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HOMOCLINIC SOLUTIONS FOR FOURTH
ORDER DIFFERENTIAL EQUATIONS WITH

SUPERLINEAR NONLINEARITIES∗
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Abstract In this paper we investigate the existence of homoclinic solutions
for a class of fourth order differential equations with superlinear nonlinearities.
Under some superlinear conditions weaker than the well-known (AR) condi-
tion, by using the variant fountain theorem, we establish one new criterion to
guarantee the existence of infinitely many homoclinic solutions.
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1. Introduction

The purpose of this paper is to deal with the existence of homoclinic solutions for
the following nonperiodic fourth order nonautonomous differential equations

u(4) + wu′′ + a(x)u = f(x, u), (FDE)

where w is a constant, a ∈ C(R,R) and f ∈ C(R× R,R). In (FDE), let f(x, u) be
of the form

f(x, u) = b(x)u2 + c(x)u3,

then (FDE) reduces to the following equation

u(4) + wu′′ + a(x)u− b(x)u2 − c(x)u3 = 0, (1.1)

which has been put forward as a mathematical model for the study of patten for-
mation in physics and mechanics. For example, the well-known Extended Fisher-
Kolmogorov (EFK) equation proposed by Coullet et al. [7] in study of phase tran-
sitions, and also by Dee and van Saarlos [8], as well as the Swift-Hohenberg (SH)
equation [19] which is a general model for pattern-forming process derived to de-
scribe random thermal fluctuations in the Boussinesque equation and in the prop-
agation of lasers [9]. With appropriate changes of variables, stationary solutions of
these equations lead to the following fourth order equation

u(4) + wu′′ − u+ u3 = 0, (1.2)
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where w > 0 corresponds to (EFK) equation and w < 0 to (SH) equation. In
addition, in the description of water waves driven by gravity and capillarity [4], the
following differential equation can be reduced by means of an argument based on
the center manifold theorem

u(4) + wu′′ − u+ u2 = 0, (1.3)

where w < 0 is a constant. Meanwhile, in study of weak interactions of dispersive
waves, Bretherton [2] gave the following partial differential equation

∂2v

∂t2
+
∂4v

∂t4
+ v − v3 = 0.

To obtain traveling wave solutions v(t, x) = u(x − ct) with c > 0, one can deduce
that

u(4) + c2u′′ − u+ u3 = 0. (1.4)

Besides, pulse propagation through optical fibers involving fourth order dispersion
leads to a generalized nonlinear Schrödinger equation [5]

i
∂v

∂x
+
∂2v

∂t2
− ∂4v

∂t4
+ |v|2v = 0.

Assuming that harmonic spatial dependence v(t, x) be of the form v(t, x) = u(t)eikx

(k ∈ N), then one obtains

u(4) − u′′ + ku− u3 = 0. (1.5)

For the problem of finding a homoclinic solution (i.e., a nontrivial solution u(x)
such that u(x)→ 0 as |x| → ∞) of the fourth order differential equations, we refer
the reader to [1, 3, 14] concerned with the autonomous case. If a(x) = b(x) = 1,
c(x) = 0 and w ≤ 2, Amick and Toland [1] proved the existence of homoclin-
ic solutions of Eq.(1.1). Later, their result was extended by Buffoni in [3]. If
a(x) = c(x) = 1, b(x) = 0, Peletier and Troy [14] extensively studied the periodic,
homoclinic and heteroclinic solutions of Eq. (1.1). Compared to the autonomous
case, the nonautonomous case seems to be more difficult, because of the lack of the
translation invariance and the existence of a first integral. Tersian and Chaparo-
va [19] showed that Eq.(1.1) possesses one nontrivial homoclinic solution by using
the Mountain Pass Theorem when a(x), b(x) and c(x) are continuous periodic func-
tions and satisfy some other assumptions. Li [12] extended the results to some
general nonlinear term, i.e., (FDE), assuming that a(x) and f(x, u) are periodic
in x, and f(x, u) satisfies the following Ambrosetti-Rabinowitz condition (shortly
denoted by (AR) condition):

(AR) there is a constant µ > 2 such that

0 < µF (x, u) ≤ f(x, u)u, ∀(x, u) ∈ R× R,

where F (x, u) =

∫ u

0

f(x, t)dt, which implies that f(x, u) is superlinear at infinity.

