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Abstract In this paper, we study the Dirichlet problem for the implicit de-
generate nonlinear elliptic equation with variable exponent in a bounded do-
main Ω ⊂ Rn. We obtain sufficient conditions for the existence of a solution
without regularization and any restriction between the exponents. Further-
more, we define the domain of the operator generated by posed problem and
investigate its some properties and also its relations with known spaces that
enable us to prove existence theorem.
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1. Introduction

In this work, we investigate the Dirichlet problem for the nonlinear elliptic equation
with variable nonlinearity−∆

(
|u|p(x)−2

u
)

+ a (x, u) = h (x) ,

u |∂Ω= 0,
(1.1)

where Ω ⊂ Rn (n ≥ 3) is a bounded domain which has sufficiently smooth boundary
(at least Lipschitz boundary) and p : Ω −→ R, 2 ≤ p− ≤ p (x) ≤ p+ < ∞, p ∈
C1
(
Ω̄
)
. Also a : Ω × R → R, a (x, τ) is a function with variable nonlinearity in τ

(for example a (x, u) = a0 (x, u) |u|ξ(x)−1
u+ a1 (x, u), see Section 4).

In recent years, there has been an increasing interest in the study of equations
with variable exponents of nonlinearities. The interest in the study of differential
equations that involves variable exponents is motivated by their applications to
the theory of elasticity and hydrodynamics, in particular the models of electrorhe-
ological fluids [9, 28] in which a substantial part of viscous energy, the thermis-
tor problem [38], image processing [8] and modeling of non-Newtonian fluids with
thermo-convective effects [5] etc.

The main feature in the equation

− ∆
(
|u|α(x)−2

u
)

+ a (x, u) = h (x) (1.2)
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is clearly the exponential nonlinearity with respect to the solution that makes it
implicit degenerate. Such equations may appear, for instance, in the mathemati-
cal description of the process of nonstable filtration of an ideal barotropic gas in
a nonhomogeneous porous medium. The equation of state of the gas has the form
p = ρα(x) where p is the pressure, ρ is the density, and the exponent α (x) is a given
function then by using the known physical laws in that case, we obtain an equation
in the form of (1.2) (for sample see [4]). For the several of the most important appli-
cations of nonlinear partial differential equations with variable exponent arise from
mathematical modelling of suitable processes in mechanics, mathematical physics,
image processings etc., we refer to [23] (see also [21,22,28]).

For some cases in gas dynamics as mentioned above, Lagrangian function f in
the definition of integral functional

FΩ (u) =

∫
Ω

f (x, u,Du) dx

may satisfy the general nonstandard growth condition of the type

c0 |τ |m(x) − a |y|ξ(x) − g (x) ≤ f (x, y, τ) ≤ c1 |τ |m0(x)
+ a |y|ξ(x)

+ g (x)

with 1 < m (x) ≤ m0 (x) and m (x) ≤ ξ (x) where all exponents are continuous
functions over Ω̄. In [40] Zhikov gives an example which shows that if f satisfies
such type of inequality then appropriate functional defined by f may have the
Lavrentiev phenomenon, the minimizer of the functional is irregular. As known, it
has important applications in mechanics, there are too many papers in variational
problems which has been devoted to the case that f holds this type condition
[1, 16,20,40].

Also we note that the relation between the weak solutions of the class of elliptic
equations −divA (x, u,Du) = B (x, u,Du) and minimizer of the functional FΩ under
the nonstandard growth condition given above was studied in [2, 13].

Recently, problems which are similar to (1.1) have been studied in a lot of
papers [5–7,14,24,25,37]. In [39] Zhikov investigated elliptic problem such as∆p(x)u = divg,

u |∂Ω= 0,

here g ∈ (L∞ (Ω))
d
, ∆p(x) is p (x)-Laplacian and Ω ⊂ Rd is bounded Lipschitz

domain. He established the weak solution of the considered problem with using the
sequence of solutions of the problems which converges to considered problem.

In [8] authors have studied the problem related to image recovery. To investigate
that problem they first considered the elliptic part of the problem namely they
investigated the minimization problem

min
u∈BV ∩L2(Ω)

∫
Ω

φ (x,Du) +
λ

2
(u− I)

2
,

and proved the existence of solution in more general class by using variational
method. Here BV is the space of functions of bounded variation defined on Ω.

In [7] authors have considered the Dirichlet boundary value problem for the
elliptic equation

−
∑
i

Di

(
ai (x, u) |Diu|pi(x)−2

Diu
)

+ c (x, u) |u|σ(x)−2
u = f (x) .



Solvability of a nonlinear elliptic equation with variable exponent 1141

Under sufficient conditions they showed the existence of weak solution by using
Browder-Minty theorem for the special case ai (x, u) ≡ Ai (x), c (x, u) ≡ C (x). In
the general case, the solution was constructed via Galerkin’s method under addi-
tional conditions for ai (x, u) and c (x, u).

In the most of these papers we mentioned above, authors have studied the prob-
lems which involves p (.)-Laplacian type equation by using monotonicity methods.
To the best of our knowledge, by now there are no results on the existence of so-
lutions to the elliptic equations of the type (1.1) with nonconstant exponents of
nonlinearity. However similar type problem to (1.1) was studied in [6] and authors
investigated the regularized problem to show the existence of weak solution. In
the present paper, we investigate the problem (1.1) without regularization. We also
note that earlier Dubinskii [10] (for details see [19]) investigated problems which are
similar to (1.1) for constant exponents and obtained existence results. Afterward,
Raviart [27] obtained some results on uniqueness of solution for this type problems.

Here we prove the existence of sufficiently smooth, in some sense, solution of the
problem (1.1). Unlike the above papers, we investigate (1.1) without monotonicity
type conditions. Since we consider the posed problem under more general (weak)
conditions, in that case any method which is related to monotonicity can not be
used. Therefore we use a different method to investigate the problem (1.1). We
show that considered problem is homeomorphic to the following problem:

n∑
i=1

−Di

(
|u|p0−2

Diu
)

+ c (x, u) = h (x) ,

u |∂Ω= 0,

(1.3)

(see Section 3) and using this fact, we obtain existence of solution of problem (1.1)
(Section 4).

Moreover we study the posed problem in the space, that generated by this
problem. Investigating most of boundary value problem on its own space leads to
obtain better results. Henceforth here considered problem is investigated on its
own space. Unlike linear boundary value problems, the sets generated by nonlinear
problems are subsets of linear spaces, but not possessing the linear structure [29–36].

This paper is organized as follows: In the next section, we recall some useful
results on the generalized Orlicz-Lebesgue spaces (Subsec. 2.1) and results on non-
linear spaces (pn-spaces) (Subsec. 2.2). In Section 3, under the sufficient conditions
we show the existence of weak solution for the problem (1.3). In Section 4, we give
some additional results which are required for existence theorem (Subsec. 4.1) and
prove existence of a generalized solution for the main problem (1.1) (Subsec. 4.2).

