n, and there exist at
most mo; € Z*,j =2,3,--+ ,n roots for dg;)(ac) =0,7=2,3,---,n. Since

{olas? @) =0} = {e V1= 22ufP (@) - V1= o2kl (@) = —h(ul? (@) — uff) (@) }
el (A= (@) - VI () =2 () ()-8 () =0}
By Theorem 2.1, there exist at most mg; € Z* roots for the equation
(1) (1) ()~ Kuy) (@) — K2 (ul}) (@)~ a3 (@) = 0.

So, there exist at most ma; € Z™ roots for dgrf) (z) = 0. Next, the proof is similar to
the proof of Theorem 3.3(ii), so there exists a real number ¢ € ( , 5], such that for any
real number 0 € (0,6), n x n real matrix D, () =E" (2,1(k))G,(0)E™ (2,1(—k))
is a full matrix.

If n € {2+ 1|i € Z"}, the proof is similar, here, it is omitted. O

Theorem 3.5. For any k € R\{0}, the spectrum of Dy, (0) is A = {\1, A2, -+ , An}.

Proof. By the properties of the elementary matrix, (E(")(2,1(l<;))) “1=E®)(2,1(-k),
we know that D, () = E™(2,1(k))G,(s)E™(2,1(—k)) is similar to G, (0). By
Theorem 3.3(i), the spectrum of G, (6) is A = {A1, A2, -+, Ay}, so the spectrum of
D,,(0) is also the set A = {1, A, -, A\n}. O
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3.2. Main results for construction of the full H-matrices based
on the Givens matrices

The following Theorem 3.6 shows that for the given real number set A={\1,Aa, -, An}
satisfying some specified conditions, there exists a row and column strictly diago-
nally dominant full matrix whose spectrum is the given set A.

Theorem 3.6. For the given real number set A = {1, Ao, -+, A\n} satisfying \; #
0,i=1,2,---,n,n > 2 and \; # Az, there must exist a real number 61 € (0, 5], such
that for any real number 6 € (0,61), G, (0) is a row and column strictly diagonally
dominant full matriz whose spectrum is the given set A.

Proof. Under the assumptions, by Theorem 3.3, the spectrum of G, () is the

given set A = {A1, Ao, , A}, for 0 € (0, 3], there must exist a real number
11 € (0, 3], such that G,(f) is a full matrix for any real number 6 € (0, d11), and
Jm g5 ( ‘—0 i#4, Jim g ‘—IA i =J.
Hence,
lim (g” ‘— ) [Ai| >0,i=1,2,--- ,n,
0—0+
tim (|6 ()] - Qi(Gn(a))) =\l >0,i=1,2,-,n
6—0+

By Lemma 2.1, there must exist a common real number 612 € (0, 5], such that for
any real number 6 € (0, d12),

|Ail
2

|\l
2

9 (5)] = Pi(Ga(9))

95 (5)| - Qu(Gn(9))

y 4yttt T

Let 61 = min{d11,d12}, then for any real number 6 € (0,01), G (0) is a row and

column strictly diagonally dominant full matrix whose spectrum is the given set A.

O

Immediately, we have the following Algorithm 3.1 which illustrates how to con-

struct a row and column strictly diagonally dominant full matrix whose spectrum
is the given set A = {1, A2, -+, A\, } satisfying some specified conditions.

Algorithm 3.1:

Step 1 Input the real number set A = {\1, A, -+, A\, } satisfying \; # 0,7 =
1,2,-+- ;n,n>2and \; # \g, and 6 satisfying 6y € (0, 01), where the real number
01 is defined by Theorem 3.6;

Step 2 Compute
n j—1

00) = [T T] B (0

j=2i=1

where Rg”) (00),1,7 =1,2,-++ ,n,i < j is defined by Definition 2.3;
Step 3 Compute

Gn(HO) = RZ(HO)dlag()\la )‘25 o a)\n)Rn(‘gO)7
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Step 4 Output G, (6p).

The following Theorem 3.7 shows that for the given set A = {A1, Aa, -+ , A\, } CR
satisfying some specified conditions, there exists a n X n real matrix whose spectrum
is the given set A, such that it is a column strictly diagonally dominant full matrix
rather than a row strictly diagonally dominant full matrix.

Theorem 3.7. For the given real number set A = {1, Ao, -+, A\n} satisfying \; #

0,i = 1,2,---,n,n > 2 and |A\1| > |A2|, the real number k satisfying |)\|1)‘f)|\2| <

|k| < Ml)‘l/\ £ there exists a real number 63 € (0, 5], such that for any real number
0 € (0,02), n x n real matriz D,(0) = EM™(2,1(k))G,(0)E™ (2,1(—k)) whose
spectrum is the given set A is a column strictly diagonally dominant full matrix
rather than a row strictly diagonally dominant full matriz.