Li [13] dealt with the nonperiodic case of Eq.(1.1) and obtained the existence of
nontrivial homoclinic solutions via using a compactness lemma and a mountain
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pass theorem. Sun and Wu [17] considered the following nonperiodic fourth order
differential equations with a perturbation

u(4) + wu′′ + a(x)u = f(x, u) + λh(x)|u|p−2u, x ∈ R, (1.6)

where w is a constant, λ > 0 is a parameter, a ∈ C(R,R), f ∈ C(R×R,R), 1 ≤ p < 2

and h ∈ L
2

2−p (R), and obtained the existence of at least two homoclinic solutions
for the case that f(x, u) is superlinear or asymptotically linear at infinity. More
recently, Li et al. [10] studied the existence of infinitely many homoclinic solutions
for nonperiodic (FDE) when f(x, u) satisfies the superlinear condition, but does
not fulfil the well-known (AR) condition, see its Theorem 1.1. However, we must
point out that, for the case that (FDE) is nonperiodic, to obtain the existence of
homoclinic solutions, the following coercive condition on a is often needed:

(A) a : R → R is a continuous function, and there exists some constant a1 > 0
such that

0 < a1 ≤ a(x)→∞ as |x| → ∞, (1.7)

which is used to establish the corresponding compact embedding lemmas on suitable
functional spaces, see Lemma 2 in [13], Lemma 2.2 in [17] and Lemma 2.3 in [10].

It is obvious that, if a is bounded, then it is not covered by (A). Inspired by
the above facts, more recently, the authors [18, 21, 22] investigated the existence of
homoclinic solutions of (FDE) for the case that a is nonperiodic and bounded from
below. Explicitly, assuming that the following condition hold:

(A)′ a ∈ C(R,R) is continuous and there exists a positive τ > 0 such that

a(x) ≥ τ > 0 and w ≤ 2
√
τ ;

then Yang [21] showed that (FDE) possesses at least one nontrivial homoclinic
solution where f(x, u) is of sublinear growth as |u| → ∞. If, in addition, f is odd
in u variable, i.e.,

(F3) f(x, u) = −f(x,−u), ∀(x, u) ∈ R× R,

then (FDE) possesses infinitely many homoclinic solutions. In [18], Sun et al. con-
sidered the following nonperiodic fourth order differential equations with a param-
eter:

u(4) + wu′′ + λa(x)u = f(x, u), (1.8)

where w is a constant, λ > 0 is a parameter and f ∈ C(R× R,R). Assuming that
a(x) satisfies the following conditions:

(V1) a ∈ C(R,R) and a ≥ 0 on R; there exists c > 0 such that the set {a <
c} = {x ∈ R | a(x) < c} is nonempty and |{a < c}| < c0S

−2
∞ , where | · | is

the Lebesgue measure, S∞ is the best Sobolev constant for the embedding of
H2(R) in L∞(R) and c0 is given in its Lemma 2.1;

(V2) T = inta−1(0) is nonempty and T = a−1(0) such that T is a finite interval;

and f(x, u) is supposed to satisfy some class of sublinear growth conditions, then
they showed that there exists Λ0 > 0 such that for every λ > Λ0 Eq.(1.8) has at
least one homoclinic solution uλ, and explored the phenomenon of concentration
of homoclinic solutions as λ → ∞, which has been improved in recent paper [11]
when the nonlinear term f(x, u) satisfies the asymptotically linear condition, and
the nonexistence of nontrivial homoclinic solutions is also discussed. In [22], for the
case that a(x) is bounded in the following sense
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(A)′′ a ∈ C(R,R) and there exits two constants 0 < τ1 < τ2 <∞ such that

0 < τ1 ≤ a(x) ≤ τ2 for all x ∈ R,

and assuming that f(x, u) satisfies some superlinear condition weaker than (AR)
condition, Zhang and Yuan showed that (FDE) has at least one nontrivial homo-
clinic solution.

Motivated by the above results, in this paper we are interested in the existence
of infinitely many homoclinic solutions of (FDE) for the case that a(x) is unneces-
sarily required to be either nonnegative or coercive, and f(x, u) satisfies some weak
superlinear conditions at infinity with respect to u. Now, we make the following
assumptions on a(x) and f(x, u):

(L)1 a ∈ C(R,R) such that infx∈R a(x) > −∞;

(L)2 there exists a constant r0 > 0 such that

lim
|s|→∞

meas({x ∈ (s− r0, s+ r0) : a(x) ≤M}) = 0, ∀M > 0,

where meas denotes the Lebesgue measure in R;

(FDE)1 lim|u|→∞
F (x,u)
|u|2 =∞ uniformly with respect to x ∈ R;

(FDE)2 F (x, 0) = 0 for all x ∈ R, and there exist constants b > 0 and ν > 2 such
that

|f(x, u)| ≤ b(|u|+ |u|ν−1), ∀(x, u) ∈ R× R;

(FDE)3 there exists a constant ϑ ≥ 1 such that

ϑF̃ (x, u) ≥ F̃ (x, su), ∀(x, u) ∈ R× R and s ∈ [0, 1],

where F̃ (x, u) = f(x, u)u− 2F (x, u);

(FDE)4 F (x, u) = F (x,−u) for all (x, u) ∈ R× R.

