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Abstract This paper estimates the finite number of the determining nodes to
the equations for an incompressible non-Newtonian fluid with space-periodic
or no-slip boundary conditions. The authors prove that, whenever the second
order derivatives of two different solutions within the global attractor have
the same time-asymptotic behavior at finite number of points in the physical
space, then the two solutions possess the same time-asymptotic behavior at
almost everywhere points of the physical space.
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1. Introduction

In this paper, we investigate the determining nodes of the global attractor for
the following incompressible non-Newtonian fluid equations

∂u

∂t
+ (u · ∇)u−∇ ·

(
2µ0(ϵ+ |e(u)|2)−α/2e(u)− 2µ1∆e(u)

)
+∇p = f, (1.1)

∇ · u = 0, (1.2)

in Ω× [0,+∞) (Ω ⊆ R2), with initial value

u(x, 0) = u0(x), x = (x1, x2) ∈ Ω, (1.3)

where the unknown vector function u = u(x, t) and scalar function p = p(x, t) stand
for the velocity field and pressure of the fluid, respectively, and the given vector
function f = f(x, t) is the external force. In equation (1.1), e(u) = (ejk(u))2×2 is
the symmetric deformations velocity tensor whose components are

ejk(u) =
1

2
(
∂uj

∂xk
+

∂uk

∂xj
), j, k = 1, 2,

and |e(u)|2 =
2∑

j,k=1

e2jk(u). In addition, ϵ, µ0, µ1 and α are constitutive parameters.
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There are two boundary conditions are possible to equations (1.1)-(1.2). The
first boundary condition is the space-periodic case. We assume that the fluid fills the
entire space R2 but with the condition that u, f and p are Lj-periodic in each variable
xj , j = 1, 2. In this case, we use Ω to denote the period Ω = (−L1/2, L1/2) ×
(−L2/2, L2/2) and we consider the spatially periodic solutions of (1.1)-(1.3), with
{e1, e2} the natural basis of R2. The spatially periodic conditions associated to
(1.1)-(1.3) are

uk(x, t) = uk(x+ Ljej , t), j, k = 1, 2, t ⩾ 0, (1.4)∫
Ω

u(x, t)dx = 0. (1.5)

The second boundary condition corresponds the case that Ω ⊆ R2 is a bounded
and suitable smooth domain. In this situation, (1.1)-(1.2) is supplemented by the
boundary conditions

u = 0, 2µ1
∂ejk
∂xk

γjγm = 0, on ∂Ω× [0,+∞), j, k,m = 1, 2, (1.6)

where γ⃗ = (γ1, γ2, · · · , γn) is the exterior unit normal to ∂Ω. The first condition
in (1.6) represents the usual no-slip condition associated with a viscous fluid; the
second one expresses the fact that the first moments of the traction vanish on ∂Ω.

The theory of multipolar material was firstly formulated by Green and Rivlin
[9, 10]. Later, Bellout et al. [2] and Necǎs and Šilhavy [19] developed the mathe-
matical theory of multipolar viscous fluids. We refer to [18] for the definition of
non-Newtonian fluid, as well as for the physical background of the non-Newtonian
fluid. There are many papers on the existence and uniqueness, regularity and long-
time behavior of solutions to equations (1.1)-(1.4) and (1.1)-(1.3) with (1.5), or to
the related versions (see e.g. [3–5, 11, 14, 18, 20, 22, 23, 25–27]. For example, Bloom
and Hao in [5] proved the existence of a maximal attractor for equations (1.1)-(1.3)
with (1.5) in two-dimensional (2D) unbounded channel like domains. Zhao and
Li in [22] proved that the global attractor obtained by [5] is actually a H2 global
attractor. Zhao and Zhou in [23] investigated the existence and H2-regularity of
the pullback attractor in 2D bounded domains.

The motivation of this paper is to investigate the property of the solutions within
the global attractor associated to equations (1.1)-(1.3). Recently, rather abstract,
research on the asymptotic properties of this non-Newtonian fluid equations should
prove valuable to the furtherance of the use of computers as experimental tools
in the study of the dynamics of non-Newtonian fluids. We know that, in many
practical situations, the experimental data are collected from measurements at a
finite number of points in the physical space.