2. Preliminaries

2.1. Generalized Lebesgue spaces

In this subsection, some available facts from the theory of the generalized Lebesgue
spaces also called Orlicz-Lebesgue spaces will be introduced. We present these facts
without proofs which can be found in [11,12,17,18].

Let Ω be a Lebesgue measurable subset of Rn such that |Ω| > 0. (Throughout
the paper, we denote by |Ω| the Lebesgue measure of Ω). By P (Ω) we denote the
family of all measurable functions p : Ω −→ [1,∞] .
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For p ∈ P (Ω) , Ωp∞ ≡ Ω∞ ≡ {x ∈ Ω| p (x) =∞} then on the set of all functions
on Ω define the functional σp and ‖.‖p by

σp (u) ≡
∫

Ω\Ω∞
|u|p(x)

dx+ ess
Ω∞

sup |u (x)|

and
‖u‖Lp(x)(Ω) ≡ inf

{
λ > 0| σp

(u
λ

)
≤ 1
}
.

Clearly if p ∈ L∞ (Ω) then

1 ≤ p− ≡ ess
Ω

inf |p (x)| ≤ ess
Ω

sup |p (x)| ≡ p+ <∞

in that case we have

σp (u) ≡
∫

Ω

|u|p(x)
dx.

The Generalized Lebesgue space is defined as follows:

Lp(x) (Ω) := {u : u is a measurable real-valued function such that σp (u) <∞} .

The space Lp(x) (Ω) becomes a Banach space under the norm ‖.‖Lp(x)(Ω)which is
so-called Luxemburg norm.

Let Ω ⊂ Rn be a bounded domain and p ∈ L∞ (Ω) then Generalized Sobolev
space is defined as follows:

Wm,p(x) (Ω) ≡
{
u ∈ Lp(x) (Ω) | Dαu ∈ Lp(x) (Ω) , |α| ≤ m

}
and this space is separable Banach space under the norm:

‖u‖Wm,p(x)(Ω) ≡
∑
|α|≤m

‖Dαu‖Lp(x)(Ω) .

The following results are known for these spaces: [11, 18,26].

Lemma 2.1. Let 0 < |Ω| <∞, and p1, p2 ∈ P (Ω) then

Lp1(x) (Ω) ⊂ Lp2(x) (Ω) ⇐⇒ p2 (x) ≤ p1 (x) for a.e x ∈ Ω.

Lemma 2.2. The dual space of Lp(x) (Ω) is Lp
∗(x) (Ω) if and only if p ∈ L∞ (Ω).

The space Lp(x) (Ω) is reflexive if and only if

1 < p− ≤ p+ <∞,

here

p∗ (x) ≡


∞, for x ∈ Ωp1,

1, for x ∈ Ωp∞,

p(x)
p(x)−1 , for other x ∈ Ω.

Lemma 2.3. Let p, q ∈ C
(
Ω̄
)

and p, q ∈ L∞ (Ω) . Assume that

mp (x) < n, q (x) <
np (x)

n−mp (x)
, ∀x ∈ Ω̄.

Then there is a continuous and compact embedding Wm,p(x) (Ω) ↪→ Lq(x) (Ω) .
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2.2. On pn-spaces

In this subsection, we introduce some function classes which are complete met-
ric spaces and directly connected to the considered problem. Also we give some
embedding results for these spaces [31,35] (see also [29,30,32,34,36]).

Definition 2.1. Let α ≥ 0, β ≥ 1, % = (%1,..,%n) is multi-index, m ∈ Z+, Ω ⊂
Rn (n ≥ 1) is bounded domain with sufficiently smooth boundary.

Sm,α,β (Ω) ≡

u ∈ L1 (Ω) | [u]
α+β
Sm,α,β(Ω) ≡

∑
0≤|%|≤m

(∫
Ω

|u|α |D%u|β dx
)
<∞


in particularly,

S̊1,α,β (Ω) ≡

{
u ∈ L1 (Ω) | [u]

α+β
S1,α,β(Ω) ≡

n∑
i=1

(∫
Ω

|u|α |Diu|β dx
)
<∞

}
∩ {u |∂Ω≡ 0} .

These spaces are called pn-spaces.‡

Theorem 2.1. Let α ≥ 0, β ≥ 1 then ϕ : R −→ R, ϕ (t) ≡ |t|
α
β t is a homeomor-

phism between S1,α,β (Ω) and W 1,β (Ω).

Theorem 2.2. The following embeddings are satisfied:

(i) Let α, α1 ≥ 0 and β1 ≥ 1, β ≥ β1,
α1

β1
≥ α

β , α1 + β1 ≤ α+ β then we have

S̊1,α,β (Ω) ⊆ S̊1,α1,β1
(Ω) .

(ii) Let α ≥ 0, β ≥ 1, n > β and n(α+β)
n−β ≥ r then there is a continuous embedding

S̊1,α,β (Ω) ⊂ Lr (Ω) .

Furthermore for n(α+β)
n−β > r the embedding is compact.

(iii) If α ≥ 0, β ≥ 1 and p ≥ α+ β then

W 1,p
0 (Ω) ⊂ S̊1,α,β(Ω)

is hold.

Now we present general solvability result [33] (see also for similar theorems
[29, 30, 34, 36]) that will be used to show existence of weak solution of the posed
problem (1.1).

Definition 2.2. Let X, Y be Banach spaces, Y ∗ is the dual space of Y and S0

is a weakly complete pn-space. f : S0 ⊂ X −→ Y a nonlinear mapping. f is
a “coercive” operator in a generalized sense if there exists a bounded operator

‡S1,α,β (Ω) is metric space with the following metric: ∀u, v ∈ S1,α,β (Ω) ,

dS1,α,β
(u, v) =

∥∥∥|u|αβ u− |v|
α
β v

∥∥∥
W1,β(Ω).
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g : X0 ⊆ S0 −→ Y ∗ that satisfies the conditions, X0 = S0, Img = Y ∗ and a
continuous function µ : R+ −→ R non-decreasing such that the following relation
is valid for a dual form 〈., .〉 with respect to the pair of spaces (Y , Y ∗):

〈f (x) , g (x)〉 ≥ µ
(
[x]S0

)
for x ∈ X0 and ∃r > 0 3 µ (r) ≥ 0.

In this case it is said that the mappings f and g generate a “coercive pair ” on X0.

Definition 2.3. Let X0 be a topological space such that X0 ⊂ S0 ⊂ X, and let f
be a nonlinear mapping acting from X to Y where Y is a reflexive space such that
both Y and Y ∗ are strictly convex. An element x ∈ S0 satisfying

〈f (x) , y∗〉 = 〈y, y∗〉, ∀y∗ ∈M∗ ⊆ Y ∗, y ∈ Y, (2.1)

the equation (2.1) is called a M∗-solution of the equation f (x) = y.

