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Abstract In this paper, we investigate some properties of solutions for some
nonlinear difference equation, and obtain some estimates of the exponent of
convergence of poles and growth of its transcendental meromorphic solutions
f(z) and its difference ∆f(z). Moreover, we study the existence and forms
of rational solutions. We also give some examples to support our theoretical
discussion.
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1. Introduction

In this paper, we assume that the reader is familiar with the standard notations and
basic results of Nevanlinna’s value distribution theory (see [14,19]). In addition, we
use the notions σ(f) to denote the order of growth of the meromorphic function f(z),
λ(f) and λ( 1

f ) to denote the exponents of convergence of zeros and poles of f(z),

respectively, τ(f) to denote the exponent of convergence of fixed points of f(z). A
meromorphic function α is a small function with respect to f, if T (r, α) = S(r, f),
where S(r, f) is used to denote any quantity that satisfies S(r, f) = o(T (r, f)),
where r →∞ outside of a possible exceptional set of finite logarithmic measure.

Let c be a fixed non-zero complex number. Then the forward difference ∆n
c f for

each n ∈ N is defined in the standard way [23] by

∆cf(z) = f(z + c)− f(z),

∆n
c f(z) = ∆c(∆

n−1
c f(z)) = ∆n−1

c f(z + c)−∆n−1
c f(z), n ≥ 2.
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In particular, if c = 1, we use the usual difference notation ∆cf(z) = ∆f(z).
The theory of difference equations, the methods used in their solutions, and their

wide applications have advanced beyond their adolescent stage to occupy a central
position in applicable analysis. In fact, in the last twenty years, the proliferation
of the subject is witnessed by numerous research articles and several monographs,
annual international conferences, and new journals devoted to the study of difference
equations and their applications. In recent years, some papers [3,4,11] investigated
the properties of the second order difference equations

xn+1 =
axn−1

b+ cxnxn−1
. (1.1)

And equation (1.1) is a special case of the family of rational difference equations

xn+1 =
α+ βxnxn−1 + γxn−1

A+Bxnxn−1 + Cxn−1
,

recently investigated by Amleh, Camouzis and Ladas [2] for nonnegative values of
both the parameters and the initial conditions. In [21] and [22], Suzuki have studied
the equation of the form

u(t+ 2) = f(u(t), u(t+ 1))

of an economics and a population model, in which f is a rational function.
In 2000, Ablowitz, Halburd and Herbst [1] looked for a purely complex analytic

analogue of the Painlevé property for discrete equations. Later on, as the difference
analogues of Nevanlinna’s theory are being investigated [10, 12], there are many
interests in the complex analytic properties of meromorphic solutions of complex
difference equations, and many results on the complex difference equations are got
rapidly, such as [6–10, 13, 15–18, 20, 24]. In particular, In [16], Ishizaki gave some
surveys of basic properties of difference Riccati equation

y(z + 1) =
A(z) + y(z)

1− y(z)
,

where A(z) is a rational function, which are analogues in the differential case [5].
In [6], Chen investigated the growth and poles and fixed points of transcendental
solutions, and they proved the following theorem.

Theorem 1.1. Let P (z), Q(z), R(z) be polynomials with P (z)Q(z)R(z) 6≡ 0, and
y(z) is a finite order transcendental meromorphic solution of the Pielou logistic
equation

y(z + 1) =
P (z)y(z)

Q(z) +R(z)y(z)
.

Then

λ

(
1

y

)
= σ(y) ≥ 1.

On the other hand, the theory of complex differences and difference equations
has many backgrounds in physics. Many physical models can be abstracted as
difference equations, and properties of some special functions can be illustrated
by relative difference equations. In particular, difference Painlevé equations find a
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wide range of applications in quantum mechanics. Complex difference equation is
the inevitable development from real domain to complex domain, and is also the
inevitable development from discontinuous discrete equations to new continuous
difference equation. So that, a natural question is, we can say what about the
difference equation (1.1) in complex domain. The following examples maybe give
us some ideas.

