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CHAOTIC EFFECTS ON DISEASE SPREAD IN
A SIMPLE ECO-EPIDEMIOLOGICAL SYSTEM∗
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Abstract In this paper, an eco-epidemiological model where prey disease is
structured as a susceptible-infected model is investigated. Thresholds that
control disease spread and population persistence are obtained. Existence,
stability and instability of the system are studied. Hopf bifurcation is shown
to occur where a periodic solution bifurcates from the coexistence equilibri-
um. Simulations show that the system exhibits chaotic phenomena when the
transmission rate is varied.
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1. Introduction

Both general compartmental epidemic models and classic Lotka-Volterra (LV) mod-
els [3, 14, 22] have been investigated by many authors during the recent years. In
most cases, these two types of models are separately considered. To model the
spread of disease in ecologically interacting populations, we need to examine epi-
demic models where the local species is subject to an ecological interaction such
as competition with another species or predation. The emerging models combin-
ing epidemics with ecological interactions, termed eco-epidemiological models, are
not only biologically meaningful but also can show rich dynamics. Anderson and
May [1] were the pioneers who connected the LV models with epidemic models and
built a prey-predator model where the prey spices are infected by a diseases. Since
then, a myriad of results on eco-epidemiological systems [2, 4–6, 8–12, 15, 17, 23–25]
have appeared.

Earlier research was devoted to the study of stability and persistence of a system.
Now ecologists and mathematicians are interested in studying models exhibiting
much more complex dynamics, such as chaos, strange attractors, fractal and so
on. Allen [2] investigated an eco-epidemiological model indicating that chaos can
prevent global population extinction if there are several distinct subpopulations
that are weakly coupled by migration and subject to a locally varying external
noise. Stiefs et al showed that for certain classes of eco-epidemiological models
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quasiperiodic and chaotic dynamics was generic and likely to occur [17]. Chatterjee
et al [11] proposed two eco-epidemiological models with mass incidence and standard
incidence rate, respectively. Their results showed that both models can exhibit
chaos and standard incidence can enlarge the stable region compared with the mass
incidence.

As mentioned above, some eco-epidemiological systems can exhibit chaotic phe-
nomena; however, results in this respect are rare. For a general eco-epidemiological
model, Hopf bifurcation may occur at the coexistence equilibrium and sustained
oscillations are possible [13]. Bate and Hilker built in [7] an SI-type disease in the
predator population of a Rosenzweig-MacArthur model and then found a wealth of
complex dynamics that did not exist in the absence of the disease. Upadhyay and
Roy in [21] proposed an eco-epidemiological model with simple law of mass action
and modified Holling type II functional response to understand how a disease may
spread among natural populations. They showed that the death rate of a preda-
tor and the growth rate of a susceptible prey may produce rich complex dynamics.
Sieber et al in [19] considered an eco-epidemiological model that allowed for differ-
ential competition amongst and between infected and uninfected prey individuals.
They found that disease-induced modifications of competition can tremendously
alter the stability and persistence of predator-prey systems.

The aim of this paper is to find a mechanism that results in chaos for a general
simple eco-epidemiological model. We use logistic growth rate in the prey popula-
tion and we assume that the predator predates at different rates on the susceptible
and infective prey. The small variance between the predation rates can lead to the
system exhibiting chaos.

The paper is organized as follows. In Section 2, we propose an eco-epidemiological
model and give some results stemming from the biological application. In Section
3, we obtain the existence of equilibria of the system. In Section 4, we obtain some
sufficient conditions for the asymptotical stability of the equilibria, and we find
the existence of Hopf bifurcation around the coexistence equilibrium. In Section 5,
numerical simulations are carried out to illustrate the validity of the main results.
The paper ends with a discussion.

2. Model Development

In [9], Chattopadhyay and Arino introduced a disease into the prey population.
They classify the population into three classes, susceptible prey S(t), infected prey
I(t) and predator P (t). They also assume that the disease is transmitted only in
the prey and does not affect the predator. The infected prey population doesn’t
recover. The incidence rate is of mass action type given by βSI. We assume that
the infected prey can reproduce and that all the newborns are susceptible. The
infected prey population competes for the limit resources with the susceptible prey
population. The predator population can predate both on the susceptible and on
the infected prey populations. The predator functional response follows Holling II
type, γSSP

a1+S and γIIP
a+I , respectively. The model is as follows:

dS
dt = r(S + I)(1− S+I

K )− γSSP
a1+S − βSI,

dI
dt = βSI − γIIP

a+I − µ0I,

dP
dt = ε( γSS

a1+S + γII
a+I )P − dP.