The idea of the present paper originates from [7], in which the authors estimated
the finite number of determining nodes for the Navier-Stokes equations. The issue
of determining form for the Navier-Stokes equations was also investigated in [8,13,
17]. In addition, the determining form for the nonlinear Schrödinger equations was
investigated in [15], and the determining nodes for semi-linear parabolic equations
was studied in [17].

Our goal is to estimate the finite number of determining nodes for the global
attractor of equations (1.1)-(1.3) with space-periodic or no-slip boundary conditions.
Our result reveals that the time-asymptotic behavior of solutions within the global
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attractor is completely determined by the time-asymptotic behavior of the solutions
at finite number of points in the physical space.

Definition 1.1. Consider a set of N nodes or measurement points in the physical
space Ω, denoted by Λ = {x1,x2, · · · ,xN}. Let u(x, t) and v(x, t) be two solutions
within the global attractor associated to equations (1.1)-(1.3). If the conditions

max
j=1,··· ,N

|∆(u(x, t)− v(x, t))|x=xj | −→ 0 as t −→ ∞, (1.7)

implies ∫
Ω

|∆u(x, t)−∆v(x, t)|2dx −→ 0 as t −→ ∞. (1.8)

Then the set Λ is called a set of determining nodes for the global attractor
associated to equations (1.1)-(1.3).

We want point out that above definition is different with the notion of deter-
mining nodes for the Navier-Stokes equations in [7]. The reason is that the non-
Newtonian fluid equations addressed in this paper contain the term of fourth order
derivative ∇ · (−2µ1∆e(u)). On the other hand, compared with the Navier-Stokes
equations, this non-Newtonian fluid equations contain an additional nonlinear term
∇·(µ0(ϵ+ |e(u)|2)−α/2e(u)). We need do some technique estimation to handle with
this nonlinear term when estimating the finite number of determining nodes.

The rest of this paper is organized as follows. In the next section, we introduce
some notations and preliminary results. In Section 3, we first prove an estimation
associated to the fourth order derivative ∇ · (−2µ1∆e(u)) and then estimate the
finite number of determining nodes.

2. Notations and preliminary results

We first remark that, hereafter the notations and preliminary results are cor-
responding to equations (1.1)-(1.3) with space-periodic condition. But we can use
similar notations and have similar preliminary results for equations (1.1)-(1.3) with
no-slip boundary condition.

Throughout this article, we denote by R and R+ the sets of real and positive axis,
respectively. We let (Lq

per(Ω))
2 (1 ⩽ q ⩽ +∞) be the space of 2D vector functions

u = u(x) defined on R2 that are Lj−periodic in each variable xj(j = 1, 2), and
which belong to (Lq(O))2 for every bounded open set O ⊂ R2. Then we define the
periodic Sobolev space as

(H2
per(Ω))

2 := {u ∈ (L2
per(Ω))

2
∣∣∂mu ∈ (L2

per(Ω))
2, |m| ⩽ 2}

and endow the spaces (L2
per(Ω))

2 and (H2
per(Ω))

2 with norms ∥ · ∥ and ∥ · ∥H2
per

respectively (see e.g. [1, 7]), where

∥u∥ := (

∫
Ω

|u|2dx)1/2 and ∥u∥H2
per

:= (
∑

|m|⩽2

∫
Ω

|∂mu|2dx)1/2.

Further, we set

(C∞
per)

2 := the space of Ω−periodic, 2D C∞ vector fields defined on R2,

Vper :=
{
u ∈ (C∞

per)
2,

∫
Ω

u(x)dx = 0,∇ · u = 0
}
,
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Hper := closure of Vper in (L
2
per(Ω))

2 with norm ∥ · ∥Hper = ∥ · ∥ and dual space H∗
per,

Vper := closure of Vper in (H
2
per(Ω))

2 with norm ∥ · ∥Vper = ∥ · ∥H2
per

and dual spaceV ∗
per.