Now, we are in the position to state our main result.

Theorem 1.1. Suppose that (L)1, (L)2 and (FDE)1-(FDE)4 are satisfied, then
(FDE) possesses a sequence of homoclinic solutions {uk}k∈N satisfying∫

R

[1

2
u′′k(x)2 − 1

2
wu′k(x)2 +

1

2
a(x)uk(x)2 − F (x, uk(x))

]
dx→∞ as k →∞.

Remark 1.1. It is easy to see that conditions (L)1 and (L)2 are weaker than (A),
(A)′, (A)′′, and the conditions (V1)-(V2). In our Theorem 1.1, a(x) is unnecessarily
required to be either nonnegative or coercive, and is allowed to be sign-changing.
Besides, the well-known (AR) superlinear condition is not required in our Theorem
1.1. There are functions a(x) and f(x, u) which satisfy all the conditions in our
Theorem 1.1 but do not satisfy the corresponding conditions in the aforementioned
references for the superlinear case. For example, let

a(x) = (|x| sin2 x− 1), ∀x ∈ R

and
f(x, u) = π(x)u ln(1 + u2), ∀(x, u) ∈ R× R,

where π : R → R is a continuously bounded function with positive lower bound,
then simple computation shows that (L)1, (L)2 and (FDE)1-(FDE)4 are satisfied.
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The remaining part of this paper is structured as follows. Some preliminary
results are presented in Section 2. In Section 3, we are devoted to accomplishing
the proof of Theorem 1.1.

2. Preliminary Results

In order to prove Theorem 1.1 via the critical point theory, we firstly describe some
properties of the space E on which the variational framework associated to (FDE)
is defined. To do this, we need the following discussion.

Remark 2.1. According to (FDE)2, it is easy to verify that

|F (x, u)| = |
∫ 1

0

f(x, su)uds| ≤ b

2
|u|2 +

b

ν
|u|ν , ∀(x, u) ∈ R× R. (2.1)

From (L)1, (FDE)1 and (2.1), we know that there exists a positive constant a0 such
that infx∈R(a(x)+a0) > 0 and inf(x,u)∈R×R F (x, u)+a0u

2 > 0. Let a(x) = a(x)+a0

and F (x, u) = F (x, u) + a0u
2 and consider the following fourth order differential

equations
u(4) + wu′′ + a(x)u = f(x, u), (2.2)

then (2.2) is equivalent to (FDE). Moreover, it is obvious that the hypotheses (L)1,
(L)2 and (FDE)1-(FDE)4 still hold for a and F . In addition, for the constant w in
(FDE), we can choose a0 > 0 large enough such that w ≤ 2

√
infx∈R(a(x) + a0).

In view of Remark 2.1, in what follows, we investigate the equivalent problem
(2.2) and make the following assumption instead of (L)1:

(L)′1 a ∈ C(R,R) and there exits a positive constant τ > 0 such that a(x) ≥ τ .

Meanwhile, due to Remark 2.1, we can also assume that w ≤ 2
√
τ and F (x, u) ≥ 0

for all (x, u) ∈ R× R.
Now we introduce the functional space on which the variational framework cor-

responding to (FDE) will be constructed.

Lemma 2.1 ( [19, Lemma 8]). Assume that a(x) ≥ τ > 0 and w ≤ 2
√
τ . Then

there exists a constant c0 > 0 such that∫
R

[u′′(x)2 − wu′(x)2 + a(x)u(x)2]dx ≥ c0‖u‖2H2 for all u ∈ H2(R), (2.3)

where ‖u‖H2 =
(∫

R
[u′′(x)2 + u′(x)2 + u(x)2]dx

)1/2

is the norm of Sobolev space

H2(R).

Due to Lemma 2.1, we define

E =

{
u ∈ H2(R) :

∫
R

[u′′(x)2 − wu′(x)2 + a(x)u(x)2]dx <∞
}
,

with the inner product

(u, v) =

∫
R

[u′′(x)v′′(x)− wu′(x)v′(x) + a(x)u(x)v(x)]dx
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and the corresponding norm

‖u‖ =
(∫

R
[u′′(x)2 − wu′(x)2 + a(x)u(x)2]dx

)1/2

.