Proof. By Theorem 3.3(iii), we get

lim
6—0t

gfjn) ‘—027&], hm

97] ‘ - |)\ | Z _jﬂ
thus,

Jim [ )] = Qi(DuO)] = ] = KA~ Ao,

: (n) _ — _ _
Jim [ ‘ Py (Dy (0 ))] o] = [E[[A1 = Aal,

o T ol — o, SN >0i=23 .
Jlim, [d (s)‘ Q,(Dn(a))] | >0,i=2,3,,n

When the real number k satisfies p‘fl < k| < "\jl , we have
[A1—Az] [A1—Az]

|)\1|7|k||/\17>\2‘>0, |>\2‘7|k||)\1*)\2|<0,

thus,

: (n) _ _ _ _
Jim [|d7(5)] = QuDa(0)] = Al = KA = 2ol >0,

. (n) i _ B .
Jim[[df) ()| = Pa(Da(0))] = ] = k][ = 2ol < 0.

By Lemma 2.1, there exists a common real number d2; € (0, 5], such that for any
real number 6 € (0, d21),

1kl —
| Qu(Da(ey > P = el
Aol = [k|[Ar = A
< [l |g1 2| _

>0,i=2,3,--,n

a7 (5)

485 (5)] = Po(Dw(0))
Al
2

a(s)| - Qi(Dw(0)) >
By Theorem 3.4, there exists a real number dap € (0, 5], such that for any real
number 0 € (0,022), Dy(0) is a full matrix. So for any real number k satisfying
l)\|1>\72)\2‘ < |k < M‘)‘l)l\ [, we adopt d2 = min{dsy, d22}, then for any real number

0 € (0,82), D,(0) is a column strictly diagonally dominant full matrix rather than
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a row strictly diagonally dominant full matrix. By Theorem 3.5, the spectrum of

D,,(0) is the given set A. O
Immediately, we have the following Algorithm 3.2 which illustrates how to con-
struct a matrix whose spectrum is the given set A = {1, \g, -+, A\, } satisfying

some specified conditions, such that it is a column strictly diagonally dominant full
matrix rather than a row strictly diagonally dominant full matrix.

Algorithm 3.2:
Step 1 Input the real number set A = {\1, A, -+, A\, } satisfying \; # 0,7 =

1,2,---,m, n > 2, [A| > |A2] and the real number ko satlsfylng I>\| 2l < k| <
|/\|)‘ /I\ £ and the real number 0y satisfying 6y € (0, d3), where the real number 09 is
defined by Theorem 3.7;

Step 2 Compute

n j—1

S EAT

j=21i=1

where R (60),4,j = 1,2,-- ,n,i < j is defined by Definition 2.3;
Step 3 Compute

Gn(00) = Ry (0)diag(Ai, Az, -+, An) R (60);

Step 4 Output D, (6y) = E™(2,1(ko))Gn(60)E™ (2,1(—k)).

The following Theorem 3.8 shows that for the given set A = {A1, Ao, -+ ; A} CR
satisfying some specified conditions, there exists a n X n real matrix whose spectrum
is the given set A, such that it is a row strictly diagonally dominant full matrix rather
than a column strictly diagonally dominant full matrix.

Theorem 3.8. For the given real number set A = {1, Ao, -+, \p} satisfying \; #

0,i =1,2,---,n,n > 2, |\| < |A2| and the real number k satisfying Mll)‘jl <

= Az
k| < I/\PQ/\ K there exists a real number 63 € (0, 5], such that for any real number

0 € (0,03), n x n real matriz D,(0) = EM™(2,1(k))G,.(0)E™ (2,1(—k)) whose
spectrum is the given set A is a row strictly diagonally dominant full matriz rather
than a column strictly diagonally dominant full matriz.

Proof. The proof is similar to the proof of Theorem 3.7. Here, it is omitted. [

Immediately, we have the following Algorithm 3.3 which illustrates how to con-
struct a matrix whose spectrum is the given set A = {1, Ay, -, \,} satisfying
some specified conditions, such that it is a row strictly diagonally dominant full
matrix rather than a column strictly diagonally dominant full matrix.

Algorithm 3.3:
Step 1 Input the real number set A ={A1, s, , \,} satisfying \; # 0,4 =

1,2,--+,m, n > 2, |A] < |A2] and the real number ko satisfying |>\| l)l\ P < |ko| <
%7 and the real number 6y satisfying 6y € (0,d3), where d3 is defined by
Theorem 3.8.

Step 2 Compute
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where RZ(?) (00),1,7 =1,2,-++ ,n,i < j is defined by Definition 2.3;
Step 3 Compute

Gn(90) = RE(GO)dlag(Ala )\25 e a)\n)Rn(GO);

Step 4 Output Dn(g()) = E(n) (2, ].(k()))Gn (HO)E(”) (2, ].(—k())).

As we all know that if a matrix is a strictly diagonally dominant full matrix, then
it must be an a-strictly diagonally dominant full matrix. The following Theorem
3.9 and Theorem 3.10 show that for the given number set A = {A\1, A, , A} CR
satisfying some specified conditions, there exists a n x n real matrix whose spectrum
is the given set A, such that it is an a-strictly diagonally dominant full matrix rather
than a strictly diagonally dominant full matrix.