Example 1.1. The function f(z) = tan π
2 z satisfies the second nonlinear difference

equation

f(z + 2) =
−zf(z)

z + 2zf(z)f(z + 1)
,

where f(z) has two Borel exceptional values i and −i.

Example 1.2. The function f(z) =
cot π2 z

z satisfies the second nonlinear difference
equation

f(z + 2) =
−f(z)

1 + 2(z + 1)2f(z)f(z + 1)
,

where f(z) has no Borel exceptional value.

Example 1.2 and Example 1.3 remind us to consider the value distributions of
the solution f(z) and its difference ∆f(z) of the equation

f(z + 2) =
P (z)f(z)

Q(z) +R(z)f(z)f(z + 1)
. (1.2)

In this paper, we investigate the existence and forms of rational solutions, and
α-points, poles and growth of transcendental meromorphic solutions f(z) for the
nonlinear difference equation (1.2), and obtain some estimates of exponents of con-
vergence of poles, and growth of f(z) and differences ∆f(z) of meromorphic solu-
tions of (1.2). We prove the following theorems.

Theorem 1.2. Let P (z), Q(z), R(z) be polynomials such that

P (z)Q(z)R(z) 6≡ 0.

Then every finite order transcendental meromorphic solution f(z) of the nonlinear
difference equation (1.2) satisfies

(i) λ( 1
f ) = σ(f) ≥ 1;

(ii) λ
(

1
∆f(z)

)
= σ(∆f(z)) = σ(f).

Theorem 1.3. Let P (z), Q(z), R(z) be polynomials such that

degR(z) > max{degP (z),degQ(z)}. (1.3)

(i) If the difference equation (1.2) has a irreducible rational solution f(z) = S(z)
T (z)

with degS(z) = s and deg T (z) = t, then

t− s =
1

2
(degR(z)− degP (z)) or t− s =

1

2
(degR(z)− degQ(z)).

(ii)If f(z) is a finite order transcendental meromorphic solution of the nonlinear
difference equation (1.2), then
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(a) f(z) has at most one Nevanlinna exceptional value 0;

(b) τ(f(z + n)) = σ(f(z)), n = 0, 1, 2, · · · .

Remark 1.1. Generally, for a constant c 6= 0, τ(f(z + c)) 6= τ(f(z)) for a meo-
morphic function f(z) of finite order. For example, the function f(z) = ez + z − c
satisfies

τ(f(z + c)) = 0 6= τ(f(z)) = 1.

Example 1.3. The difference equation

f(z + 2) =
f(z)

(z2 + 3z + 3)− z(z − 1)(z2 + 3z + 3)f(z)f(z + 1)

has a rational solution f(z) = 1
z2−z+1 , where degS(z) = 0,deg T (z) = 2 such that

t− s = 2 = 1
2 (degR(z)− degP (z)).

Example 1.4. The difference equation

f(z + 2) =
zf(z)

z(z + 2)− z(z2 − 1)(z + 2)f(z)f(z + 1)

has a rational solution f(z) = 1
z , where degS(z) = 0,deg T (z) = 1 such that

t− s = 1 = 1
2 (degR(z)− degQ(z)).

2. Lemmas for proof of Theorems

First we need the following lemmas for the proof of Theorem 1.4.

Lemma 2.1 ( [10]). Let f(z) be a meromorphic function with order σ = σ(f), σ <
+∞, and let η be a fixed non zero complex number, then for each ε > 0, we have

T (r, f(z + η)) = T (r, f) +O
(
rσ−1+ε

)
+O(log r).

Lemma 2.2 ( [10]). Let f(z) be a meromorphic function of finite order and let c
be a nonzero complex constant. Then

m

(
r,
f(z + c)

f(z)

)
+m

(
r,

f(z)

f(z + c)

)
= S(r, f).