We will consider the following conditions:

(a) f : S0 −→ Y is a weakly compact (weakly continuous) mapping and there
exists a closed linear subspace Y0 of Y such that f : S0 −→ Y0 ⊆ Y.

(b) There exist a mapping g : X0 ⊂ S0 −→ Y ∗ such that g (X0) contains a linear
manifold from Y ∗ which is dense in a closed linear subspace Y ∗0 of Y ∗ and
generates a ”coercive pair” with f on X0 in a generalized sense.

Moreover one of the following conditions (1) or (2) hold:

(1) If g is a linear continuous operator then S0 is a “reflexive” space [30] and
X0 is a separable vector topological space which is dense in S0 and ker g∗ =
{0}(where g∗ denotes the adjoint of the linear continuous operator g).

(2) If g is a nonlinear operator then Y ∗0 is a separable subspace of Y ∗ and g−1 is
weakly continuous from Y ∗ to S0.

Theorem 2.3. Let the conditions (a),(b) and either (1) or (2) hold. Furthermore,
assume that a set Y0 ⊆ Y is given such that for each y ∈ Y0 the following condition
is satisfied: there exists r = r (y) > 0 such that

µ([x]S0
) ≥ 〈y, g (x)〉, ∀x ∈ X0, [x]S0

≥ r.

Then equation (2.1) is Y ∗0 -solvable in S0 for any y from the subset Y0 of Y.

3. Existence Results for Problem (1.3)

As mentioned in introduction, studying the existence of solution of the problem
(1.1) requires to investigate problem (1.3) therefore firstly we give the existence
results for problem 

n∑
i=1

−Di

(
|u|p0−2

Diu
)

+ c (x, u) = h (x) ,

u |∂Ω= 0,

here p0 ≥ 2 and c : Ω × R → R, c (x, τ) has a variable nonlinearity up to τ
(see inequality (3.1)). Let the function c (x, τ) in problem (1.3) hold the following
conditions:
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(i) c : Ω× R −→ R is a Caratheodory function and for the measurable function
α : Ω −→ R which satisfy 1 < α− ≤ α (x) ≤ α+ <∞, c (x, τ) holds the inequality

|c (x, τ)| ≤ c0 (x) |τ |α(x)−1
+ c1 (x) , (x, τ) ∈ Ω× R, (3.1)

here c0, c1 are nonnegative, measurable functions defined on Ω.
Since on different values of α+ depending on p0 and n i.e. α+ < p0, p0 ≤ α+ < p̃

and p̃ ≤ α+ <∞ where p̃ is critical exponent in Theorem 2.2 (ii) different conditions
is required because of the circumstances appearing in the embedding theorems for
these spaces hence we separate the domain Ω to three disjoint sets say Ω1, Ω2 and
Ω3 up to these cases. By doing this, we obtained more slightly sufficient conditions
to show the existence of weak solution.§

Let η ∈ (0, 1) is sufficiently small and we define the sets

Ω1 ≡ {x ∈ Ω| α (x) ∈ [1, p0 − η)} ,
Ω2 ≡ {x ∈ Ω| α (x) ∈ [p0 − η, p̃)} ,
Ω3 ≡

{
x ∈ Ω| α (x) ∈ [p̃, α+]

}
,

here critical p̃ > p0 and will be defined later.
(ii) There exists a measurable function α1 : Ω2 −→ R which satisfy 1 ≤ α−1 ≤

α1 (x) ≤ α+
1 < p0, such that c (x, τ) holds the inequality

c (x, τ) τ ≥ −c2 (x) |τ |α1(x) − c3 (x) , (x, τ) ∈ Ω2 × R, (3.2)

here c2, c3 are nonnegative, measurable functions defined on Ω2.
(iii) On Ω3 × R, c (x, τ) satisfies the inequality

c (x, τ) τ ≥ c4 (x) |τ |α(x) − c5 (x) , (x, τ) ∈ Ω3 × R, (3.3)

here α is the same function as in (3.1) and c4 (x) ≥ C̄0 > 0 a.e. x ∈ Ω3 and c4, c5
are nonnegative, measurable functions defined on Ω3.

We investigate the problem (1.3) for the functions h ∈ W−1,q0 (Ω) + Lα
∗(x) (Ω)

where α∗ is conjugate of α i.e. α∗ (x) ≡ α(x)
α(x)−1 and q0 ≡ p0

p0−1 .

Let us denote Q0 by

Q0 ≡ S̊1,(p0−2)q0,q0 (Ω) ∩ Lα(x) (Ω) .

We understand the solution of the considered problem in the following sense.

Definition 3.1. A function u ∈ Q0, is called the generalized solution (weak solu-
tion) of problem (1.3) if it satisfies the equality

n∑
i=1

∫
Ω

(
|u|p0−2

Diu
)
Diwdx+

∫
Ω

c (x, u)wdx =

∫
Ω

hwdx

for all w ∈W 1,p0
0 (Ω) ∩ Lα(x) (Ω).

§Since Ω is separated to three disjoint subsets, in some sense, one can consider that problem
as unity of three different problems.
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Theorem 3.1. Let (i)-(iii) hold. If c2 ∈ L
p0

p0−α1(x) (Ω2) , c3 ∈ L1 (Ω2) , c5 ∈
L1 (Ω3) , c4 ∈ L∞ (Ω3) , c1 ∈ Lβ1(x) (Ω), c0 ∈ Lβ(x) (Ω) where

β1 (x) ≡

α∗ (x) , if x ∈ Ω1,

q0, if x ∈ Ω2 ∪ Ω3,

and

β (x) ≡


p0α
∗(x)

p0−α(x) , if x ∈ Ω1,

p̃α∗(x)
p̃−α(x) , if x ∈ Ω2,

∞, if x ∈ Ω3,

p̃ ≡ np0

n− q0
,

then ∀h ∈ W−1,q0 (Ω) + Lα
∗(x) (Ω) problem (1.3) has a generalized solution in the

space Q0.

The proof is based on Theorem 2.3. To use this, we introduce the following
spaces and mappings in order to apply Theorem 2.3 to prove Theorem 3.1.

S0 ≡ S̊1,(p0−2)q0,q0 (Ω) ∩ Lα(x) (Ω) , Y ≡W−1,q0 (Ω) + Lα
∗(x) (Ω) ,

X0 ≡W 1,p0
0 (Ω) ∩ Lα(x) (Ω)

and

Y ∗0 ≡ Y ∗ ≡ X0,

f : S0 −→ Y,

f (u) ≡
n∑
i=1

−Di

(
|u|p0−2

Diu
)

+ c (x, u) , (3.4)

g : X0 ⊂ S0 −→ Y ∗,

g ≡ Id. (3.5)

We prove some lemmas to show that all conditions of Theorem 2.3 are fulfilled
under the conditions of Theorem 3.1.

Lemma 3.1. Under the conditions of Theorem 3.1, the mappings f and g defined
by (3.4) and (3.5) respectively generate a “coercive pair” on W 1,p0

0 (Ω)∩Lα(x) (Ω) .