Theorem 3.9. For the given real number set A = {A1, Ag, - ,)\n} satisfying A; #
0,i=1,2,--- ,n,n > 2 and \1 # Ao, adjust the order of A1, A2, -+ , A such that the

satisfies that { 2I —max{ =GN #F N }

Without loss of generality, we still use Ay, Ao, -+ , Ay to denote the new sequence
where [A\1| > |A2| and A\ # Az.

NeWw SeqUENCE A, , Aly, -+, Al

n

(i) If a € (0, %}, then for any real number k satisfying ‘/\‘)‘IM < k| <
[A1]

=) =xa]” there exists a real number 04 € (0, %], such that for any real

number 0 € (0,d4), n x n real matriz D, (0) whose spectrum is the given
set A is an a-strictly diagonally dominant full matriz rather than a strictly
diagonally dominant full matriz;

(ii) If a € (%, %) then for any real number k satisfying P\l < |k|] <
‘>‘2‘ jus

Ao —xa]’ there exists a real number 05 € (0, 5], such that for any real number

6 € (0,65), n x n real matriz D,(0) whose spectrum is the given set A is
an a-strictly diagonally dominant full matrix rather than a strictly diagonally
dominant full matriz.

Proof. Since the proofs of case (i) and case (ii) are similar, we only prove case
(i) below. By Theorem 3.5, the spectrum of D,,(6) is the given set A. By Theorem
3.3, we obtain

i, g (s) ‘—0 i#d  Jim g ‘—I/\ i = J,
thus,
dim ([d7 ()] = Q(Da(8) = ] = klIM = el
Jim (|d55 ()| = Pa(D(9))) = el = [KlIM = A,
lim <d§7f)(s)faP1(D (0))—(1—a)Q1 (D, (8)) )—|A1 (1— ) |k| [ A—Aal,
6—0+
lim_(|d53 ()| = aP2(Du(9)) = (1 = 2)Q2(Du(8)) ) = 2l — alkl[A1 = el,
(|aes)

—aP, (D (0))-(1-0)Q:(Da(6)) )=|Ail>0,i = 3,4, 1
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A 1 [Ad]
When || > [ M|, o € (o m} k| (m e AQI),We have

|>\1‘7|k||)\17)\2|<0, ‘)\2|7|k”)\1*A2|<0,
|)\2‘ — O[‘k”)\l — )\2‘ > 0, ‘)\1| — (1 — OZ)|]€||)\1 — )\2‘ > 0.

Hence,

lim
0—0t

(
lim ( )
(

~@i(D 9)) M| = [EflAx = dol <0,

— P(Da(0))) = ol = [KlIA1 = 2] <0,
—aPi(Da(8)~(1-0)Q1(Da(8)) )=IA1 (1= ) [k \1—Ae] >0,

— aPy(Da(6)) = (1= @)Q2(Du(6))) = [Aa| — alkl|X = Aa| > 0.

6—0+

lim
0—0+
lim ( )

6—0+

By Lemma 2.1, there exists a common real number d4q € (0, %]7 such that for any
real number 6 € (0, d41),

()] = Qu(DA(9)) < izl _

dSV (s)| = Po(D,(0)) < M <0,

4 (5) | aPL(D,(0)~(1=0)Qu (D, (6)) > MHC=Eel - g,

dég)(S) —aPs (D, (0))—(1-a)Q2(D, () > M—(X\IZM >0,
(s) )—(

—aP;(Dy(8)~(1=0)Qi(Dn(0)) > 5L > 0,i = 3,4, .m,

which shows that D,,(6) is an a-strictly diagonally dominant matrix rather than a
strictly diagonally dominant matrix. By Theorem 3.4, there exists a real number
d42 € (0, %], such that for any real number 6 € (0,6d42), D, (6) is a full matrix.
Let 04 = min{d41, 042}, then for any real number 0 € (0,d4), D,,(0) is an a-strictly
diagonally dominant full matrix rather than a strictly diagonally dominant full

matrix. O
Theorem 3.10. For the given real number set A = {1, Aa, -+ , An} satisfying \; #
0,i=1,2,--- ,n,n > 2 and \; # Ao, adjust the order of A1, Ao, - -+ , A\, such that the
- Y EDYS
New Sequence Ay, Ai,, - -+ , A1, satisfies that % =min {W [ A,
L

n Iy ]}

Without loss of generality, we still use A1, Aa,--- , A, to denote the new sequence
where [A1| < |Az].

: [A2]—|Aq] [Az]  fori [Az]
(i) If « € ( Nl Tl | then for any real number k satisfying moa] <
[A1]

k| < T=a)n—a]s there exists a real number o € 0,%

’ 2
real number 6 € (0,d¢), n X n real matrix D, (0) whose spectrum is the given
set A is an a-strictly diagonally dominant full matrixz rather than a strictly

diagonally dominant full matriz;

|, such that for any

g A L A
(i) If a € (%,1), then for any real number k satisfying |)\|1f>|\2‘ < |k] <
2] s
aldi—As|’ ’ D
0 € (0,67), n x n real matriz D, (0) whose spectrum is the given set A is

there exists a real number 07 € (0, %], such that for any real number
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an a-strictly diagonally dominant full matrixz rather than a strictly diagonally
dominant full matrix.