(2.1)



Chaotic effects on disease spread in a simple eco-epidemiological system 1163

They show that Hopf bifurcation appears when they assume that r is large enough
and γS is small enough. In order to show the importance of reproduction of infected
prey as one of key mechanisms, we apply a linear predator response for Chattopad-
hyay and Arino proposed model. This model is changed as follows.

dS

dt
= r(S + I)(1− S + I

K
)− γSSP − βSI,

dI

dt
= βSI − γIIP − µ0I,

dP

dt
= ε(γSS + γII)P − dP,

(2.2)

where γS and γI are the predation rates of susceptible and infected prey, respec-
tively. β is the transmission rate of the disease in the prey. µ0 is the natural death
rate or the disease-induced death rate. The detailed explanation of the parameters
is listed in the following table.

Table 1. The meanings of the parameters in (2.2)

Symbol Definition Value
r prey growth rate 2
K prey carrying capacity 1000
β Transmission rate varied
µ0 disease-induced death rate 0.001
ε predator conversion efficiency 0.2
γS attack rate on susceptible prey 9.1
γI attack rate on infectious prey 1.0
d predator death rate 0.1

For biological reasons, all parameters are positive and constant. (2.2) has non-
negative initial conditions S(0) = S0 > 0, I(0) ≥ 0, P (0) ≥ 0.

Define

Γ = {(S, I, P )|S ≥ 0, I ≥ 0, P ≥ 0, S + I ≤ K,P ≤ ε(γS + γI)K

d
}.

Lemma 2.1. Γ is a positive invariant set for system (2.2) with nonnegative initial
conditions.

Proof. From the second and third equation of (2.2), we have

I(t) = I0e
∫ t
0

(βS(s)−γIP (s)−µ0)ds, P (t) = P0e
∫ t
0

(ε(γSS(s)+γII(s))−d)ds.

If I0 ≥ 0 and P0 ≥ 0, then I(t) ≥ 0 and P (t) ≥ 0. Denote x = S + I, γ =
min{γS , γI}, and γ̄ = max{γS , γI}. Adding the first two equations of (2.2) yields

dx

dt
≤ rx(1−

γ

r
P − x

K
).

Hence, it follows from the non-negativity of P and x0 = S0 + I0 ≤ K that x ≤ K.
We show the non-negativity of S(t) by contradiction. It follows the continuity of
S(t) and S0 > 0 that there exist a

t∗ = lim inf{t|S(t) < 0}.
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So, S(t∗) = 0, S(t) > 0 for 0 ≤ t < t∗ and S′(t∗) < 0. By the first equation of (2.2)
and I(t) ≤ K, we have

dS(t∗)

dt
= I(t∗)(1− I∗

K
) ≥ 0.

This leads to a contradiction. Therefore, S(t) ≥ 0. Substituting S ≤ K and I ≤ K
into the third equation of (2.2) yields

P (t) ≤ ε(γS + γI)K

d
.

In the remaining part of this paper, we focus on the limit behaviors of (2.2) with
initial conditions starting from Γ.

3. Equilibria

In this section, we derive some thresholds and we show that system (2.2) has five
equilibria whose existence depends on the thresholds. The thresholds also determine
the persistence of the disease or the persistence of the system. For the convenience,
define

R0 = βK
µ0
, R1 = ε(γSS3+γII3)

d , RP = βd
εγS(µ0+γIP2) ,

RP0 = KεγS
d , R2 = KεγI

d ,
(3.1)

where S2, I3 and P2 are the elements of equilibria defined below. Note that equilibria
of (2.2) satisfy the following equations

0 = r(S + I)(1− S+I
K )− γSSP − βSI,

0 = βSI − γIIP − µ0I,

0 = ε(γSS + γII)P − dP.

(3.2)

Solving (3.2) yields five equilibria. The first four equilibria are defined as E0 =

(0, 0, 0), E1 = (K, 0, 0), E2 = (S2, 0, P2) = ( d
εγS

, 0,
rd(RP0 −1)

Kεγ2
S

), E3 = (S3, I3, 0) =

(µ0

β ,
x∗

β , 0) where x∗ is the solution of

rx2 + (Kβµ0 −Kβr + 2µ0r)x+ µ2
0r(1−R0) = 0.