Proof. Since g ≡ Id, being “coercive pair” equals to order coercivity of f on the
space W 1,p0

0 (Ω) ∩ Lα(x) (Ω). For u ∈W 1,p0
0 (Ω) ∩ Lα(x) (Ω)

〈f (u) , u〉 =

n∑
i=1

(∫
Ω

|u|p0−2 |Diu|2 dx
)

+

∫
Ω

c (x, u)udx

=

n∑
i=1

(∫
Ω

|u|p0−2 |Diu|2 dx
)

+

∫
Ω1

c (x, u)udx

+

∫
Ω2

c (x, u)udx+

∫
Ω3

c (x, u)udx.
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Using (3.1), (3.2), (3.3), we obtain

〈f (u) , u〉 ≥
n∑
i=1

∫
Ω

|u|p0−2 |Diu|2 dx

− ∫
Ω1

|c0 (x)| |u|α(x)
dx−

∫
Ω1

|c1 (x)| |u| dx

−
∫

Ω2

|c2 (x)| |u|α1(x)
dx−

∫
Ω2

|c3 (x)| dx

+

∫
Ω3

|c4 (x)| |u|α(x)
dx−

∫
Ω3

|c5 (x)| dx. (3.6)

Let estimate the second, third and fourth integrals in (3.6) respectively. For
arbitrary εi > 0 (i = 1, 2, 3) by using Young’s inequality, we get∫

Ω1

|c0 (x)| |u|α(x)
dx

≤ε1
∫

Ω1

(
α(x)

p0

)
|u|p0 dx+

∫
Ω1

(
1

ε1

) α(x)

p0−α(x)
(
p0−α(x)

p0

)
|c0 (x)|

p0
p0−α(x) dx

≤ε1
∫

Ω1

|u|p0 dx+

(
1

ε1

) p0
η
∫

Ω1

|c0 (x)|
p0

p0−α(x) dx.

Similarly, by (ii) and Young’s inequality, we have the following estimate for the
fourth integral,∫

Ω2

|c2 (x)| |u|α1(x)
dx

≤ε2
∫

Ω2

(
α1(x)

p0

)
|u|p0 dx+

∫
Ω2

(
1

ε2

) α1(x)

p0−α1(x)
(
p0−α1(x)

p0

)
|c2 (x)|

p0
p0−α1(x) dx

≤ε2
∫

Ω2

|u|p0 dx+

(
1

ε2

) α
+
1

p0−α
+
1

∫
Ω2

|c2 (x)|
p0

p0−α1(x) dx

and for the second one by applying Hölder-Young inequality, we get∫
Ω1

|c1 (x)| |u| dx ≤ ε3
∫

Ω1

|u|p0 dx+

(
1

ε3

)p0q0 ∫
Ω1

|c1 (x)|q0 dx.

If we use these inequalities and condition (iii) in (3.6), we obtain

〈f (u) , u〉 ≥ [u]
p0
S̊1,(p0−2),2(Ω)

− ε4 ‖u‖p0Lp0 (Ω1∪Ω2) + C̄0

∫
Ω3

|u|
α(x)

dx

− C1(ε1)− C2(ε2)− C3(ε3)− ‖c3‖L1(Ω2) − ‖c5‖L1(Ω3) .

Estimating the first and second terms on the right hand side of last inequality by
Theorem 2.2, we obtain

〈f (u) , u〉 ≥C̃ [u]
p0
S̊1,(p0−2)q0,q0

(Ω)
− ε4C4 [u]

p0
S̊1,(p0−2)q0,q0

(Ω)
+ C̄0

∫
Ω3

|u|
α(x)

dx−K

≥C5 [u]
p0
S̊1,(p0−2)q0,q0

(Ω)
+ C̄0

∫
Ω3

|u|
α(x)

dx−K.
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Here, K ≡ K
(
C1(ε1), C2(ε2), C3(ε3), ‖c3‖L1(Ω2) , ‖c5‖L1(Ω3)

)
, C̃ ≡ C̃ (p0, |Ω|), C5 ≡

C5 (p0, |Ω|), C1 ≡ C1 (σβ (c0) , ε1, p0), C2 ≡ C2

(
σ p0
p0−α1(x)

(c2) , ε2, p0, α
+
1

)
, C3 ≡

C3 (σβ1
(c1) , ε3, p0) are positive constants.

From the last inequality we get

〈f (u) , u〉 ≥ C5 [u]
p0
S̊1,(p0−2)q0,q0

(Ω)
+ C̄0

∫
Ω3

|u|
α(x)

dx−K. (3.7)

If we take account the following inequalities∫
Ω3

|u|
α(x)

dx ≥ ‖u‖p0
Lα(x)(Ω3)

− 1,

[u]
p0
S̊1,(p0−2)q0,q0

(Ω2)
≥ C6 ‖u‖p0Lα(x)(Ω2)

,

[u]
p0
S̊1,(p0−2)q0,q0

(Ω1)
≥ C7 ‖u‖p0Lα(x)(Ω1)

,

where C6 ≡ C6 (p0, |Ω|), C7 ≡ C7 (p0, |Ω|) > 0 (comes from Theorem 2.2 and Lemma
2.1 into (3.7), we obtain

〈f (u) , u〉 ≥ C8

(
[u]

p0
S̊1,(p0−2)q0,q0

(Ω)
+ ‖u‖p0

Lα(x)(Ω)

)
− K̃.

So the proof is completed.

Lemma 3.2. Under the conditions of Theorem 3.1, the mapping f defined by (3.4)
is bounded from S̊1,(p0−2)q0,q0 (Ω) ∩ Lα(x) (Ω) into W−1,q0 (Ω) + Lα

∗(x) (Ω).

Proof. Firstly we define the mappings

f1 (u) ≡
n∑
i=1

−Di

(
|u|p0−2

Diu
)
,

f2 (u) ≡ c (x, u) .

We need to show that, these mappings are bounded from S̊1,(p0−2)q0,q0 (Ω)∩Lα(x) (Ω)

to W−1,q0 (Ω) + Lα
∗(x) (Ω) .

Let’s show that f1 is bounded: For u ∈ S̊1,(p0−2)q0,q0 (Ω) and v ∈W 1,p0
0 (Ω) ,

|〈f1 (u) , v〉| ≤
n∑
i=1

(∫
Ω

|u|p0−2 |Diu| |Div| dx
)
.

Using Hölder’s inequality we get

≤

[
n∑
i=1

(∫
Ω

|u|(p0−2)q0 |Diu|q0 dx
)] 1

q0
[

n∑
i=1

(∫
Ω

|Div|p0 dx
)] 1

p0

= [u]
p0−1

S̊1,(p0−2)q0,q0
(Ω)
‖v‖

W
1,p0
0 (Ω)

.