Proof. The proof is similar to the proof of Theorem 3.9. Here, it is omitted. [

Immediately, we have the following Algorithm 3.4 which illustrates how to con-
struct a matrix whose spectrum is the given set A = {A1, A, - -+ , A, } satisfying some
specified conditions, such that it is an a-strictly diagonally dominant full matrix
rather than a strictly diagonally dominant full matrix.

Algorithm 3.4:

Step 1 Input the real number set A = {1, Ao, -, A\, }, n > 2 satisfying the
assumptions of Theorem 3.9 and Theorem 3.10, and the real number o € (0, 1).

Step 2 Adjust the order of A\1,Aa,- - -, Ay, such that the new sequence A, , A, - -, A

wgzwﬂa¢h}-

n

satisfies iAQI :max{ A

If ag € ( ’WJ‘)\% , choose the real number ky satisfying % < |ko| <
(17a)||/\;;| Tk 0o € (0,d4), where d4 is defined by Theorem 3.9(i) and turn to Step
1
|>‘12| )‘12‘ | 1‘
If ag € Pl ol )’ choose the real number kg satisfying ERE <
1y o g Iy =AM
[ko| < ﬁ, 0 € (0,05), where J5 is defined by Theorem 3.9(ii) and turn to
Step 4
If ap € [/\I2I 1), turn to Step 3.

Step 3 Adjust the order of A\1,Aa,- - -, Ay, such that the new sequence A, , A, - -, A

- PV Y
satisfies % = min{'l’||)\l_l < ‘)\M}.

i

n

If ag € <|>\12|/\z1 |, M, | ] choose the real number £y satisfying @ <
| Ay | (Mg [+ Ag] |7 ]
|ko| < A, | 6o € (0,86), where ¢ is defined by Theorem 3.10(i) and turn

(1—a) | A, =2, |

to Step 4.
If ag € <|)\|)\f|}\|, >7 choose the real number ky satisfying % <|ko| <
1 Iy
P‘|/\12|)‘ k 6o € (0,07), where 6y € (0,7) is defined by Theorem 3.10(ii) and turn
alA; —
to Step 4
If ap € (O, W}, output “error”.
2
Step 4 Compute
n j—1
Ra(00) = [T TT B o),
j=21i=1

where R("(60),4,j = 1,2, ,n,i < j is defined by Definition 2.3;
Step 5 Compute

GTL(QO) = RZ(GO)dlag(Ala )\Za e a)\n)Rn(GO)v
Step 6 Output D, (6p) = B (2,1(ko))Gr(00) E™ (2,1(—ky)).
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It is well known that if a matrix is an a-strictly diagonally dominant full matrix,
then it must be an a-double strictly diagonally dominant full matrix. The following
Theorem 3.11 shows that for the given set A = {A1, A3, -+ , A\, } C R satisfying some
specified conditions, there exists a n X n real matrix whose spectrum is the given
set A, such that it is an a-double strictly diagonally dominant full matrix rather
than an a-strictly diagonally dominant full matrix.

Theorem 3.11. For the given real number set A = {1, Ao, -+ , A\p} satisfying \; #

0,i=1,2,--- ,n,mn > 2 and \1 # Ao, adjust the order of A1, o, -+ , Ay, such that
oe sl ]

the new sequence A, AL, , A1, satisfies BB min EAEED ‘|)\l # N\

Without loss of generality, we still use A1, A2, , A, to denote the new sequence

where A\ # Ao, If a € (%, 1} , for any real number k satisfying [A2]

(X‘Al—)\zl <
\/l)\1>\2‘ . T
k| < Jal-onm , there exists a real number 6z € (0, 5], such that for any

real number 6 € (O 58) n x n real matriz D, (0) whose spectrum is the given set
A is an a-double strictly diagonally dominant full matriz rather than an a-strictly
diagonally dominant full matriz.

Proof. By Theorem 3.3,

i, g (s)| = 0.7 # j, Jim, o) = i =4,
then
. o
Jim a2 (s)] a3 (5)
—[aP;(Dn(0))+(1—a)Qi(Dn(0))][aP;(Dn(0))+(1—a)Q; (Dn(0))]}
:|)\i||)‘j‘>07i7j:3,4,-~-7n’
Jim {|dfP(s)| a3 )]

(
=[P (Dn(0))+(1=a)Q1(Dn(0))][aPa(Dn(0) +(1—)Qa(Dn(0))]}
=\l e —a(l = ) [k A1 = Ao,

s {5
—[aPL(Dn(0))+(1=)Q1(Dn(0))][aPi(Dn(0)) +(1—a)Q:i(Dn(0))]}
=[A1]|N\i] >0,i=3,4,--- ,n
hm {‘d ’ )(8)‘

—[aP2(Dn(0))+(1—-a)Q2(Dn(0))][aP;(Dn(0)) +(1-a)Qi(Dn(0))]}
=[Xo||Ni|>0,i=3,4,-- ,n,

Tim {[a53)(5)] ~ [P (Do (0)+ (1-0)Qa(Du ()]}
=|>\2\ —alkl[A1 — Aal.