Then, it is easy to verify that E is a Hilbert space. By Sobolev embedding theorem,

H2(R) ⊂ Lp(R), 2 ≤ p ≤ ∞

and the embedding is continuous. That is, there exists a constant Cp > 0 such that

‖u‖p ≤ Cp‖u‖H2 , ∀u ∈ E, (2.4)

for any p ∈ [2,∞]. Combining (2.4) and (2.3), for any p ∈ [2,∞], there is another
constant (still denoted by Cp) such that

‖u‖p ≤ Cp‖u‖, ∀u ∈ E. (2.5)

Here Lp(R) (2 ≤ p < ∞) denotes the Banach space of functions on R with values
in R under the norm

‖u‖p :=
(∫

R
|u(x)|pdx

)1/p

,

L∞(R) is the Banach space of essentially bounded functions from R into R equipped
with the norm

‖u‖∞ := ess sup {|u(x)| : x ∈ R} .

Furthermore, we can have the following compact embedding conclusion which
plays an essential role in our later argument.

Lemma 2.2. If (L)′1 and (L)2 are satisfied, then E is compactly embedded into
L2(R,R).

Proof. Let {un}n∈N ⊂ E be a bounded sequence such that un ⇀ u in E. We will
show that un → u in L2(R,R). Suppose, without loss of generality, that un ⇀ 0
in E. The Sobolev embedding theorem implies that un → 0 in L2

loc(R,R). Thus it
suffices to show that, for any ε > 0, there is r > 0 such that∫

R\[−r,r]
|un(x)|2dx < ε, n ∈ N. (2.6)

To this end, for any s ∈ R, we denote by Br0(s) the interval in R centered at s with
radius r0, i.e., Br0(s) = (s − r0, s + r0), where r0 is constant defined in (L)2. Let
{si}i∈N ⊂ R be a sequence of points such that R = ∪∞i=1Br0(si) and each x ∈ R is
contained in at most two such intervals. For any r > 0 and M > 0, let

C(r,M) = {x ∈ R \ [−r, r] : a(x) > M}

and
D(r,M) = {x ∈ R \ [−r, r] : a(x) ≤M}.

Then, one deduces that∫
C(r,M)

un(x)2dx ≤ 1

M

∫
C(r,M)

a(x)un(x)2dx ≤ 1

M

∫
R
a(x)un(x)2dx



72 Z. Zhang & Z. Liu

and moreover this can be made arbitrarily small by choosing M large enough. In
addition, making use of Hölder inequality and (2.5), for a fixed M > 0, we have∫
D(r,M)

un(x)2dx ≤
∞∑
i=1

∫
D(r,M)∩Br0

(si)

un(x)2dx

≤
∞∑
i=1

(∫
D(r,M)∩Br0 (si)

un(x)4dx
)1/2(

meas(D(r,M) ∩ Br0(si))
)1/2

≤ εr
∞∑
i=1

(∫
Br0 (si)

un(x)4dx
)1/2

≤ εr
∞∑
i=1

∫
Br0 (si)

un(x)4dx

≤ 2εr

∫
R
un(x)4dx

≤ 2C4
4εr

∫
R

[u′′n(x)2 − wu′n(x)2 + a(x)un(x)2]dx,

where εr = supi∈N(meas(D(r,M) ∩ Br0(si)))
1/2. On account of (L)2, εr → 0 as

r →∞ and noting that {un}n∈N is bounded in E, we can make this term small by
choosing r large. This completes the proof.

Remark 2.2. Due to the fact∫
R
|u(x)|pdx ≤ ‖u‖p−2

∞ ‖u‖22, ∀p ∈ [2,∞)

and Lemma 2.2, it is easy to check that E is compactly embedded into Lp(R,R) for
any p ∈ [2,∞).

To obtain the existence of infinitely many homoclinic solutions of (FDE), we
need the following variant fountain theorem established in [23].

Let B be a Banach space with the norm ‖ · ‖ and B = ⊕j∈NXj with dimXj <∞
for any j ∈ N. Set Yk = ⊕kj=1Xj and Zk = ⊕∞j=kXj . Consider the following

C1-functional Φλ : B → R defined by

Φλ(u) = A(u)− λB(u), λ ∈ [1, 2].