Thus by the last inequality we obtain the boundness of f1.
Similarly by using (3.1) and Theorem 2.2, ∀ u ∈ S̊1,(p0−2)q0,q0 (Ω) ∩ Lα(x) (Ω),

we have the following estimate

σα∗ (f2 (u)) = σα∗ (c (x, u)) ≤ C9

(
σα (u) + [u]

p̃

S̊1,(p0−2)q0,q0
(Ω)

)
+ C10,
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here C9 = C9 (α+, α−) > 0, C10 = C10 (σβ (c0) , σβ1
(c1) , |Ω|) > 0 are constants. So

we prove that f2 : S̊1,(p0−2)q0,q0 (Ω) ∩ Lα(x) (Ω) → Lα
∗(x) (Ω) is bounded.

Lemma 3.3. Under the conditions of Theorem 3.1, the mapping f defined by (3.4)
is weakly compact from S̊1,(p0−2)q0,q0 (Ω) ∩ Lα(x) (Ω) into W−1,q0 (Ω) + Lα

∗(x) (Ω) .

Proof. Firstly we want to see the weak compactness of f1. For {um}∞m=1 ⊂
S̊1,(p0−2)q0,q0 (Ω)∩Lα(x) (Ω) bounded and um

S0⇀ u0 it is sufficient to show a subse-

quence of
{
umj

}∞
m=1

⊂ {um}∞m=1 which satisfies f1

(
umj

) W−1,q0 (Ω)
⇀ f1 (u0) .

Since we have one-to-one correspondence between the classes (Theorem 2.1)

S̊1,(p0−2)q0,q0 (Ω)
ϕ←→
ϕ−1

W 1,q0
0 (Ω)

with the homeomorphism

ϕ (τ) ≡ |τ |p0−2
τ, ϕ−1 (τ) ≡ |τ |−

p0−2
p0−1 τ

for ∀m ≥ 1
|um|p0−2

um ∈W 1,q0
0 (Ω)

and since W 1,q0
0 (Ω) is a reflexive space, there exists a subsequence

{
umj

}∞
m=1

⊂
{um}∞m=1 such that ∣∣umj ∣∣p0−2

umj
W

1,q0
0 (Ω)
⇀ ξ.

Now we show that ξ = |u0|p0−2
u0.

According to compact embedding, W 1,q0
0 (Ω) ↪→ Lq0 (Ω)

∃
{
umjk

}∞
m=1

⊂
{
umj

}∞
m=1

,
∣∣∣umjk ∣∣∣p0−2

umjk
Lq0 (Ω)→ ξ.

Since ϕ−1 : Lq0 (Ω) −→ Lp0 (Ω) continuous then

umjk
Lp0 (Ω)→ ϕ−1 (ξ) ,

hence we have
umjk

Ω→
a.e

ϕ−1 (ξ) .

So we obtain ϕ−1 (ξ) = u0 , equivalently ξ = |u0|p0−2
u0.

From this, we conclude that for ∀v ∈W 1,p0
0 (Ω) ,

〈f1

(
umjk

)
, v〉 =

n∑
i=1

〈−Di

(∣∣∣umjk ∣∣∣p0−2

Diumjk

)
, v〉

−→
mj↗∞

n∑
i=1

〈−Di

(
|u0|p0−2

Diu0

)
, v〉

=〈f1 (u0) , v〉,

hence, the result is obtained.
Now we shall show the weak compactness of f2. Since

c : S̊1,(p0−2)q0,q0 (Ω) ∩ Lα(x) (Ω)→ Lα
∗(x) (Ω)
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is bounded by Lemma 3.2, then ∀m ≥ 1, f2 (um) ≡ {c (x, um)}∞m=1 ⊂ Lα
∗(x) (Ω) .

Also Lα
∗(x) (Ω) (1 < (α∗)

−
< ∞) is a reflexive space thus {um}∞m=1 has a subse-

quence
{
umj

}∞
m=1

such that

c
(
x, umj

) Lα
∗(x)(Ω)
⇀ ψ.

Since the compact embedding, S̊1,(p0−2)q0,q0 (Ω) ↪→ Lp0 (Ω) exists

∃
{
umjk

}∞
m=1

⊂
{
umj

}∞
m=1

, umjk
Lp0 (Ω)→ u0,

thus
umjk

Ω→
a.e

u0

and using the continuity of c (x, .) for almost x ∈ Ω, we get

c(x, umjk )
Ω→
a.e

c (x, u0) ,

so, we arrive at ψ = c (x, u0) i.e. f2(umjk )
W−1,q0 (Ω)+Lα

∗(x)(Ω)
⇀ f2 (u0).

Now we give the proof of main theorem of this section.

Proof of Theorem 3.1. Since g ≡ Id, so it is a linear bounded map and satisfies
the conditions of (1). Also from Lemma 3.1-Lemma 3.3, it follows that the mappings
f and g satisfy all the conditions of Theorem 2.3. If we apply Theorem 2.3 to
problem (1.3), we obtain that ∀h ∈W−1,q0 (Ω) + Lα

∗(x) (Ω) the equation

n∑
i=1

−
∫

Ω

[
Di

(
|u|p0−2

Diu
)

+ c (x, u)
]
wdx

=

∫
Ω

h (x)wdx, w ∈W 1,p0
0 (Ω) ∩ Lα(x) (Ω)

has a solution in S̊1,(p0−2)q0,q0 (Ω) ∩ Lα(x) (Ω).
It can be easily seen from the proof of Theorem 3.1, the results which are given

below are valid for α satisfying special conditions.

Corollary 3.1. Let (i) holds. If 1 < α− ≤ α (x) ≤ α+ < p0 i.e. Ω ≡ Ω1 and

c0 ∈ Lβ2(x) (Ω), c1 ∈ Lα
∗(x) (Ω) where β2 (x) ≡ p0α

∗(x)
p0−α(x) then ∀h ∈ W−1,q0 (Ω)

problem (1.3) has a generalized solution in the space S̊1,(p0−2)q0,q0 (Ω).

Corollary 3.2. Let (i), (ii) hold. If 1 < α− ≤ α (x) ≤ α+ < p̃ i.e. Ω ≡
Ω1 ∪ Ω2 and c2 ∈ L

p0
p0−α1(x) (Ω2) , c3 ∈ L1 (Ω2), c0 ∈ Lβ3(x) (Ω), c1 ∈ Lβ4(x) (Ω)

where β3 (x) ≡


p0α
∗(x)

p0−α(x) , if x ∈ Ω1,

p̃α∗(x)
p̃−α(x) , if x ∈ Ω2,

and β4 (x) ≡

α∗ (x) , if x ∈ Ω1,

q0, if x ∈ Ω2,
then ∀h ∈

W−1,q0 (Ω) problem (1.3) has a generalized solution in the space S̊1,(p0−2)q0,q0 (Ω).