When «a € (L 1] k| € ( Az VI %] ), we have

[A1l+[Az]? aldi=22” | fa(1—a)| A1 —Ae|

M| > a(l = a) k2 A = Ao, [Ao| < alk]|A1 = Aa.
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Hence,
tim {|df(5)] [ (5)

)
0—0+
—[aP(Dn(0))+(1-a)Q1(Dn(0))][aPe(Dn(0))+(1-a)Q2(Dn(0))]}
=MlAef —a(l = a)k* (A = A2)* >0,
(D

w(0))+(1-0)Q2(D (0))]
:|>\2\ — alk||A1 — A2] <0.

hm {‘d22 ’ —[aPy

By Lemma 2.1, there exists a common real number dg; € (0, 5], such that for any
real number 6 € (0, dg1),

P[]
—[aPi(Dn(0))+(1—a)Qi(Dn(0))][aP;(Dn(0))+(1-a)Q;(Dn(0))]
‘)\H)\|>Ozg 3,4,
2 Yy

a3 (5)] a3 (9)
—[aP1(Dn(0))+(1—a)Q1(Dn(0))][aP2(Dn(0)) +(1—a)Q2(Dy(0))]
S IAil|de] —a(l = a)[k[* A = Aof? 50

2
a7 (s)| | (s)]
~[@P1(Da(8))+(1-)Qu (D (6))] [P (D (6)+ (1) Qi (D (6))]
>‘A1|2|A”| >0,i=3,4,--- ,n,
453 (s)| | (s)]
—[@P2(Da(8))+ (1= ) Qa2 (D (B))] [P, (D (6)+ (1~ )Qi (D (6))]
>W>o,i=3,4,---,n

485 ()| = [ Po(Dw (9)) + (1-0)Q(Di(6))]
Pal=alklld = X
2

<0,

which implies that D,,(0) is an a-double strictly diagonally dominant matrix rather
than an a-strictly diagonally dominant matrix. By Theorem 3.4, there exists a real
number dgz € (0, 5], such that for any real number 6 € (0,ds2), D, (0) is a full
matrix. Let ds = min{dg1, ds2}, then for any real number 6 € (0, ds), D, (0) is an a-
double strictly diagonally dominant full matrix rather than an a-strictly diagonally
dominant full matrix. By Theorem 3.5, the spectrum of D, (6) is the given set A.

O
Immediately, we have the following Algorithm 3.5 which illustrates how to con-
struct a matrix whose spectrum is the given set A = {1, Ay, -+, \,} satisfying

some specified conditions, such that it is an a-double strictly diagonally dominant
full matrix rather than an a-strictly diagonally dominant full matrix.
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Algorithm 3.5:

Step 1 Input the real number set A = {A1, Aa, -+, An}, n > 2, satisfying the
assumptions of Theorem 3.11, and the real number «q € (0, 1).

Step 2 Adjust the order of A\1,Aa,- - -, Ay, such that the new sequence A, , A, - -, A

n

. |>\12 ‘ . ‘)\z . |
satisfies that m = min W‘)\ll 7é )\l]. s
If g € (|)‘1|/\JZF2||>‘Z|7 1] , choose the real number kg satisfying % < |ko| <
1 2 1 2

| A A |

\/ao(l—ao)P\II =iy | ’
Step 3.

0y € (0,0g), where dg is defined by Theorem 3.11 and turn to
AL |
If ap € 0,|72 , output “error”.
0 ( |Al1|+|mz|] P

Step 3 Compute
n j—1

Ru(00) = [T TT RS (60),

j=2i=1

where R (60),4,j = 1,2, ,n,i < j is defined by Definition 2.3;
Step 4 Compute

Gn(60) = R) (8o)diag(A1, Az, -+, An) R (60);

Step 5 Output Dy,(6) = E™ (2, 1(ko))Gn(60) E™ (2, 1(=ko))-

Remark 3.1. Theorems 3.6-3.11 can be generalized to the complex number field,
i.e., the given number set A can be a complex set.

Remark 3.2. In the above, we provide the Theorems 3.6-3.11 for construction of
the three classes of full H-matrices based on the Givens matrices where 6 € (0, )
and § € (0,3]. Analogously, we can obtain the similar Theorems when we take
6 € (—0,0) in the Givens matrices where ¢ € (0, J].

4. Numerical examples
In this section, we first use a simple Example 4.1 to construct the three classes of
full H-matrices according to the Algorithms 3.1-3.5.

Example 4.1. For the given real number set A = {1, A2, A3} = {1,2,3} and real

1 13 4
numbers =, 72 and .