Let (·, ·) be the inner product in (L2
per(Ω))

2 or Hper, and ⟨·, ·⟩ be the dual pairing
between Vper and V ∗

per. Then, we introduce the following three operators:

⟨Au,v⟩ := 2
2∑

j,k,m=1

∫
Ω

∂ejk(u)

∂xm

∂ejk(v)

∂xm
dx, ∀u, v ∈ Vper, (2.1)

b(u,v,w) :=
2∑

j,k=1

∫
Ω

uj
∂vk
∂xj

wk dx, ∀u, v, w ∈ Vper,

⟨N(u),v⟩ :=
2∑

j,k=1

∫
Ω

µ(u)ejk(u)ejk(v) dx, ∀u, v ∈ Vper.

For any u,v ∈ Vper, we set ⟨B(u,v),w⟩ := b(u,v,w), ∀w ∈ Vper, and especially,

B(u) := B(u,u), u ∈ Vper.

From the above definitions, one can check that the operators B(·) and N(·) are
continuous from Vper to V ∗

per, and A is a linear continuous operator both from Vper

to V ∗
per and from D(A) to Hper, where

D(A) := {u ∈ Vper

∣∣ ⟨Au,v⟩ = (g,v) with some g ∈ Hper, ∀v ∈ Vper}.

In addition, if u ∈ D(A), then N(u) can be extended to Hper via

⟨N(u),v⟩ = −
∫
Ω

{
∇ ·

(
µ(u)e(u)

)}
· v dx, ∀v ∈ Hper. (2.2)

We next present some useful estimations and properties for the operators A and
b(·, ·, ·).

Lemma 2.1. There are some positive constants ci (i = 1, 2, 3) depending only on
Ω such that

c1∥u∥2Vper
⩽ ⟨Au,u⟩ ⩽ c2∥u∥2Vper

, ∀u ∈ Vper, (2.3)

b(u,v,w) = −b(u,w,v), b(u,v,v) = 0, ∀u,v,w ∈ Vper, (2.4)

|b(u,v, Aw)| ⩽ c3∥u∥Vper∥v∥Vper∥Aw∥, ∀u,v ∈ Vper,w ∈ D(A). (2.5)

Proof. The proof of (2.3) can be found in [4]. The relations in (2.4) are now
classical results which can be found in [7]. We next prove (2.5). In fact, since
(L∞

per(Ω))
2 ↪→ (H2

per(Ω))
2, we obtain, using the Hölder inequality and the fact

∥∇ · ∥ ⩽ ∥ · ∥Vper ,

|b(u,v, Aw)| = |
2∑

i,j=1

∫
Ω

ui
∂vj
∂xi

Awjdx|

⩽ c∥u∥(L∞
per(Ω))2∥∇v∥∥Aw∥

⩽ c∥u∥Vper∥v∥Vper∥Aw∥,
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where c is a constant depending only on Ω.
Using the notations and operators introduced above, we can express the weak

version of equations (1.1)-(1.5) in the solenoidal vector field as the following

∂u

∂t
+ µ1Au+B(u) +N(u) = f(t) in D′(0,+∞;V ∗

per), (2.6)

u(x, 0) = u0. (2.7)

We next specify the definition of solutions to equations (2.6)-(2.7).

Definition 2.1. A global weak solution of equations (2.6)-(2.7) is a function

u ∈ L2(0,+∞;Hper) ∩ L2(0,+∞;Vper) ∩ L∞(0,+∞;Hper)

with u(x, 0) = u0, such that (2.6) holds in the distribution sense D′(0,+∞;V ∗
per). If

u is a global weak solution and u∈L2(0,+∞;Vper)∩L2(0,+∞;D(A))∩L∞(0,+∞;Vper),
then u is called a global strong solution.

For the existence and uniqueness of global solutions to equations (2.6)-(2.7), as
well as the existence and H2 regularity of the global attractors for the associated
solution semigroup, we have the following result.

Theorem 2.1. Assume ϵ > 0, µ0 > 0, µ1 > 0 and α ∈ (0, 1).

(I) If f ∈ L2(0,+∞;Hper). Then for any given u0 ∈ Hper, equations (2.6)-(2.7)
possess a unique global weak solution; for any given u0 ∈ Vper, equations
(2.6)-(2.7) possess a unique global strong solution.