4. Existence Results for Main Problem (1.1)

4.1. Preliminary results

In this subsection, we prove some necessary results. Throughout this section, we
take Ω ⊂ Rn (n ≥ 2) be a bounded domain with Lipschitz boundary.
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Lemma 4.1. Assume that ζ : Ω −→ [1,∞) is measurable function that satisfy
1 ≤ ζ− ≤ ζ (x) ≤ ζ+ <∞ also β > 1, ε > 0. Then for every u ∈ Lζ(x)+ε (Ω)∫

Ω

|u|ζ(x) |ln |u||β dx ≤M1

∫
Ω

|u|ζ(x)+ε
dx+M2

is satisfied. Here M1 ≡M1 (ε, β) > 0 and M2 ≡M2 (ε, β, |Ω|) > 0 are constants.

Proof. For given ε > 0 one can easily see that by calculus there exist M0 =
M0 (ε) > 0 such that

ln |t| ≤M0 (ε) |t|ε , t ∈ R− {0}

holds. Hence on the set {x ∈ Ω : |u (x)| ≥ 1 } the inequality

|u|ζ(x) |ln |u||β ≤M0 (ε, β) |u|ζ(x)+ε

is satisfied. On the other hand, since lim
t→0+

tε |ln t|β = 0 and for every fixed x0 ∈ Ω,

lim
t→0+

|t|ζ(x0)|ln|t||β

tζ(x0)+ε+1
=0, we have the inequality |u|ζ(x)−1|u||ln |u||β≤M̃0

(
|u|ζ(x)+ε

+ 1
)

on the set {x ∈ Ω : |u (x)| < 1 } for some M̃0 = M̃0 (ε, β) > 0. So the proof is
completed by the combination of these inequalities.

Let ρ : Ω −→ R, 2 ≤ ρ− ≤ ρ (x) ≤ ρ+ < ∞, ρ ∈ C1
(
Ω̄
)

and m be a number

which satisfies ρ (x) ≥ m ≥ 2 a.e. x ∈ Ω, m1 ≡ m
m−1 , ψ(x) ≡ ρ(x)−m

m−1 , x ∈ Ω and

ϕ : Ω −→ R is measurable function satisfy 1 ≤ ϕ− ≤ ϕ (x) ≤ ϕ+ <∞.
Now we introduce the following class of functions¶ for u : Ω −→ R,

T̃0 ≡

{
u ∈ L1 (Ω) |

n∑
i=1

∥∥∥|u|ψ(x)
Diu

∥∥∥
Lm(Ω)

+ ‖u‖
L
nm1(ρ(x)−1)

n−m1 (Ω)
<∞

}
∩ Lϕ(x)+ψ(x) (Ω) ∩ {u |∂Ω≡ 0}

and

T0 ≡

{
u ∈ L1 (Ω) |

n∑
i=1

∥∥∥|u|ρ(x)−2
Diu

∥∥∥
Lm1 (Ω)

+ ‖u‖
L
nm1(ρ(x)−1)

n−m1 (Ω)
<∞

}
∩ Lϕ(x)+ψ(x) (Ω) ∩ {u |∂Ω≡ 0} .

Following lemma indicates the relation of these classes with Sobolev and gener-
alized Lebesgue spaces.

Lemma 4.2. Let the functions ρ, ϕ, ψ and number m be defined as above, then
the following statements hold:

(a) φ : Ω× R −→ R, φ (x, τ) ≡ |τ |ρ(x)−2
τ

is a bijection between the spaces T0 and W 1,m1

0 (Ω)∩ L
ϕ(x)+ψ(x)

(m−1)(ψ(x)+1) (Ω).

(b) φ̃ : Ω× R −→ R, φ̃ (x, τ) ≡ |τ |ψ(x)
τ

is a bijection between T̃0 and W 1,m
0 (Ω) ∩ L

ϕ(x)+ψ(x)
ψ(x)+1 (Ω).

¶In general, there might not be an embedding between Lϕ(x)+ψ(x) (Ω) and L
nm1(ρ(x)−1)

n−m1 (Ω).
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Proof. Since the proofs of (a) and (b) are similar, we only prove (a).

First let us show that for u ∈ T0, v ≡ |u|ρ(x)−2
u ≡ φ (x, u) ∈ W 1,m1

0 (Ω)∩
L

ϕ(x)+ψ(x)
(m−1)(ψ(x)+1) (Ω). Since by direct calculations

σ ϕ+ψ
(m−1)(ψ+1)

(v) = σϕ+ψ (u) ,

so from this equality, we obtain v ∈ L
ϕ(x)+ψ(x)

(m−1)(ψ(x)+1) (Ω).
On the other hand for ∀i = 1..n

‖Div‖m1

m1
=

∫
Ω

∣∣∣Di

(
|u|ρ(x)−2

u
)∣∣∣m1

dx

=

∫
Ω

∣∣∣(ρ (x)− 1) |u|ρ(x)−2
Diu+ (Diρ) |u|ρ(x)−2

u ln |u|
∣∣∣m1

dx

≤ C0

∫
Ω

|u|m1(ρ(x)−2) |Diu|m1 dx+ C1

∫
Ω

|u|m1(ρ(x)−1) |ln |u||m1 dx,

here C0 = C0

(
m1, ‖ρ‖C(Ω)

)
, C1 = C1

(
m1, ‖ρ‖C1(Ω̄)

)
> 0 are constants.

As for sufficiently small ε > 0, m1 (ρ (x)− 1) + ε ≤ nm1(ρ(x)−1)
n−m1

holds, applying
Lemma 4.1 to second integral we obtain

‖Div‖m1

m1
≤ C0

∥∥∥|u|ρ(x)−2
Diu

∥∥∥m1

m1

+ C2

∫
Ω

|u|m1(ρ(x)−1)+ε
dx+ C3.

Applying Young’s inequality to second integral, we get

‖Div‖m1

m1
≤ C0

∥∥∥|u|ρ(x)−2
Diu

∥∥∥m1

m1

+ C2σnm1(ρ(x)−1)
n−m1

(u) + C̃3,

where C2 = C2

(
m1, ‖ρ‖C1(Ω̄) , ε

)
> 0 and C̃3 = C̃3

(
m1, ‖ρ‖C1(Ω̄) , |Ω|

)
> 0.

Hence from last inequality, we get v ∈W 1,m1

0 (Ω).