(1) Let Ay =3, 2 =2, A3 = 1. By Algorithm 3.1, we choose 6y = %, then
1.3125 —0.3605 0.4581
A= | -0.3605 1.8159 0.1643
0.4581 0.1643 2.8716

So, A is obviously a row and column strictly diagonally dominant full matrix whose
spectrum is the given set A = {1,2,3}.
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(2) Let Ay = 3,\a = 2,A3 = 1. By Algorithm 3.2, we choose ky = g and

o = g5, then

2.9153 0.0324 0.0709
B= 2.3210 2.0809 0.2133
—0.0192 0.0361 1.0037

So, B whose spectrum is the given set A = {1,2, 3} is obviously a column strictly
diagonally dominant full matrix rather than a row strictly diagonally dominant full
matrix.

(3) Let Ay = 1,As = 2,A3 = 3. By Algorithm 3.3, we choose kg = 2 and

6y = &, then

1.0782 —0.0467 —0.1070
C=| -1.4298 1.9303 —0.2153
—0.0247 —0.0548 2.9915

So, C' whose spectrum is the given set A = {1,2,3} is obviously a row strictly
diagonally dominant full matrix rather than a column strictly diagonally dominant
full matrix.

(4) Let Ay = 3,A\y = 2,3 = 1. By Algorithm 3.4, we choose ky = %, Qg =
and 0y = 155, then

(S

2.9112 0.0248 0.0530
D= 3.2141 2.0867 0.2123 | = (di;)3x3;
—0.0409 0.0268 1.0021

where
ldi1| — Q1(D) = —0.3438 < 0,
\das| — Py(D) = —1.3397 < 0,
dia| = [3P1(D) + (1 - 2)Q1(D)] = 0.2916 > 0,
|das| — [§P2(D) + (1 — £)Q2(D)] = 1.3601 > 0,
dss] — [LP(D) + (1 — 1)Qs(D)] = 0.7763 > 0.

So, D whose spectrum is the given set A = {1,2,3} is a %—strictly diagonally
dominant full matrix rather than a strictly diagonally dominant full matrix.
(5) Let Ay =2, A2 = 3,3 = 1. By Algorithm 3.4, we choose kg = %, Qg = %

and 0y = g5, then

2.1109 —0.0361 0.0337
E= | -27607 2.88550.1721 | £ (es;)3x3,
—0.1770  0.0685 1.0036
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where
lein] — Q1(E) = —0.8268 < 0,
leaa| — Py(E) = —0.0473 < 0,
lent| = [ P1(E) + (1 - $)Q1(E)] = 1.6587 > 0,
leas| — [P (E) + (1 — 1)@ (E)] = 0.3298 > 0,
less| — [L2P5(B) + (1 - 12)Qs(E)] = 0.7634 > 0.
So, E whose spectrum is the given set A = {1,2,3} is a %—strictly diagonally

dominant full matrix rather than a strictly diagonally dominant full matrix.
(6) Let A1 = 3, 2 = 1, \3 = 2. By algorithm 3.5, we choose kg = g,ao = %

and 0y = g5, then
2.9108 0.0685 0.0372
F=24526 1.08010.0141 | = (fij)3x3»
0.0777 —0.0324 2.0002
where
| foz| = [$P2(F) + (1 — 2)Q2(F)] = —0.9044 < 0,
|fiall faz| = [FPL(F) + (1 = 2)Q1(F)][5 P2(F) + (1 — §)Qa(F)] = 1.9927 > 0,
|fiall fas| = [FPL(F) + (1 = )Qu(F)][$ P3(F) + (1 — 3)Qs(F)] = 5.7641 > 0,
| foz|| fas] — [RP2(F) + (1 — £)Q2(F)][Ps(F) + (1 — 2)Q3(F)] = 1.9824 > 0.

So, F whose spectrum is the given set A = {1,2,3} is a 2-double strictly diagonally
dominant full matrix rather than a 7—strlctly diagonally dominant full matrix.

Next, we use another Example 4.2 to construct the three classes of full H-
matrices according to the Algorithms 3.1-3.5.

Example 4.2. For the given real number set A = {1, A2, A3, Ay, A5} = {4,5,6,7,8}

118 4
and real numbers =, 52 and ¢.

(1) Let \y =8, 2 = 7,A3 = 6,\y = 5,\5 = 4. By Algorithm 3.1, we choose
o = %, then

4.3320 —0.6436 —0.0298 0.0489 0.1233
—0.6436 5.7995 —0.9141 —0.2560 —0.0612
—0.0298 —0.9141 6.2829 —0.4411 0.3988

0.0489 —0.2560 —0.4411 5.8661 0.6086

0.1233 —0.0612 0.3988 0.6086 7.7195

s
Il

So, Ais obviously a row and column strictly diagonally dominant full matrix whose
spectrum is the given set A = {4,5,6,7,8}.
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(2) Let Ay =8, 0 =7,A3 = 6,\y = 5,\5 = 4. By Algorithm 3.2, we choose

ko = 1—25 and 0y = 555, then
7.9389 0.0080 0.0170 0.0261 0.0354
7.0530 7.0599 0.1358 0.2131 0.2916
B =| —0.0461 0.0084 6.0000 0.0088 0.0178

—0.1042 0.0174 0.0088 5.0004 0.0092
—0.1632 0.0265 0.0178 0.0092 4.0008

So, B whose spectrum is the given set A = {4, 5,6, 7,8} is obviously a column strictly
diagonally dominant full matrix rather than a row strictly diagonally dominant full
matrix.