(II) If f ∈ Hper is independent of time t. Then the solution operators

S(t) :

u0 ∈ Hper 7→ S(t)u0 = u(t) ∈ Hper, ∀ t ∈ R+,

u0 ∈ Vper 7→ S(t)u0 = u(t) ∈ Vper, ∀ t ∈ R+,

generate a continuous semigroup {S(t)}t⩾0 in spaces Hper and Vper, respec-
tively, and the semigroup {S(t)}t⩾0 possesses a global attractor AH satisfying
(a) AH is compact in Hper; (b) S(t)AH = AH , ∀ t ∈ R+;
(c) for any bounded set BH ⊂ Hper, lim

t→+∞
distHper(S(t)BH ,AH ) = 0.

Also {S(t)}t⩾0 possesses a global attractor AV satisfying
(i) AV is compact in Vper; (ii) S(t)AV = AV , ∀ t ∈ R+;
(iii) for any bounded set BV ⊂ Vper, lim

t→+∞
distVper(S(t)BV ,AV ) = 0.

Furthermore,
AH = AV . (2.8)

Proof. The assertion (I) can be proved by the similar arguments of Bloom and Hao
[4,5], and the assertion (II) can be established by the analogous approaches of Zhao
and Li [21, 22], with the spaces H and V replaced by Hper and Vper, respectively.

From (2.8) we see that the global attractors AH and AV coincide with each
other. Thus we denote them by the same notation A in the rest of the paper. From
(II)(a,b), (II)(i,ii) and (2.8) we see there exists some fixed ρ > 0 such that

∥u(t)∥2Vper
⩽ ρ2, ∀ t ∈ R+, ∀u ∈ A. (2.9)
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In fact, ρ is the diameter of the global attractor A which depends on the constitutive
parameters and the external force f of the equations. We end this section with a
useful lemma.

Lemma 2.2 ( [7]). Let ϕ = ϕ(t) and β = β(t) be locally integrable real-valued
functions on [0;+∞) that satisfy the following conditions for some T > 0 :

lim inf
t→+∞

1

T

∫ t+T

t

ϕ(τ)dτ > 0, (2.10)

lim sup
t→+∞

1

T

∫ t+T

t

ϕ−(τ)dτ < ∞, (2.11)

lim
t→+∞

1

T

∫ t+T

t

β+(τ)dτ = 0, (2.12)

where ϕ−(t) = max{−ϕ(t), 0} and β+(t) = max{β(t), 0}. Suppose that ξ = ξ(t) is
an absolutely continuous nonnegative function on [0,+∞) that satisfies the following
inequality almost everywhere [0,+∞) :

dξ(t)

dt
+ ϕ(t)ξ(t) ⩽ β(t). (2.13)

Then ξ(t) −→ 0 as t −→ +∞.

3. Determining nodes

Consider a set of N nodes or measurement points in the physical domain Ω,
denoted by Λ = {x1,x2, · · · ,xN}. We assume that the points in Λ are uniformly
distributed within the physical domain Ω in the sense that Ω can be covered by
N identical squares such that each square contains one and only one of the given
points. Let u(x, t) and v(x, t) be two solutions within the global attractor A. To
measure the difference between these two solution throughout the set Λ, we set
w(x, t) = u(x, t)− v(x, t) and denote

η(w) = max
1≤j≤N

∣∣∣∆w(x)|x=xj

∣∣∣. (3.1)

The following lemma, although it is a slight modification of [7, Lemma 2.1], is
one of the key ingredients when we estimate the finite number of determining nodes
for the global attractor A in the sense of Definition 1.1.

Lemma 3.1. Let the physical domain Ω be covered by N identical squares and the
points Λ = {x1,x2, · · · ,xN} are uniformly distributed within Ω. Then, for each
vector field w ∈ D(A), there holds

N2∥w∥2Vper
⩽ c4∥Aw∥2 + c4N

2η(w)2, (3.2)

where c4 is a constant depends only on the shape of the domain Ω.