Lemma 2.3 ( [23, Theorem 2.1]). Assume that the above functional Φλ satisfies

(A)1 Φλ maps bounded sets to bounded sets for λ ∈ [1, 2], and Φλ(−u) = Φλ(u) for
all (λ, u) ∈ [1, 2]× B;

(A)2 B(u) ≥ 0 for all u ∈ B, and A(u)→∞ or B(u)→∞ as ‖u‖ → ∞;

(A)3 there exist ρk > σk > 0 such that

αk(λ) = inf
u∈Zk,‖u‖=σk

Φλ(u) > βk(λ) = max
u∈Yk,‖u‖=ρk

Φk(u), λ ∈ [1, 2].

Then

αk(λ) ≤ ζk(λ) = inf
γ∈Γk

max
u∈Bk

Φλ(γ(u)), ∀λ ∈ [1, 2],
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where Bk = {u ∈ Yk : ‖u‖ ≤ ρk} and Γk = {γ ∈ C(Bk,B) : γ is odd, γ|∂Bk
= id}.

Moreover, for almost every λ ∈ [1, 2], there exists a sequence {ukm(λ)}∞m=1 such that

sup
m
‖ukm(λ)‖ <∞, Φ′λ(ukm(λ))→ 0 and Φλ(ukm(λ))→ ζk(λ) as m→∞.

3. Proof of Theorem 1.1

The aim of section is to establish the proof of Theorem 1.1. For this purpose, we
are going to establish the corresponding variational framework to obtain homoclinic
solutions of (FDE). To this end, we choose B = E as our working functional space.
Due to the fact that E is a reflexive and separable Hilbert space, we select an
orthonormal basis {ej : j ∈ N} of E and let Xj = span{ej} for all j ∈ N. Define
the functionals A, B and Φλ on E by

A(u) =
1

2
‖u‖2, B(u) =

∫
R
F (x, u(x))dx, (3.1)

and

Φλ(u) = A(u)− λB(u) =
1

2
‖u‖2 − λ

∫
R
F (x, u(x))dx (3.2)

for all u ∈ E and λ ∈ [1, 2]. Especially, we denote by Φ1 = Φ, that is,

Φ(u) =

∫
R

[1

2
u′′(x)2 − 1

2
wu′(x)2 +

1

2
a(x)u(x)2 − F (x, u(x))

]
dx

=
1

2
‖u‖2 −

∫
R
F (x, u(x))dx.

(3.3)

(2.1) and (2.5) imply that Φλ is well defined on E. Furthermore, under the condi-
tions of Theorem 1.1, as usual, we see that Φλ ∈ C1(E,R), i.e., Φλ is a continuously
Fréchet-differentiable functional defined on E. Moreover, we have

Φ′λ(u)v =

∫
R

[
u′′(x)v′′(x)−wu′(x)v′(x)+a(x)u(x)v(x)−λf(x, u(x))v(x)

]
dx (3.4)

for all u, v ∈ E, which yields that

Φ′λ(u)u = ‖u‖2 − λ
∫
R
f(x, u(x))u(x)dx. (3.5)

Moreover, any nontrivial critical points of Φ are homoclinic solutions of (FDE).
To obtain the existence of infinitely many homoclinic solutions of (FDE) by

using the fountain theorem, in the sequel we establish some technical lemmas.

Lemma 3.1. For any finite dimensional subspace Ẽ ⊂ E, there exists a constant
% > 0 such that

meas({x ∈ R : |u(x)| ≥ %‖u‖}) ≥ %, ∀u ∈ Ẽ \ {0}.

Proof. On the contrary, assume that, for any n ∈ N, there exists un ∈ Ẽ \ {0}
such that

meas({x ∈ R : |un(x)| ≥ ‖un‖
n
}) < 1

n
.
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Let vn = un

‖un‖ ∈ Ẽ for each n ∈ N, then we have ‖vn‖ = 1 and

meas({x ∈ R : |vn(x)| ≥ 1

n
}) < 1

n
. (3.6)

Passing to a subsequence if necessary, we may assume vn → v0 in Ẽ for some v0 ∈ Ẽ,
since Ẽ is of finite dimension. Combining this with (2.5), we have∫

R
|vn(x)− v0(x)|2dx→ 0 as n→∞. (3.7)

Noting that ‖v0‖ = 1, then there exists a constant δ0 > 0 such that

meas({x ∈ R : |v0(x)| ≥ δ0}) ≥ δ0. (3.8)

Otherwise, for each fixed n ∈ N, we have

meas({x ∈ R : |v0(x)| ≥ 1

n
}) ≤ meas({x ∈ R : |v0(x)| ≥ 1

m
}) ≤ 1

m
, ∀m ≥ n.

Letting m→∞, we obtain that

meas({x ∈ R : |v0(x)| ≥ 1

n
}) = 0.