(3) Let Ay =4,X2 =5,A3 =6,y = 7,\5 = 8. By Algorithm 3.3, we choose

ko = % and 0y = 555, then
4.0369 —0.0080 —0.0170 —0.0261 —0.0354
—4.3436  4.9642 —0.0849 —0.1348 —0.1856
0.0209 —0.0084 6.0000 —0.0088 —0.0178
0.0521 —0.0174 —0.0088 6.9996 —0.0092

0.0838 —0.0265 —0.0178 —0.0092  7.9992

»
I

So, C whose spectrum is the given set A = {4,5,6,7,8} is obviously a row strictly
diagonally dominant full matrix rather than a column strictly diagonally dominant
full matrix.
(4) Let \y =8, 2 = 7,A3 = 6,\y = 5,\5 = 4. By Algorithm 3.4, we choose
k’o = 97 ap = % and 90 = %, then
7.9621 0.0042 0.0086 0.0131 0.0176
8.6638 7.0376 0.0818 0.1263 0.1713
—0.0300 0.0043 6.0000 0.0044 0.0088 | = (dij)sxs,
—0.0653 0.0087 0.0044 5.0001 0.0045

—0.1009 0.0132 0.0088 0.0045 4.0002

>
I

where A A
|di1] — Q1(D) = —0.8979 < 0,
|das| — Po(D) = —2.0056 < 0,
\dit| — [2Pi(D) + (1 — 1)Q1(D)] = 0.8654 > 0,
|daa| — [£P2(D) + (1 = £)Q2(D)] = 5.2047 > 0,
|dss| — [LP3(D) + (1 — 1)Qs(D)] = 5.9076 > 0,
\daa| — [2Pu(D) + (1 — 1)Qu(D)] = 4.8649 > 0,
|ds5| — [£P5(D) + (1 — 1)Qs(D)] = 3.8130 > 0.
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So, D whose spectrum is the given set A = {4,5,6,7,8} is a %—strictly diagonally
dominant full matrix rather than a strictly diagonally dominant full matrix.

(5) Let Ay =7,X2 = 8,A3 =6,y = 5,\5 = 4. By Algorithm 3.4, we choose
ko =10, ap = 28 and 6y = then

25 720"

7.0447 —0.0045 0.0042 0.0087 0.0131
—9.5558 7.9550 0.0511 0.0997 0.1488
—0.0815 0.0086 6.0000 0.0044 0.0088
—0.1216 0.0130 0.0044 5.0001 0.0045

—0.1621 0.0175 0.0088 0.0045 4.0002

[I>

SN
Il

(€i5)5x5,

where

2448 > 0,
8469 > 0,
9065 > 0,
8639 > 0,
8122 > 0.

I
SO Y B SN

So, E whose spectrum is the given set A = {4,5,6,7,8} is a %—strictly diagonally
dominant full matrix rather than a strictly diagonally dominant full matrix.

(6) Let Ay = 8,y =4,A3 = T7,\y = 6,\5 = 5. By algorithm 3.5, we choose
ko = %,ao = % and 6y = 555, then
7.9131 0.0344 0.0086 0.0176 0.0267

9.8154 4.0868 —0.0040 0.0267 0.0580

"lj)

where

0.0728 —0.0256
0.0608 —0.0173

0.0487 —0.0088

6.9996 0.0084 0.0174
0.0084 6.0000 0.0088
0.0174 0.0088 5.0004

ool = [ Pa(F) + (1~ £)Qa(F)] = ~3.8537 <0,

4 .

(1>

(fij)5><57

| fia]| fa2] — [gpl(ﬁ) +(1— %)Ql(ﬁ)][EPQ(F) +(1 - %)Qz(ﬁ)] =15.9072 > 0,

4 .

| i1l fas] — [%Pl(ﬁ) +(1- %)Ql(ﬁ)][ng(F) +(1— %)QB(F)] = 55.1675 > 0,

4

| Fuall faal — [%Pl(ﬁ) +(1- %)Ql(ﬁ)][5P4(F) +(1- g)Q4(F)] — 47.2955 > 0,

4

Fuallfsl — [EPLF) + (1= D)QuNIEPo(E) + (1~ £)Qs ()] = 39.8843 > 0,
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ol sl = [ Pa(F) + (1 - é)Qz(F)][gPy,(FH(l—%)Qs(ﬁ)]=27-7563>0,
aallual = 3 PaF) + (1 = 2)Qa(P[E PACE) + (1 = 5)Qu()] = 238176 > 0,
aall ool = [3 PaF) + (1 = ) QP Po(F) + (1 = 5)Qs()] = 10.7282 > 0,
sl sl = [ PoCE) + (1 — )Q3(F)][4 P(F) + (1= 2)Qu(F)] = 419853 > 0,
asll ool = 5 Po(F) + (1 = 5)Qa(F )][4 Pu(F) + (1= 2)Qs(F)] = 349913 >0,
Fullfos] = 5 PaCE) + (1—7)Q4(F)][5P5(F)+(1—%)Qs(ﬁ“)]=29~9944>0~

So, F' whose spectrum is the given set A = {4 5,6,7,8} is a 7—double strictly
diagonally dominant full matrix rather than a g—strlctly dlagonally dominant full
matrix.