Proof. Let PL be the Leray projector (see e.g. [7, page 121]). By [7, Lemma 2.1]
we see that for any w ∈ D(−PL∆) (the domain of −PL∆), there holds

∥w∥2 ⩽ c5
λ1

(
max

1⩽j⩽N
|w(xj)|

)2
+

c5
λ2
1N

2
∥PL∆w∥2, (3.3)
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where λ1 is the first eigenvalue of the operator −PL∆ and c5 is a constant depends
only on the shape of the domain Ω. By the definition of the operator A (see (2.1)),
we find that A = −PL∆

2. Thus, for any w ∈ D(A), we have ∆w ∈ D(−PL∆). So
(3.3) gives

∥∆w∥2 ⩽ c5
λ1

(
max

1⩽j⩽N
|∆w(xj)|

)2
+

c5
λ2
1N

2
∥PL∆

2w∥2,

=
c5
λ1

η(w)2 +
c5

λ2
1N

2
∥Aw∥2, ∀w ∈ D(A). (3.4)

By the definition of the norm ∥ · ∥Vper and the Poincaré inequality, we conclude the
fact that the norm ∥∆ · ∥ is equivalent to ∥ · ∥Vper . This fact and (3.4) imply that
(3.2) holds true.

We next prove that the global attractorA obtained in Section 2 has finite number
of determining nodes in the sense of Definition 1.1.

Theorem 3.1. Let the physical domain Ω be covered by N identical squares and
the points Λ = {x1,x2, · · · ,xN} are uniformly distributed within Ω. Suppose ϵ,
µ0, µ1 are positive parameters and α ∈ (0, 1). Then there exists a constant C =
C(∥f∥,Ω, ϵ, µ0, µ1, α) such that, if

N ⩾ C(∥f∥,Ω, ϵ, µ0, µ1, α),

then the set Λ is a set of determining nodes for the global attractor A in the sense
of Definition 1.1.

Proof. Since we estimate the determining nodes for the global attractor A, we
assume that the external force f ∈ Hper is independent of time t. Consider two
solutions u = u(x, t) and v = v(x, t) within the global attractor A. Then we have

∂u

∂t
+ µ1Au+B(u) +N(u) = f in D′(0,+∞;Hper), (3.5)

∂v

∂t
+ µ1Av+B(v) +N(v) = f in D′(0,+∞;Hper). (3.6)

Let w(x, t) = u(x, t)− v(x, t) and η(w) be defined by (3.1). Then we assume

lim
t→+∞

η(w(t)) = 0. (3.7)

We need to show that

lim
t→+∞

∫
Ω

|∆w(x, t)|2dx = 0. (3.8)

Actually, we will prove

lim
t→+∞

∥w(x, t)∥2Vper
= 0. (3.9)

Note that equations (3.5)-(3.6) give

dw

dt
+ µ1Aw+B(w,u) +B(v,w) +N(u)−N(v) = 0. (3.10)
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Taking the inner product of (3.10) with Aw in H and using the relation (2.4) yield

1

2

d

dt
∥w(t)∥2Vper

+ µ1∥Aw∥2 + b(w,u, Aw)

+ b(v,w, Aw) + (N(u)− (N(v), Aw)) = 0. (3.11)

Now, using (2.5) and Cauchy inequality, we have

|b(w,u, Aw)| ⩽ c3∥w∥Vper∥u∥Vper∥Aw∥

⩽ 2c23
µ1

∥w∥2Vper
∥u∥2Vper

+
µ1

8
∥Aw∥2. (3.12)

Similarly,

|b(v,w, Aw)| ⩽ 2c23
µ1

∥w∥2Vper
∥v∥2Vper

+
µ1

8
∥Aw∥2. (3.13)

To estimate the nonlinear term (N(u) − (N(v), Aw)) in equation (3.11), we set
F(S) = 2µ0(ϵ + |S|2)−α/2S, where (R2×2

sym denotes the set of symmetric matrix of
order 2× 2)

S =

 s11 s12

s21 s22

 ∈ R2×2
sym, |S|2 =

2∑
j,k=1

s2jk, sjk ∈ R, j, k = 1, 2.