Lemma 2.3 ( [10]). Let f(z) be a meromorphic function with exponent of conver-
gence of poles λ( 1

f ) = λ < +∞, and let η 6= 0 be a fixed complex number, then for

each ε (0 < ε < 1),

N(r, f(z + η)) = N(r, f(z)) +O
(
rλ−1+ε

)
+O(log r).

Lemma 2.4 (Valiron-Mohonko [19]). Let f(z) be a meromorphic function. Then
for all irreducible rational functions in f

R(z, f(z)) =
an(z)f(z)n + · · ·+ a0(z)f(z)

bm(z)f(z)m + · · ·+ b0(z)f(z)

with meromorphic coefficients ai(z), bj(z) being small with respect to f , the charac-
teristic function of R(z, f(z)) satisfies

T (r,R(z, f(z))) = max{n,m}T (r, f) + S(r, f).
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Lemma 2.5 ( [12,20]). Let w(z) is a nonconstant finite order transcendental mero-
morphic solution of the difference equation of

P (z, w) = 0,

where P (z, w) is a difference polynomial in w(z). If P (z, α) 6≡ 0 for a meromorphic
function α(z) satisfying T (r, α) = S(r, w), then

m

(
r,

1

w − α

)
= S(r, w)

holds for all r outside of a possible exceptional set with finite logarithmic measure.

Lemma 2.6 ( [20]). Let f(z) be a transcendental meromorphic solution with finite
order σ of a difference equation of the form

U(z, f)P (z, f) = Q(z, f),

where U(z, f), P (z, w), Q(z, f) are difference polynomials such that the total degree
degf U(z, f) = n in f(z) and its shifts and degf Q(z, f) ≤ n. If U(z, f) contains just
one term of maximal total degree in f(z) and its shifts, then then for each ε > 0,

m(r, P (z, f)) = O
(
rσ−1+ε

)
+ S(r, f).

3. Proof of Theorems

Proof of Theorem 1.2.
Suppose that f(z) is a finite order transcendental meromorphic solution of (1.2).
(i) First, we prove that σ(f) ≥ 1. Conversely, we suppose that σ(f) < 1. Set

y(z) = f(z)f(z + 1), if y(z) is also transcendental, by Lemma 2.1, we obtain that
T (r, y) ≤ 2T (r, f) +O(rσ−1+ε) +O(log r). Thus,

σ(y) ≤ σ(f) < 1. (3.1)

On the other hand, by (1.2), the function y(z) = f(z)f(z + 1) solves the Pielou
logistic equation

y(z + 1) =
P (z)y(z)

Q(z) +R(z)y(z)
.

By Theorem 1.1, we see that σ(y) ≥ 1, which contradicts (3.1). If y(z) = f(z)f(z+
1) is a rational function, then the equation (1.2) degenerate into the linear difference
equation as

f(z + 2) =
A(z)

B(z)
f(z),

where A(z) and B(z) are nonzero polynomials. We rewrite the above equation as

B(z)f(z + 2)−A(z)f(z) = 0.

Noticing that f(z) is a transcendental meromorphic function with σ(f) < 1, by
the Lemma 2.1 in [6], we obtain that A(z) ≡ B(z) ≡ 0, a contradiction. Hence,
σ(f) ≥ 1.



The value distribution of meromorphic solutions· · · 37

Secondly, we prove that λ( 1
f ) = σ(f). Set y1(z) = 1

f(z) , then y1(z) is transcen-

dental, T (r, y1) = T (r, f) +O(log r), and S(r, y1) = S(r, f). Substituting 1
y1(z) into

(1.2), we obtain

E(z, y1) = Q(z)y1(z)y1(z + 1) +R(z)− P (z)y1(z + 2)y1(z + 1) = 0.