Summarizing the above discussion, we have the following theorem.

Theorem 3.1. If R0 < 1, RP0 < 1, (2.2) have two equilibria E0 and E1. If R0 > 1,
and RP0 < 1, (2.2) has three equilibria E0 E1 and E3. If R0 < 1, and RP0 > 1, (2.2)
has three equilibria E0 E1 and E2. If R0 > 1, and RP0 > 1, (2.2) has four equilibria
E0 E1 E2 and E3.

The coexistence equilibrium is given as E4 = (S4, I4, P4), where S4 = d
εγS
−

γI
γS
I4 , f(I4), P4 = 1

γI
(βf(I4)− µ0). I4 satisfies the following equation

F (I) , r(f(I) + I)(1− f(I) + I

K
) =

γS
γI
f(I)(βf(I)− µ0) + βf(I)I , G(I). (3.3)
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If I = 0, then

F (0) = r
d

εγS
(1− d

εγSK
) = rS2(1− S2

K
) = γSS2P2

and

G(0) =
γS
γI

d

εγS
(β

d

εγS
− µ0) =

γS
γI
S2(βS2 − µ0).

Hence if RP > 1, then F (0) < G(0).
Let Î be the solution of βf(I)− µ0 = 0. Then we have f(Î) = µ0

β . Substituting
this expression into F and G yields

F (Î) = r(µ0

β + Î)(1−
µ0
β +Î

K ),

G(Î) = µ0Î .
(3.4)

If Î < I3, then F (Î) > G(Î) and there exists only one positive solution I4 of (3.3).
This solution satisfies I3 > Î > I4. If Î > I3, then F (Î) < G(Î). This implies that
(3.3) has no solution or two positive solutions. If they exist, then I−4 < I+

4 < I3 < Î

or I−4 < I3 < I+
4 and I3 < Î, where I−4 and I+

4 are the smaller and the larger
solutions of (3.3), respectively.

Î = d/(εγS)−S3

γI/γS
> (<)I3 implies that R1 = ε(γII3+γSS3)

d < (>)1. Summarizing

the above discussion, we have the following theorem.

Theorem 3.2. Let RP > 1 always hold, then if R1 < 1 (3.3) has only one unique
positive equilibrium I4 < Î < I3; if R1 > 1, (3.3) has no equilibria or has two
positive equilibria which satisfy I−4 < I+

4 < I3 < Î or I−4 < I3 < I+
4 and I3 < Î.

For the direction of the bifurcation, we define

F(β, I) = F (β, I)−G(β, I) = a1I
2 + a2(β)I + a3(β),

here

a1 = − r
K (1− γI

γS
)2,

a2(β) = r(1− γI
γS

)(1− 2d
εγSK

) + βd
εγS
− µ0,

a3(β) = d
ε [ rγS (1− d

εγSK
)− 1

γI
( βdεγS − µ0)].

Therefore,

dβ

dI
= (

dI

dβ
|I=0)−1 = −

da3

dβ

a2
=

d2

ε2γIγSa2
. (3.5)

Remark 3.1. If RP > 1, R1 > 1, even if a2 > 0, then (2.2) may have two positive
equilibria. These results are very different from backward bifurcation.

In order to illustrate Remark 3.1, we set r = 0.5,K = 2, γI = 0.1, γS = 1.3, ε =
1, d = 0.5, µ = 0.1. Using matcont package we note that I4 bifurcates from I3 at a
bifurcation point(BP) (0.277778, 1.388889, 0.000000) when we set β = 0.36. Figure
1 shows that there exist two endemic equilibria when β varies from 0.36 to 0.415
(see Figure 1). When we set β = 0.4 which is between 0.36 and 0.415, system
(2.2) exhibits two positive equilibria (0.6126, 0.486, 1.4505) and (0.5654, 1.1, 1.2615)
and I−4 = 0.486 < I+

4 = 1.1 < I3. This verifies Theorem 3.2. When β = 0.35
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which is between 0.34 and 0.36, system (2.2) still has two positive equilibria given
by (0.6455, 0.058, 1.2594) and (0.5394, 1.438, 0.8878). Figure 1 shows that I−4 =
0.058 < I3 < I+

4 = 1.438. When β = 0.2, system (2.2) only has one positive
equilibrium (0.5246, 1.63, 0.5738) and I3 < I4 = 1.63.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

0

0.5

1

1.5

2

2.5

I

BPBP
I
3

I
4

β

0.45

Figure 1. The number of equilibria of system (2.2) with respect to β. System (2.2) has one equilibrium
when β varies from 0 to 0.34 while system (2.2) has two equilibria when β varies from 0.34 to 0.415.