Then the first and second order Fréchet derivatives of F(S) satisfy (see [23, (3.10)])

∥DF(S)∥+ ∥D2F(S)∥ ⩽ c6 = c6(µ0, ε, α), ∀ S ∈ R2×2
sym. (3.14)

For any S1, S2 ∈ R2×2
sym, we have

F(S2)−F(S1) =
∫ 1

0

DF(S1 + τ(S2 − S1))(S2 − S1) dτ. (3.15)

Applying (2.2) and (3.14)-(3.15), as well as Hölder and Cauchy inequalities, we have

|(N(u)− (N(v), Aw)| =
∣∣∣ ∫

Ω

{
∇ ·

[
F(e(u))−F(e(v))

]}
·Awdx

∣∣∣
=

∣∣∣ ∫
Ω

{
∇ ·

∫ 1

0

DF
(
e(u) + τe(w)

)
e(w)dτ

}
·Awdx

∣∣∣
⩽

∫
Ω

∫ 1

0

∥D2F
(
e(u) + τe(w)

)
∥dτ |e(w)||Aw|dx

+

∫
Ω

∫ 1

0

∥DF
(
e(u) + τe(w)

)
∥dτ |∇e(w)||Aw|dx

⩽ c6(∥∇w∥+ ∥△w∥)∥Aw∥

⩽ 16c26
µ1

∥w∥2Vper
+

µ1

4
∥Aw∥2. (3.16)

It then follows from (3.11)-(3.13) and (3.16) that

d

dt
∥w∥2Vper

+ µ1∥Aw∥2 ⩽ 4c23
µ1

∥w∥2Vper
(∥u∥2Vper

+ ∥v∥2Vper
) +

32c26
µ1

∥w∥2Vper
. (3.17)
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Now from (3.2) we see ∥Aw∥2 ⩾ N2

c4
∥w∥2Vper

− N2η(w)2, and inserting which into

(3.17) yields

d

dt
∥w∥2Vper

+ ∥w∥2Vper

(µ1N
2

c4
− 4c23

µ1
(∥u∥2Vper

+ ∥v∥2Vper
)− 32c26

µ1

)
⩽ µ1Nη(w)2.

(3.18)

We now write

ξ(t) = ∥w(t)∥2Vper
, (3.19)

ϕ(t) =
µ1N

2

c4
− 4c23

µ1
(∥u(t)∥2Vper

+ ∥v(t)∥2Vper
)− 32c26

µ1
, (3.20)

β(t) = µ1Nη(w(t))2. (3.21)

Then inequality (3.18) is of the form (2.13). We next check that the functions
defined by (3.19)-(3.21) satisfy the conditions of Lemma 2.2. In fact, by (2.9) we
have ∥u(t)∥2Vper

+∥v(t)∥2Vper
⩽ 2ρ2 for any t ∈ R+. Hence, if we pick N large enough

such that

N >
(8c23c4ρ

2 + 32c4c
2
6)

1/2

µ1
, (3.22)

then for any T > 0,

lim inf
t→+∞

1

T

∫ t+T

t

ϕ(τ)dτ ⩾ µ1N
2

c4
− 8c23ρ

2

µ1
− 32c26

µ1
> 0. (3.23)

On the other hand, by (3.20) we have for any T > 0 that

lim inf
t→+∞

1

T

∫ t+T

t

−ϕ(τ)dτ ⩽ 8c23ρ
2

µ1
+

32c26
µ1

− µ1N
2

c4
< +∞. (3.24)

The relations (3.23)-(3.24) show that the function β(t) defined by (3.20) satisfies
the conditions (2.10)-(2.11). Clearly, (3.7) implies that the function β(t) defined by
(3.21) satisfies the inequality (2.12). Therefore, by Lemma 2.2 we conclude that if
N satisfies (3.22), then (3.9) holds true. The proof is complete.

Remark 3.1. When the two-dimensional non-Newtonian fluid equations (1.1)-(1.3)
are supplemented with no-slip boundary condition (1.6). We also can prove the well-
posedness and establish that the semigroup associated with the solution operators
possesses a global attractor. Similar to Theorem 3.1, we can also establish that this
global attractor has finite number of determining nodes. We want to point out that,
for the periodic case, the estimates are usually better than in the non-slip case due
to b(w,w,Aw) = 0, cf. [7, p135].
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