Combining with the condition P (z)Q(z)R(z) 6≡ 0, we have

E(z, 0) = R(z) 6≡ 0. (3.2)

Thus, by Lemma 2.5,

N

(
r,

1

y1

)
= T (r, y1) + S(r, y1)

holds for all r outside of a possible exceptional set with finite logarithmic measure,
that is,

N(r, f) = T (r, f) + S(r, f)

holds for all r outside of a possible exceptional set with finite logarithmic measure.
Thus,

λ

(
1

f

)
= σ(f). (3.3)

(ii) By (1.2), we have

f(z + 2)Q(z) +R(z)f(z)f(z + 1)f(z + 2)− P (z)f(z) = 0. (3.4)

By the definition of the forward difference ∆n
c f, we see that

f(z + 1) = ∆f(z) + f(z), f(z + 2) = ∆f(z + 1) + ∆f(z) + f(z). (3.5)

Substituting (3.5) into (3.4) and rearranging them, we obtain

R(z)f(z)3 = [A(z, f) +B(z, f)f(z)]f(z)−Q(z)[∆f(z + 1) + ∆f(z)], (3.6)

where {
A(z, f) = P (z)−Q(z)−R(z)[∆f(z)∆f(z + 1) + (∆f(z))2],

B(z, f) = [2∆f(z) + ∆f(z + 1)]R(z).
(3.7)

Since
N(r,∆f(z + 1)) ≤ N(r + 1,∆f(z)) + o(N(r + 1,∆f(z))),

there exist a set E having finite logarithmic measure such that for a large r 6∈ E,

N(r,∆f(z + 1)) ≤ N(r,∆f(z)) + o(N(r,∆f(z))), (3.8)

By (3.7) and (3.8), we have that

N(r,A(z, f)) ≤ N(r,∆f(z)∆f(z + 1)) +N(r,∆f(z)2) +O(log r)

= 3N(r,∆f(z)) +N(r,∆f(z + 1)) +O(log r)

≤ 4N(r,∆f(z)) + o(N(r,∆f(z))), (3.9)
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and

N(r,B(z, f)) ≤ 2N(r,∆f(z)) + o(N(r,∆f(z))). (3.10)

Thus, by (3.6) and (3.8)-(3.10), we obtain

3N(r, f) = N(r, [A(z, f) +B(z, f)f(z)]f(z)−Q(z)[∆f(z + 1) + ∆f(z)])

≤ N(r,A(z, f)) +N(r,B(z, f)f(z)) +N(r, f)

+N(r,Q(z)[∆f(z + 1) + ∆f(z)]) +O(1)

≤ 8N(r,∆f(z)) + 2N(r, f) + o(N(r,∆f(z))).

Hence,
N(r, f) ≤ 8N(r,∆f(z)) + o(N(r,∆f(z))).

So that, we see that

λ

(
1

∆f

)
≥ λ

(
1

f

)
. (3.11)

On the other hand, by Lemma 2.1 and Lemma 2.3, we easily have that

σ(∆f) ≤ σ(f). (3.12)

λ

(
1

∆f

)
≤ σ(∆f). (3.13)

By (3.3) and (3.11)-(3.13), we see that

λ

(
1

∆f

)
= σ(∆f) = σ(f).

Thus, Theorem 1.2 is proved.

Proof of Theorem 1.3. (i) Suppose that f(z) = S(z)
T (z) is a irreducible rational

solution of (1.2). Substituting f(z) = S(z)
T (z) into (1.2), we see that

Q(z)S(z+2)T (z+1)T (z)+R(z)S(z+2)S(z+1)S(z)−P (z)T (z+2)T (z+1)S(z) = 0.
(3.14)

If s ≥ t, then degR(z)S(z+ 2)S(z+ 1)S(z) is the only maximal degree in (3.14), it
is impossible.

If s < t, by (3.14), we have

degR(z)S(z + 2)S(z + 1)S(z) = degQ(z)S(z + 2)T (z + 1)T (z)

or
degR(z)S(z + 2)S(z + 1)S(z) = degP (z)T (z + 2)T (z + 1)S(z).