4. Local stability

The stability of these equilibria is determined by the Jacobian matrix evaluated at
the corresponding equilibrium. The general Jacobian matrix is given by

r(1− 2(S+I)
K )− γSP − βI r(1− 2(S+I)

K )− βS −γSS

βI −γIP + βS − µ0 −γII

εγSP εγIP ε(γSS + γII)− d

 , (4.1)

which determines the local stability of equilibria of system (2.2).

Theorem 4.1. (1) The trivial equilibrium E0 is always unstable.

(2) If R0 < 1 and RP0 < 1, the disease free and non-predator equilibrium E1 is
locally asymptotically stable.

(3) If RP < 1, the disease free equilibrium E2 is locally asymptotically stable.

(4) If R1 < 1, the non-predator equilibrium E3 is locally asymptotically stable.

(5) The stability of the coexistence equilibrium E4 is determined by (4.4).

Proof.
1. For the equilibrium E0 of (2.2), the characteristic roots of (4.1) are r,−µ0,−d,

respectively. It is always unstable since there is a positive characteristic root of (4.1)
r > 0.

2. For the equilibrium E1 of (2.2), the characteristic roots of (4.1) are−r, µ0(R0−
1), d(RP0 −1), respectively. Hence if R0 < 1 and RP0 < 1, it is locally asymptotically
stable.

3. For the equilibrium E2 of (2.2), one of the characteristic roots of (4.1) is
(µ0 + γIP2)(RP − 1). The other characteristic roots are determined by

λ2 +
rS2

K
λ+ εγ2

SS2P2 = 0. (4.2)
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It is easy to show that (4.2) just has roots with negative real parts. The stability
of (4.1) is determined by the value of RP . If RP < 1, E2 is locally asymptotically
stable, otherwise, E2 is unstable.

4. For the equilibrium E3 of (2.2), one of the characteristic roots of (4.1) is
d(R1 − 1). The other characteristic roots are determined by

λ2 + (βI3− r(1−
S3 + I3
K

) + r
S3 + I3
K

)λ+βI3[βS3− r[1−
S3 + I3
K

] + r
S3 + I3
K

] = 0.

(4.3)
It follows from βI3 − r(1− S3+I3

K ) = r I3S3
(1− S3+I3

K ) > 0 and βS3 − r(1− S3+I3
K ) =

r S3

I3
(1− S3+I3

K ) > 0 that (4.3) just has roots with negative real parts. The stability
of (4.1) is determined by the value of R1. If R1 < 1, E3 is locally asymptotically
stable, otherwise, E3 is unstable.

5. For the stability of E4, the characteristic equation of (2.2) is

λ3 + a1λ
2 + a2λ+ a3 = 0, (4.4)

where

a1 = γSP4 + βI4 − r(1− 2(S4+I4)
K ) = r(1− S4+I4

K ) I4S4
+ r S4+I4

K > 0,

a2 = εP4(γ2
SS4 + γ2

I I4) + βI4(βS4 − r(1− 2(S4+I4)
K )),

a3 = εγIP4I4[γI(γSP4 + βI4) + (γS − γI)r(1− 2(S4+I4)
K )].

By the Routh Hurwitz Criterion, we have the following theorem.

Theorem 4.2. If a2 > 0, a3 > 0, and a1a2 − a3 > 0, then the coexistence equilib-
rium E4 is locally asymptotically stable.

We set the parameters as defined in Figure 1 and plot the real parts of the
characteristic roots of (2.2) with respect to the transmission rate β. Figure 2 shows
that two positive equilibria of (2.2) are locally asymptotically stable when β varies
from 0.34 to 0.415. System (2.2) exhibits one local asymptotic equilibrium when β
varies from 0.325 to 0.34 and from 0 to 0.225. However, the equilibrium of (2.2) is
unstable if β varies from 0.225 to 0.325.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
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−0.3
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1
 ]

Figure 2. The real parts of the characteristic roots of system (2.2) with respect to the transmission
rate β varied from 0 to 0.415.
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Remark 4.1. If K/2 ≤ S4 + I4 ≤ K, and γS > γI , then a3 may be less than 0 and
a1a2 − a3 > 0. in addition S4 + I4 < K/2 and γS > γI , then a3 > 0 and a1a2 − a3

may be less or equal to 0. There exists a Hopf bifurcation bifurcating from the
coexistence equilibrium E4.