Conversely for all v ∈ W 1,m1

0 (Ω) ∩ L
ϕ(x)+ψ(x)

(m−1)(ψ(x)+1) (Ω) let us show that w ≡
|v|−

ρ(x)−2
ρ(x)−1 v ≡ φ−1 (x, v) ∈ T0. As

σϕ+ψ (w) = σ ϕ+ψ
(m−1)(ψ+1)

(v)

according to this equality, we have w ∈ Lϕ(x)+ψ(x) (Ω). Furthermore from definition
of T0 and the Luxemburg norm, we have∥∥∥|w|ρ(x)−2

Diw
∥∥∥m1

m1

+ σ
nm1(ρ(x)−1)

n−m1

(w)

=

∫
Ω

|v|
m(ρ(x)−2)
ρ(x)−1

∣∣∣Di

(
|v|−

ρ(x)−2
ρ(x)−1 v

)∣∣∣m1

dx+

∫
Ω

|v|
nm1
n−m1 dx

=

∫
Ω

|v|
m(ρ(x)−2)
ρ(x)−1

∣∣∣( 1
ρ(x)−1

)
|v|−

ρ(x)−2
ρ(x)−1 Div +

(
−Di(ρ)

(ρ(x)−1)2

)
|v|−

ρ(x)−2
ρ(x)−1 v ln |v|

∣∣∣m1

dx

+

∫
Ω

|v|
nm1
n−m1 dx ≤ C4

∫
Ω

|Div|m1 dx+ C5

∫
Ω

|v|m1 |ln |v||m1 dx+

∫
Ω

|v|
nm1
n−m1 dx,

here C4 = C4

(
m1, ‖ρ‖C(Ω̄)

)
> 0 and C5 = C5

(
m1, ‖ρ‖C1(Ω̄)

)
> 0.
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Estimating the second integral on the right hand side of last inequality with the
help of Lemma 4.1, we obtain

≤ C4

∫
Ω

|Div|m1 dx+ C6

∫
Ω

|v|
nm1
n−m1 dx+ C7.

Considering the embedding W 1,m1

0 (Ω) ⊂ L
nm1
n−m1 (Ω) [3] in the last inequality, we

obtain w ∈ T0.
To end the proof, observe that for every fixed x0 ∈ Ω, φ (x0, τ) ≡ φ (τ) =

|τ |ρ(x0)−2
τ and φ−1 (x0, t) ≡ φ−1 (t) = |t|−

ρ(x0)−2

ρ(x0)−1 t are strictly monotone functions

thus we verify that φ is a bijection between T0 and W 1,m1

0 (Ω)∩ L
ϕ(x)+ψ(x)

(m−1)(ψ(x)+1) (Ω).

Remark 4.1. Under the conditions of Lemma 4.2, T0 and T̃0 are metric spaces.
On the class T0, metric is defined as given below: ∀u, v ∈ T0

dT0
(u, v) ≡ ‖φ (u)− φ (v)‖

L
ϕ(x)+ψ(x)

(m−1)(ψ(x)+1) (Ω)
+ ‖φ (u)− φ (v)‖

W
1,m1
0 (Ω)

it easy to see that dT0 (., .) : T0 −→ R satisfies the metric axioms and moreover φ and
φ−1 are continuous in the sense of topology defined on T0 with this metric. Hence we

get that φ is a homeomorphism between T0 and W 1,m1

0 (Ω)∩ L
ϕ(x)+ψ(x)

(m−1)(ψ(x)+1) (Ω). By
the same way we can show that φ̃ is a homeomorphism between T̃0 and W 1,m

0 (Ω)∩
L
ϕ(x)+ψ(x)
ψ(x)+1 (Ω).

4.2. Solvability of Problem (1.1)

In this section, we consider the main problem (1.1) and investigate the existence
of weak solution of that problem by the help of the results that established in
Subsection 4.1 and Theorem 3.1. So, we study−∆

(
|u|p(x)−2

u
)

+ a (x, u) = h (x) ,

u |∂Ω= 0,

under the following conditions:

(I) p : Ω −→ R, 2 ≤ p− ≤ p (x) ≤ p+ < ∞ and p ∈ C1
(
Ω̄
)
, a : Ω × R −→ R

is a Caratheodory function and for the measurable function ξ : Ω −→ R satisfies
1 < ξ− ≤ ξ (x) ≤ ξ+ <∞, the inequality

|a (x, τ)| ≤ a0 (x) |τ |ξ(x)−1
+ a1 (x) , (x, τ) ∈ Ω× R, (4.1)

holds. Here a0, a1 are nonnegative, measurable functions defined on Ω.
Let η0 ∈ (0, 1) is sufficiently small. We separate Ω to disjoint sets because of

the same reason for which is required problem (1.3).

Ω1 ≡ {x ∈ Ω | 1 ≤ ξ− ≤ ξ (x) ≤ p (x)− η0} ,

Ω2 ≡ {x ∈ Ω | p (x)− η0 < ξ (x) ≤ p̃ (x)} ,

Ω3 ≡ {x ∈ Ω | p̃ (x) ≤ ξ (x) ≤ ξ+ <∞} ,

(*)
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here p̃ : Ω −→ R is a measurable function which satisfies 2 ≤ p (x) < p̃ (x) a.e.
x ∈ Ω and will be defined later.

(II) There exists a measurable function ξ1 : Ω2 −→ R which satisfy 2 ≤ ξ−1 ≤
ξ1 (x) ≤ ξ+

1 < p (x), such that on Ω2 × R, a (x, τ) fulfills the inequality

a (x, τ) τ ≥ −a2 (x) |τ |ξ1(x) − a3 (x) , (x, τ) ∈ Ω2 × R, (4.2)

here a2, a3 are nonnegative, measurable functions defined on Ω2.
(III) On Ω3 × R, a (x, τ) satisfies the inequality

a (x, τ) τ ≥ a4 (x) |τ |ξ(x) − a5 (x) , (x, τ) ∈ Ω3 × R, (4.3)

here ξ is the same function as in (4.1) and a4 (x) ≥ Ā0 > 0 a.e. x ∈ Ω3 and a5 is
nonnegative, measurable function defined on Ω3.

Let p1 be a number holds p (x) ≥ p1 ≥ 2 a.e. x ∈ Ω, q1 ≡ p1
p1−1 , γ (x) ≡ p(x)−p1

p1−1

and θ (x) ≡ ξ(x)+γ(x)
γ(x)+1 , x ∈ Ω.

We introduce the following class of functions:

P̃0 ≡

{
u ∈ L1 (Ω) |

n∑
i=1

∥∥∥|u|γ(x)
Diu

∥∥∥
Lp1 (Ω)

+ ‖u‖
L
nq1(p(x)−1)

n−q1 (Ω)
<∞

}
∩ Lξ(x)+γ(x) (Ω) ∩ {u |∂Ω≡ 0}

and

P0 ≡

{
u ∈ L1 (Ω) |

n∑
i=1

∥∥∥|u|p(x)−2
Diu

∥∥∥
Lq1 (Ω)

+ ‖u‖
L
nq1(p(x)−1)

n−q1 (Ω)
<∞

}
∩ Lξ(x)+γ(x) (Ω) ∩ {u |∂Ω≡ 0} .

Remark 4.2. From Lemma 4.2 and Remark 4.1, it follows that P̃0 and P0 are met-

ric spaces (also pn-spaces). Furthermore φ0 (x, τ) ≡ |τ |p(x)−2
τ is a homeomorphism

between P0 and W 1,q1
0 (Ω)∩L

θ(x)
p1−1 (Ω) and φ1 (x, τ) ≡ |τ |γ(x)

τ is a homeomorphism
between P̃0 and W 1,p1

0 (Ω) ∩ Lθ(x) (Ω).