Consequently, one deduces that

0 ≤ meas({x ∈ R : |v0(x)| 6= 0})

= meas(∪∞n=1{x ∈ R : |v0(x)| ≥ 1

n
})

≤
∞∑
n=1

meas({x ∈ R : |v0(x)| ≥ 1

n
}) = 0,

which yields that v0 = 0, a contradiction to ‖v0‖ = 1. Thus (3.8) holds. In what
follows, set Ω0 = {x ∈ R : |v0(x)| ≥ δ0}, where δ0 is the constant given in (3.8). For
any n ∈ N, let

Ωn = {x ∈ R : |vn(x)| < 1

n
} and Ωcn = R \ Ωn = {x ∈ R : |vn(x)| ≥ 1

n
}.

Then, for n large enough, by (3.6) and (3.8), we have

meas(Ωn ∩ Ω0) ≥ meas(Ω0)−meas(Ωcn) ≥ δ0 −
1

n
≥ δ0

2
.

Consequently, for n large enough, it holds that∫
R
|vn(x)− v0(x)|2dx ≥

∫
Ωn∩Ω0

|vn(x)− v0(x)|2dx

≥
∫

Ωn∩Ω0

(|v0(x)| − |vn(x)|)2dx

≥
(
δ0 −

1

n

)2

meas(Ωn ∩ Ω0)

≥ δ3
0

8
> 0,

which contradicts to (3.7). The proof is complete.
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Lemma 3.2. Assume that (L)′1, (L)2 and (FDE)2 hold, then there exist a positive
integer k1 and a sequence {σk}k∈N satisfying σk →∞ as k →∞ such that

αk(λ) = inf
u∈Zk,‖u‖=σk

Φλ(u) > 0,

where Zk = ⊕∞j=kXj = span{ek, . . . } for all k ≥ k1.

Proof. Note that (2.1) and (3.2) imply that

Φλ(u) ≥ 1

2
‖u‖2 − 2

∫
R
F (x, u(x))dx

≥ 1

2
‖u‖2 − b‖u‖22 −

2b

ν
‖u‖νν , ∀(λ, u) ∈ [1, 2]× E.

(3.9)

For each k ∈ N, define

`2(k) = sup
u∈Zk,‖u‖=1

‖u‖2 and `ν(k) = sup
u∈Zk,‖u‖=1

‖u‖ν . (3.10)

Since E is compactly embedded into both L2(R,R) and Lν(R,R), then there hold
that (see [20, Lemma 3.8])

`2(k)→ 0 and `ν(k)→ 0 as k →∞. (3.11)

Combining (3.9) with (3.10), we have

Φλ(u) ≥ 1

2
‖u‖2 − b`22(k)‖u‖2 − 2b

ν
`νν‖u‖ν , ∀(λ, u) ∈ [1, 2]× Zk. (3.12)

In view of (3.11), there exists a positive integer k1 such that

b`22(k) ≤ 1

4
, ∀k ≥ k1. (3.13)

For each k ≥ k1, choose

σk =
(16b`νν(k)

ν

)1/(2−ν)

. (3.14)

Then, it follows from (3.11) that

σk →∞ as k →∞, (3.15)

since ν > 2. Based on (3.12)-(3.14), a direct computation shows that

αk(λ) = inf
u∈Zk,‖u‖=σk

Φλ(u) ≥ σ2
k

8
> 0, ∀k ≥ k1,

which implies that the proof is complete.

Lemma 3.3. Suppose that (L)′1, (L)2, (FDE)1 and (FDE)2 are satisfied. Then, for
the positive integer k1 and the sequence {σk}k∈N determined in Lemma 3.2, there
exists ρk > σk for each k ≥ k1 such that

βk = max
u∈Yk,‖u‖=ρk

Φλ(u) < 0,

where Yk = ⊕kj=1Xj = span{e1, . . . , ek}.
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Proof. Note that Yk is a finite dimensional subspace for all k ≥ k1. Then, by
Lemma 3.1, for all k ≥ k1, there exists a constant %k > 0 such that

meas(Ωku) ≥ %k, ∀u ∈ Yk \ {0}, (3.16)

where Ωku = {x ∈ R : |u(x)| ≥ %k‖u‖} for all k ≥ k1 and u ∈ Yk \ {0}. By (FDE)1,
for each k ≥ k1, there exists a constant bk > 0 such that

F (x, u) ≥ |u|
2

%3
k

, ∀x ∈ R and |u| ≥ bk. (3.17)