Theorem 4.3. If R0 < 1 and RP0 < 1, then the disease-free and predator-free
equilibrium E1 is globally asymptotically stable.

Proof. Note that S ≤ K. From the second equation of (2.2),

dI

dt
≤ (βK − µ0)I = µ0(R0 − 1)I,

If R0 < 1, then lim
t→∞

I(t) = 0. Thus, there exist a t0 such that for all t > t0 and any

small ε1, we have 0 ≤ I(t) < ε1. It follows from the third equation of (2.2) and for
all t > t0 that

dP

dt
≤ [ε(γSK + γIε1)− d]P.

If RP0 < 1, it follows from the arbitrary choice of ε1 that lim
t→∞

P (t) = 0. Hence, there

exist a t1 and a small ε2 such that P ≤ ε2 for all t > t1. Then, for all t > max{t0, t1}
we have

dS
dt ≤ r(S + ε1)(1− S

K ),

dS
dt ≥ rS(1− S+ε1

K )− βSε1 − γSSε2.

Thus,

S ≤ KeA(ε1)

eA(ε1) + 1
+

ε1e
A(ε1)

eA(ε1) + 1
− ε1

and

S ≥ B(ε1, ε2)eB(ε1,ε2)t/K

CA− reB(ε1,ε2)t/K
,

where A(ε1) = r(C + t)(1 + ε/K) and B(ε1, ε2) = Kβε1 +KγSε2 −Kr+ ε1r. For t
large enough and the fact that ε1 and ε2 are arbitrary, we have

lim
t→∞

S(t) = K.

Therefore, E1 is a global attractor with respect to Γ if R0 < 1 and RP0 < 1.
Combining this result with Theorem 4.2 indicates that E1 is globally asymptotically
stable.

Define γ̄ = max{γS , γI}, γ = min{γS , γI}, P̄ =
r(1− d

εKγ̄ )

γ , and R′P = βd
εγSµ0

.

Theorem 4.4. If R′P < 1, then the disease is eliminated from system (2.2). System
(2.2) evolves as the general LV prey-predator model.

Proof. Adding the first and the second equation of (2.2) yields

d(S + I)

dt
= r(S + I)(1− S + I

K
)− (γSS + γII)P. (4.5)



Chaotic effects on disease spread in a simple eco-epidemiological system 1169

Combining (4.5) with the third equation of (2.2) yields the following inequality

d(S+I)
dt ≤ r(S + I)(1− S+I

K )− γ(S + I)P,

dP
dt ≤ εγ̄(S + I)P − dP.

(4.6)

We can define an auxiliary systems as follows

dx
dt = rx(1− S+I

K )− γxP,
dP
dt = εγ̄(S + I)P − dP.

(4.7)

Ē2 = (x̄, P̄ ) = ( dεγ̄ ,
r(1− d

εKγ̄ )

γ ) denotes the equilibrium of (4.7) where x = S + I.

Define a Lyapunov function

V = x− x̄− x̄ lnx+
γ

εγ̄
(P − P̄ − P̄ lnP ).

Differentiating V along the solution of (4.7) yields

V ′ = x−x̄
x x′ +

γ

εγ̄
P−P̄
P P ′

≤ − r
K (x− x̄)2

≤ 0.

By the LaSalle Invariance Principle, Ē2 is globally asymptotically stable. Therefore,
lim sup
t→∞

x ≤ x̄ and lim sup
t→∞

P ≤ P̄ . For any small ε1, there exist a t1 such that for all

t > t1, we have

x ≤ x̄+ ε1 =
d

εγ̄S
+ ε1, P ≤ P̄ =

r(1− d
εKγ̄ )

γ
+ ε1.

By the second equation of (2.2), we have

I ′ ≤ [β(
d

εγ̄
+ ε1)− γIP − µ0]I ≤ [β(

d

εγS
+ ε1)− µ0]I.