Hence we have that

t− s =
1

2
(degR(z)− degQ(z)) or t− s =

1

2
(degR(z)− degP (z)).

(ii) Suppose that f(z) is a finite-order transcendental meromorphic solution of
(1.2). First, we prove that α is not a Nevanlinna exceptional value of f(z) for
all nonzero complex number α. Set y(z) = f(z) − α, then y(z) is transcendental,



The value distribution of meromorphic solutions· · · 39

T (r, y) = T (r, f) +O(log r), and S(r, y) = S(r, f). Substituting y(z) + α into (1.2),
we obtain

E(z, y) = [y(z + 2) + α]{Q(z) +R(z)[y(z) + α][y(z + 1) + α]} − P (z)[y(z) + α] = 0.

Thus,

E(z, 0) = αQ(z) + α3R(z)− αP (z). (3.15)

By the assumed condition (1.3), (3.15) and α 6= 0, we have that E(z, 0) 6≡ 0. Thus,
by Lemma 2.5,

N

(
r,

1

y

)
= T (r, y) + S(r, y)

holds for all r outside of a possible exceptional set with finite logarithmic measure,
that is,

N

(
r,

1

f(z)− α

)
= T (r, f) + S(r, f).

So that

δ(α, f) = 1− lim
r→∞

N(r 1
f−α )

T (r, f)
= 0.

Hence, α is not a Nevanlinna exceptional value of f(z).
Secondly, we prove that ∞ is not a Nevanlinna exceptional value of f(z) too.

Set y(z) = 1
f(z) , then y(z) is transcendental, T (r, y) = T (r, f) + O(log r), and

S(r, y) = S(r, f). Substituting 1
y(z) into (1.2), Using the same method as above,

we can prove the conclusion. Thus, f(z) only has zero as its possible Nevanlinna
exceptional value. Hence, f(z) has at most one Nevanlinna exceptional value 0.

Lastly, we prove that τ(f(z)) = σ(f(z)). Set g(z) = f(z) − z, then g(z) is
transcendental, T (r, g) = T (r, f) + O(log r), and S(r, g) = S(r, f). Substituting
f(z) = g(z) + z, f(z + 1) = g(z + 1) + z + 1 and f(z + 2) = g(z + 2) + z + 2 into
(1.2), we have that

E0(z, g) = [g(z+2)+z+2]{Q(z)+R(z)[g(z)+z][g(z+1)+z+1]}−P (z)[g(z)+z].

Thus, E0(z, 0) = (z + 2)Q(z) + z(z + 1)(z + 2)R(z)− zP (z). By (1.3), we see that

deg[z(z + 1)(z + 2)R(z)] > max{deg[zP (z)],deg[(z + 2)Q(z)]}.

Thus, E0(z, 0) 6≡ 0, combining Lemma 2.5, we obtain

N

(
r,

1

g

)
= T (r, g) + S(r, y)

holds for all r outside of a possible exceptional set with finite logarithmic measure,
that is,

N

(
r,

1

f(z)− z

)
= T (r, f) + S(r, f).

It gives that τ(f(z)) = σ(f(z)).
For n = 1, 2, · · · , we set gn(z) = f(z + n) − z, then gn(z) is transcendental,

T (r, gn) = T (r, f) + O
(
rσ−1+ε

)
+ O(log r), and S(r, gn) = S(r, f). Substituting
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f(z+n−1) = gn(z−1)+z−1, f(z+n) = gn(z)+z and f(z+n+2) = gn(z+1)+z+1
into

f(z + n+ 1) =
P (z + n− 1)f(z + n− 1)

Q(z + n− 1) +R(z + n− 1)f(z + n− 1)f(z + n)
,

and using the same method as above, we can prove that τ(f(z+n)) = σ(f(z)), n =
1, 2, · · · .

Thus, Theorem 1.3 is proved.
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