Combining (3.2), (3.16) with (3.17), for all k ≥ k1 and λ ∈ [1, 2], we have

Φλ(u) ≤ 1

2
‖u‖2 −

∫
R
F (x, u(x))dx

≤ 1

2
‖u‖2 −

∫
Ωk

u

|u(x)|2

%3
k

dx

≤ 1

2
‖u‖2 − %2

k‖u‖2
meas(Ωku)

%3
k

≤ 1

2
‖u‖2 − ‖u‖2 = −1

2
‖u‖2

(3.18)

for all u ∈ Yk with ‖u‖ ≥ bk
%k

. Here we use the fact that F (x, u) ≥ 0 for all

(x, u) ∈ R×R. For each k ≥ k1, if we choose ρk > max{σk, bk%k }, then (3.18) implies
that

βk(λ) = max
u∈Yk,‖u‖=ρk

Φλ(u) ≤ −ρ
2
k

2
,

which deduces that the conclusion holds true.

Now we are in the position to establish the proof of Theorem 1.1.

Proof of Theorem 1.1. Firstly, form (2.1), (2.5) and (3.2), it follows that Φλ
maps bounded sets to bounded sets uniformly with respect to λ ∈ [1, 2]. In addition,
(FDE)4 implies that Φλ(−u) = Φλ(u) for all (λ, u) ∈ [1, 2]× E. Thus, (A)1 holds.
Next, using again the fact that F (x, u) ≥ 0 for all (x, u) ∈ R × R, we know that
(A)2 holds by the definition of A in (3.1). Finally, Lemmas 3.2 and 3.3 show that
(A)3 holds for k ≥ k1, where k1 is given in Lemma 3.2. Therefore, for each k ≥ k1,
applying Lemma 2.3, for almost every λ ∈ [1, 2], there exists a sequence {ukm(λ)}∞m=1

such that

sup
m
‖ukm(λ)‖ <∞, Φ′λ(ukm(λ))→ 0 and Φλ(ukm(λ))→ ζk(λ) as m→∞,

(3.19)
where

ζk(λ) = inf
γ∈Γk

max
u∈Bk

Φλ(γ(u)), ∀λ ∈ [1, 2]

with Bk = {u ∈ Yk : ‖u‖ ≤ ρk} and Γk = {γ ∈ C(Bk, E) : γ is odd, γ|∂Bk
= id}.

From the proof of Lemma 3.2, we infer that

ζk(λ) ∈ [αk, ζk], ∀k ≥ k1 and λ ∈ [1, 2], (3.20)
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where ζk = maxu∈Bk
Φ1(u) and αk =

σ2
k

8 → ∞ as k → ∞ by (3.15). In view of
(3.19), for each k ≥ k1, we can choose a sequence λn → 1 (dependent on k) and get
the corresponding sequences satisfying

sup
m
‖ukm(λn)‖ <∞ and Φ′λn

(ukm(λn))→ 0 as m→∞. (3.21)

Claim 1. For each λn given above, the sequence {ukm(λn)}∞m=1 has a strong con-
vergent subsequence.

For notational simplicity, we will set um = ukm(λn) for m ∈ N throughout the
proof of Claim 1. By (3.21), without loss of generality, we assume that

um ⇀ u as m→∞ (3.22)

for some u ∈ E. According to (3.4), we have

‖um − u‖2 =Φ′λn
(um)(um − u)− Φ′λn

(u)(um − u)

+ λn

∫
R
(f(x, um(x))− f(x, u(x)))(um(x)− u(x))dx.

(3.23)

By (3.21) and (3.22), we have

Φ′λn
(um)(um − u)→ 0 and Φ′λn

(u)(um − u)→ 0 (3.24)

as m → ∞. In addition, according to (2.5), Lemma 2.2 and the Hölder inequality,
we infer that

|
∫
R

(f(x, um(x))− f(x, u(x)))(um(x)− u(x))dx|

≤
(∫

R
|f(x, um(x))− f(x, u(x))|2dx

)1/2

‖um − u‖2

≤b
(∫

R
(|um(x)|+ |u(x)|+ |um(x)|ν−1 + |u(x)|ν−1)2dx

)1/2

‖um − u‖2

≤4b
(∫

R
(|um(x)|2 + |u(x)|2 + |um(x)|2ν−2 + |u(x)|2ν−2)dx

)1/2

‖um − u‖2

≤4b
(
‖um‖22 + ‖u‖22 + ‖um‖2ν−2

2ν−2 + ‖u‖2ν−2
2ν−2

)1/2

‖um − u‖2 → 0

(3.25)

as m → ∞. Here we use the fact that the boundedness of {um}m∈N in E implies
that {um}m∈N is bounded in L2(R,R) and L2ν−2(R,R). On account of (3.23), (3.24)
and (3.25), we obtain that um → u in E as m→∞. Thus, Claim 1 holds.