5. Conclusions

In this paper, we mainly study the inverse eigenvalue problem of the three class-
es of full H-matrices including strictly diagonally dominant full matrix, a-strictly
diagonally dominant full matrix and a-double strictly diagonally dominant full ma-
trix. By using the Givens matrices. we prove that there exist three classes of full
H-matrices whose spectrum are all the given number set. Moreover, we design
some algorithms to implement the construction of the above three classes of full H-
matrices. Finally, by the algorithms we design, we construct the above-mentioned
H-matrices such that their spectrum are all the given number set in the numerical
experiment. It is worth noting that the methods we propose only illustrate the
existence of the three classes of full H-matrices, which don’t mean that all of these
three classes of full H-matrices whose spectrum is the given set must have the same
structure as the matrices constructed by the algorithms we design.

References

[1] M. T. Chu and G. H. Golub, Inverse Figenvalue Problems: Theory, Algorithms,
and Applications, Oxford University Press, USA, 2005.

[2] M. T. Chu, F. Diele and S. Ragni, On the inverse problem of constructing
symmetric pentadiagonal Toeplitz matrices from their three largest eigenvalues,
Inverse Probl., 2005, 21(6), 1879-1894.

[3] T.B. Gan and T. Z. Huang, Simple criteria for nonsingular H-matrices, Linear
Algebra Appl., 2003. DOI: 10.1016/S0024-3795(03)00646-3.

[4] K. Ghanbari, A survey on inverse and generalized inverse eigenvalue problems
for Jacobi matrices, Appl. Math. Comput., 2008, 195(2), 355-363.

[5] S. G. Hwang and S. S. Pyo, The inverse eigenvalue problem for symmetric
doubly stochastic matrices, Linear Algebra Appl., 2004. DOI: 10.1016/S0024-
3795(03)00366-5.



104

J. Li, G. Zhang, N. Wang, G. Li & C. Zhang

[6]

[9]
[10]

[11]

[14]

[15]

[16]
[17]
[18]

[19]

Z.Y. Liu, Y. L. Zhang, C. Ferreira and R. Ralha, On inverse eigenvalue prob-
lems for block Toeplitz matrices with Toeplitz blocks, Appl. Math. Comput.,
2010, 216(6), 1819-1830.

J. Z. Liu and Y. Q. Huang, Some properties on Schur complements of H-
matrices and diagonally dominant matrices, Linear Algebra Appl., 2004. DOLI:
10.1016/j.1aa.2004.04.012.

A. M. Nazari and F. Sherafat, On the inverse eigenvalue problem for non-
negative matrices of order two to five, Linear Algebra Appl., 2012, 436(7),
1771-1790.

J. Peng, X. Y. Hu and L. Zhang, A kind of inverse eigenvalue problems of
Jacobi matriz, Appl. Math. Comput., 2006, 175(2), 1543-1555.

P. Pango and B. Champagne, On the efficient use of Givens rotations in SVD-
based subspace tracking algorithms, Signal Processing, 1999, 74(3), 253-277.

W. Rudin, Principles of mathematical analysis, McGraw-Hill Education, USA,
1976.

J. J. Rotman, Advanced Modern Algebra, Prentice Hall, USA, 2003.

H. Smigoc, The inverse eigenvalue problem for nonnegative matrices, Linear
Algebra Appl., 2004. DOI: 10.1016/j.1aa.2004.03.036.

X. Q. Wu and E. X. Jiang, A new algorithm on the inverse eigenvalue problem
for double dimensional Jacobi matrices, Linear Algebra Appl., 2012, 437(7),
1760-1770.

X. Q. Wu, A divide and conquer algorithm on the double dimensional inverse
eigenvalue problem for Jacobi matrices, Appl. Math. Comput., 2012, 219(8),
3840-3846.

Y. Wei and H. Dai, An inverse eigenvalue problem for Jacobi matriz, Appl.
Math. Comput., 2015. DOI: 10.1016/j.amc.2014.11.101.

Y. Wei, A Jacobi matriz inverse eigenvalue problem with mized date, Linear
Algebra Appl., 2013, 439(10), 2774-2783.

Y. Wei, Inverse eigenvalue problem of Jacobi matriz with mized data, Linear
Algebra Appl., 2015. DOI: 10.1016/j.1aa.2014.09.031.

R. Wituta, D. Stota and M. Kampik, Some properties of the full matrices, Appl.
Math. Comput., 2012, 219(3), 1222-1231.



	Introduction
	Some definitions and conclusions
	The construction of the full H-matrices based on the Givens matrices
	Some properties of the Givens matrix
	Main results for construction of the full H-matrices based on the Givens matrices

	Numerical examples
	Conclusions