If R′P < 1 then I(t)→ 0 as t→∞.
In order to investigate the persistence of the disease, define a Poincare map

π : R3 → R as
π(S, I, P ) = I.

Denote by M0 = {(S, I, P )|π(S, I, P ) 6= 0}, and ∂M = Γ/M0. We have the following
theorem.

Theorem 4.5. If R′P > 1, the disease is weekly persistent; that is, lim sup
t→∞

I(t) > ε1.

Proof. We claim lim sup
t→∞

I(t) > ε. By contradiction, assume that for all (S0, I0, P0) ∈
M0 we have

lim sup
t→∞

I(t) ≤ ε1.
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Then there exists a t0 such that for all t > t0, we have 0 ≤ I(t) ≤ ε1. It follows from
the first and third equation that

dS
dt ≥ rS(1− S+ε

K )− γSSP − βSε,
dP
dt ≥ εγSSP − dP.

(4.8)

According to the proof of Theorem 4.4 and the arbitrary choice of ε1, we have
lim inf
t→∞

S(t) ≥ S2 and lim inf
t→∞

P (t) ≥ P2. Hence, there exists a t1 and a small ε2 such

that for all t > t1, we have

S(t) > S2 − ε2 =
d

εγS
− ε2.

Substituting these expressions into the second equation of (2.2) yields

dI

dt
≥ (β(S2 − ε2)− µ0)I.

If R′P > 1, then I(t) → ∞ as t → ∞. This leads to a contradiction with the
boundedness of I.

Lemma 4.1 ( [16, Theorem 3.4.6]). If T (t) : X → X, t ∈ R+ is asymptotically
smooth, point dissipative and orbits of bounded sets are bounded, then there exists
a global attractor.

It is easy to check that system (2.2) is asymptotically smooth, point dissipative
and orbits of bounded sets are bounded. By the Theorem 2.3 of [20] we have the
following theorem.

Theorem 4.6. If R′P>1, then the disease is strongly persistent; that is, lim inf
t→∞

I(t)>
ε1.

5. Simulations

Due to the complexity of system (2.2), numerical integration is a good choice to
study the dynamics of (2.2). The simulations are performed with the help of Malab
2013b. The main purpose of this paper is to show how the disease influences the
dynamics of the prey-predator system. Combining Theorem 3.2 and Remark 4.1 we
obtain that, if γS > γI , (2.2) may exhibit complex dynamics. We will investigate
the complex behavior of system (2.2) with respect to the transmission rate β and
the other parameters fixed. The parameter values are listed in Table 1.

For β = 5.86 system (2.2) exhibits a stable limit cycle near the coexistence
equilibrium E4. The period of the limit cycle is only equal to 1. This implies that
the periodic orbit makes one loop around the central point before starting to repeat
itself. Figure 3 illustrates this phenomenon.

Increasing the transmission rate β to 6.32. A periodic solution of period two
bifurcates from the periodic solution of period one of system (2.2). This indicates
that there exists a solution that loops twice around the coexistence equilibrium
E4. Figure 4 illustrates the results. As we know, there is a general route that the
chaotic behavior is produced by a series of period doubling solutions. Enlarging the
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Figure 3. Figure shows the solution with initial conditions S0 = 0.05, I0 = 0.024, P0 = 0.304 and
parameters as listed in Table 1. The value of the parameter β = 5.86.
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Figure 4. Figure shows the solution with initial conditions S0 = 0.05, I0 = 0.024, P0 = 0.304 and the
parameters as listed in Table 1. The value of the parameter β = 6.32.

transmission rate to 6.57, Figure 5 shows that the periodic solution with period two
bifurcates into a periodic solution of period four. From mathematical perspective,
continuing to enlarge the transmission rate β, system (2.2) must exhibit complex
dynamics. To understand the route to chaos, a systematic investigation of the
dynamics was done by constructing a bifurcation diagram. Figure 6(a) implies
that system (2.2) produces chaos which is characterized with aperiodic behavior
and sensitive dependence on the initial conditions. Figure 6(b) shows that the
attractor of system (2.2) has two wings, which largely reside on the SP and the IP
planes; projection of the attractor on the SI plane is minimal. The random spikes
modeling outbreak of the disease are instead of the endemicity. This phenomenon
is also happening for the predator population which coincides with the spikes of the
infected prey.