In view of Claim 1, without loss of generality, we may assume that

lim
m→∞

ukm(λn) = ukn, ∀n ∈ N and k ≥ k1. (3.26)

Combining (3.26), (3.19) and (3.20), we deduce that

Φ′λn
(ukn) = 0 and Φλn

(ukn) ∈ [αk, ζk], ∀n ∈ N and k ≥ k1. (3.27)

Claim 2. For each k ≥ k1, the sequence {ukn}∞n=1 in (3.26) is bounded in E.
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As in the proof of Claim 1, for notational simplicity, we set un = ukn for all
n ∈ N. On the contrary, if Claim 2 is not true, without loss of generality, we may
assume that

‖un‖ → ∞ and ωn =
un
‖un‖

⇀ ω ∈ E as n→∞. (3.28)

According to (3.28) and Remark 2.2, passing to a subsequence if necessary, we have

ωn → ω in Lp(R,R) for 2 ≤ p <∞, (3.29)

and
ωn(x)→ ω(x) a.e. x ∈ R. (3.30)

When ω 6= 0 occurs, Θ = {x ∈ R : ω(x) 6= 0} has a positive Lebesgue measure. Due
to (3.28), it holds that

un(x)→∞, ∀x ∈ Θ. (3.31)

Combining (3.2), (3.30), (3.31) and (FDE)1, by Fatou’s Lemma, we deduce that

1

2
− Φλn

(un)

‖un‖2
= λ

∫
R

F (x, un(x))

‖un‖2
dx

≥
∫

Θ

|ωn(x)|2F (x, un(x))

|un|2
dx→∞ as n→∞,

which is a contradiction to (3.27) and (3.28). When ω = 0 occurs, we choose a
sequence {sn}n∈N ⊂ [0, 1] such that

Φλn
(snun) = max

s∈[0,1]
Φλn

(sun). (3.32)

For M > 0, let ω̃n =
√

4Mωn =
√

4M
‖un‖ un, then (3.29) yields that

ω̃n →
√

4Mω = 0 in Lp(R,R) for 2 ≤ p <∞, (3.33)

which, combining (2.1) with (3.29), imply that∫
R
F (x, ω̃n(x))dx ≤ b

∫
R

(1

2
|ω̃n(x)|2 +

1

ν
|ω̃n(x)|ν

)
dx→ 0 as n→∞. (3.34)

Note that 0 <
√

4M
‖un‖ < 1 holds by (3.28) for n large enough. Consequently, on

account of (3.2), (3.32) and (3.34), we obtain that

Φλn
(snun) ≥ Φλn

(ω̃n)

=
1

2
‖ω̃n‖2 − λn

∫
R
F (x, ω̃n(x))dx

= 2M − λn
∫
R
F (x, ω̃n(x))dx ≥M

for n large enough. It follows that limn→∞Φλn
(snun) = ∞. Observing that

Φλn(0) = 0 and Φλn(un) ∈ [αk, ζk] in (3.27), we know that sn ∈ (0, 1) in (3.32) for
n large enough. Moreover, one deduces that

0 = sn
d

ds

∣∣∣
s=sn

Φλn
(sun) = Φ′λn

(snun)snun, (3.35)
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which, combining (3.2), (3.4), (3.18), (3.35) with (FDE)3, yield that

Φλn(un) = Φλn(un)− 1

2
Φ′λn

(un)un

=
λn
2

∫
R
F̃ (x, un(x))dx

≥ λn
2ϑ

∫
R
F̃ (x, snun(x))dx

=
1

ϑ
Φλn

(snun)− 1

2ϑ
Φ′λn

(snun)snun

=
1

ϑ
Φλn

(snun)→∞ as n→∞,

where ϑ is the constant in (FDE)3, which provides a contradiction to (3.27). Thus,
Claim 2 is true.

In view of Claim 2 and (3.27), for each k ≥ k1, using the similar arguments in
the proof of Claim 1, we can also show that the sequence {ukn}∞n=1 has a strong
convergent subsequence with the limit uk being just a critical point Φ = Φ1. Ev-
idently, Φ(uk) ∈ [αk, ζk] for all k ≥ k1. Since αk → ∞ as k → ∞ in (3.20), we
obtain infinitely many nontrivial critical points of Φ. Therefore, (FDE) possesses
infinitely many nontrivial homoclinic solutions.
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