As we know, an important property of chaotic dynamics for a system is its
sensitivity to initial conditions. Lyapunov exponents are commonly used to measure
the mean rate of exponential divergence of neighboring trajectories. If the largest
Lyapunov exponent of a trajectory is negative, then the trajectory is stable, while a
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Figure 5. Figure shows solutions with initial conditions S0 = 0.05, I0 = 0.024, P0 = 0.304 and the
parameters are listed in Table 1. The value of parameter β = 6.56.
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(b) The attractor of system (2.2) with β = 9.1

Figure 6. Figure shows solutions with initial conditions S0 = 0.05, I0 = 0.024, P0 = 0.304 and the
parameters are listed in Table 1. The value of the parameter β varies.

trajectory with the largest Lyapunov exponent as zero is periodic, but if the largest
Lyapunov exponent is positive then that trajectory is chaotic.

Set β = 6.7. Figure 8(a) clearly shows that the largest Lyapunov exponent
is larger than 0, other two Lyapunov exponents are 0 and negative, respectively.
Therefore, the strange attractor is chaotic. In order to investigate the sensitivity
of the strange attractor with respect to initial conditions, we take two different ini-
tial conditions S0 = 0.052335, I0 = 0.024, P0 = 0.304, and S0 = 0.052335001, I0 =
0.024, P0 = 0.304. Figure 8(b) implies that system (2.2) under two different initial
conditions (very close to each other) leads to different dynamics. As the time e-
volves, system (2.2) becomes undetermined. That indicates that slight perturbation
in species numbers may result in unpredictable dynamics as the time evolves.

When β ranges from 5.85 to 6.29, system (2.2) exhibits bifurcation of a limit
cycle from the coexistence equilibrium E4. A limit cycle bifurcates into a period-
doubling solution when the transmission rate changes from 6.3 to 6.57. A period-
double solution evolves to a period-four solution when the transmission rate varies
from 6.57 to 6.58. System (2.2) exhibits chaotic phenomena when β > 6.58.
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Figure 7. Figure shows solution with initial conditions S0 = 0.05, I0 = 0.024, P0 = 0.304 and the
parameters are listed in Table 1.
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Figure 8. The parameters are listed in Table 1 and parameter β = 6.7, (a) The spectrum of Lyapunov
exponents for system (2.2) around the strange attractor with initial conditions S0 = 0.052335, I0 =
0.024, P0 = 0.304; (b) The divergence of trajectories for the susceptible prey population with different
values S0 = 0.052335 (solid blue line) and S0 = 0.052335001(dash red line) keeping initial values of
infectious prey population and predator population fixed and the same.
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6. Conclusion

In this paper, we simplify an eco-epidemiological model with prey infected by a
disease proposed by Chattopadhyay and Arino [9]. We use the mass law instead
of the Holling II type predator response. Compared with the existent literature
on eco-epidemiological models, Hopf bifurcation is a common phenomena for eco-
epidemiological models [8–11,15,17,23,24]. However, Chaotic phenomena is scarce
compared with the Hopf bifurcation phenomena occurring in ecp-epidemiological
models [7,18,19,21,26]. In these models, they use various nonlinear incidence rates
or nonlinear predator functional response. The results presented here appear to
challenge previous studies [7,9,19,21]. We show that reproduction of infected prey is
one of key mechanisms leading to chaotic phenomena in eco-epidemiological systems
if the intrinsic rate is not large enough. This implies that diseases spreading in a
prey population may result in a complex evolution of the prey-predator population.
It follows from numerical results that the transmission rate has been identified as
a key parameter to control dynamics of system (2.2). For a fixed environment, this
implies that all the parameters except the transmission rate are fixed. Controlling
the disease spread in prey guarantees the balance of the environment.

The existence and local stability of the equilibria are obtained though analyzing
the algebraic equations (3.1) and the characteristic equations with respect to the
equilibria, respectively. Because the system is still rather complex to be analyzed
analytically, for the stability of the coexistence equilibrium E4 we mainly rely on
numerical results. The long time dynamical behaviors of system (2.2) are revealed
by the numerical integration. It follows from Section 5 that stable equilibrium, Hopf
bifurcation of a limit cycle, period-doubling of the solution and chaotic behavior
occur as the transmission rate β varies. In order to confirm whether or not the
simulation leads to chaotic trajectories, we plot the Lyapunov exponents which
indicate that system (2.2) exhibits chaotic behavior under parameters taken in
Table 1 and β = 6.7.
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