We investigate (1.1) for h ∈W−1,q1 (Ω) +Lθ
∗(x) (Ω) (θ∗ is conjugate function of

θ). Solution of problem (1.1) is understood in the following sense.

Definition 4.1. A function u ∈ P0 is called the weak solution of problem (1.1) if
it satisfies the equality

−
∫

Ω

∆
(
|u|p(x)−2

u
)
wdx+

∫
Ω

a (x, u)wdx =

∫
Ω

h (x)wdx

for all w ∈W 1,p1
0 (Ω) ∩ Lθ(x) (Ω).

We define the following functions:

µ1 (x) ≡ p(x)+γ(x)
p(x)−ξ1(x) , x ∈ Ω2, µ2 (x) ≡ ξ1(x)+γ(x)

ξ1(x) , x ∈ Ω2, µ3 (x) ≡ ξ(x)+γ(x)
ξ(x) , x ∈ Ω3,

µ4 (x) ≡

 θ∗ (x) if x ∈ Ω1

q1 if x ∈ Ω2 ∪ Ω3

, µ (x) ≡


p1θ
∗(x)

p1−θ(x) if x ∈ Ω1

p̃1θ
∗(x)

p̃1−θ(x) if x ∈ Ω2

∞ if x ∈ Ω3

, p̃1 ≡ np1
n−q1 ,

and p̃ (x) ≡ p̃1 (γ (x) + 1)− γ (x) . Here p1 ≡ p(x)+γ(x)
γ(x)+1 , q1 ≡ p(x)+γ(x)

p(x)−1 , x ∈ Ω.
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Now we state the main theorem of this article that is the solvability theorem for
problem (1.1).

Theorem 4.1. Assume that (I)-(III) hold. If a2 ∈ Lµ1(x) (Ω2) , a3 ∈ Lµ2(x) (Ω2) ,
a5 ∈ Lµ3(x) (Ω3) , a4 ∈ L∞ (Ω3) , a1 ∈ Lµ4(x) (Ω) and a0 ∈ Lµ(x) (Ω), then ∀h ∈
W−1,q1 (Ω) + Lθ

∗(x) (Ω) problem (1.1) has a generalized solution in P0.

As mentioned in introduction part, we investigate problem (1.1) such a different
method. In order to study that problem, firstly we transform it to equivalent prob-

lem by the transformation φ1 : u → |u|γ(x)
u. Following equality can be obtained

easily,

− ∆
(
|u|p(x)−2

u
)

= − ∆

(∣∣∣|u|γ(x)
u
∣∣∣p1−2

|u|γ(x)
u

)
= (p1 − 1)

n∑
i=1

−Di

(∣∣∣|u|γ(x)
u
∣∣∣p1−2

Di

(
|u|γ(x)

u
))

.

Once applying the transformation u → |u|γ(x)
u in a, we denote the established

function with b i.e.
b
(
x, |u|γ(x)

u
)
≡ a (x, u)

it is clear that b : Ω× R −→ R is also Caratheodory function.
Also, it is obvious that

|u|γ(x)
u |∂Ω= 0⇔ u |∂Ω= 0.

Consequently (1.1) can be written in the form; (p1 − 1)
n∑
i=1

−Di

(∣∣∣|u|γ(x)
u
∣∣∣p1−2

Di

(
|u|γ(x)

u
))

+ b
(
x, |u|γ(x)

u
)

= h (x) ,

|u|γ(x)
u |∂Ω= 0.

(4.4)

Denote v ≡ |u|γ(x)
u then by (4.4) we establish the following

(p1 − 1)
n∑
i=1

−Di

(
|v|p1−2

Div
)

+ b (x, v) = h (x) ,

v |∂Ω= 0,

(4.5)

which is equivalent to (1.1) as a immediate consequence of Lemma 4.2. Obviously,
problem (4.5) is same as the problem (1.3) which we have studied in Section 3.

Lemma 4.3. Under the conditions of Theorem 4.1 for ∀h ∈W−1,q1 (Ω)+Lθ
∗(x) (Ω),

problem (4.5) has generalized solution, in the sense of Definition 3.1, in the space
S̊1,(p1−2)q1,q1 (Ω) ∩ Lθ(x) (Ω) .

Proof. For the proof we only need to prove that b (x, v) in problem (4.5) satisfies
all the conditions of Theorem 3.1.

If we rewrite the inequality (4.1) in terms of v, we have

|b (x, v)| ≤ a0 (x) |v|θ(x)−1
+ a1 (x) on Ω× R. (4.6)
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Also in terms of θ the sets Ωi, i = 1, 2, 3 can be written equivalently, by simple
calculations, in the form which is given below i.e. the inequalities which define the
sets Ωi in (*) are equivalent to the ones given below.

Ω1 =
{
x ∈ Ω | 1 ≤ θ− ≤ θ (x) ≤ p1 − η̃0

}
,

Ω2 = {x ∈ Ω | p1 − η̃0 < θ (x) ≤ p̃1} ,
Ω3 =

{
x ∈ Ω | p̃1 ≤ θ (x) ≤ θ+ <∞

}
,

where η̃0 = η̃0 (η0) > 0 is sufficiently small.
Now we prove that under the conditions of Theorem 4.1, conditions (ii) and

(iii) of Theorem 3.1 hold. From (4.2), (4.3), we have the following inequalities for
b:

b (x, v) v ≥ −a2 (x) |v|
ξ1(x)+γ(x)

γ(x)+1 − a3 (x) |v|
γ(x)
γ(x)+1 on Ω2 × R (4.7)

and

b (x, v) v ≥ a4 (x) |v|θ(x) − a5 (x) |v|
γ(x)
γ(x)+1 on Ω3 × R. (4.8)

Coefficients and exponents in (4.7) and (4.8) satisfy the followings: Since ξ1 (x) <
p (x) a.e. x ∈ Ω2 so we have

ξ1(x)+γ(x)
γ(x)+1 < p1 a.e. x ∈ Ω2. (4.9)

Applying Young’s inequality to the second term in (4.7), we arrive at

a3 (x) |v|
γ(x)
γ(x)+1 ≤ (a3 (x))

ξ1(x)+γ(x)
ξ1(x)

+ |v|
ξ1(x)+γ(x)
γ(x)+1

. (4.10)

Using ε-Young’s inequality, we estimate the second term in (4.8)

a5 (x) |v|
γ(x)
γ(x)+1 ≤ C (ε) (a5 (x))

ξ(x)+γ(x)
ξ(x)

+ ε |v|θ(x)
, (4.11)

for sufficiently small ε > 0 such that a4 (x)− ε ≥ Ã0 > 0. From (4.6)–(4.11), we get
that under the conditions of Theorem 4.1 the transformed problem (4.5) satisfies
all conditions of Theorem 3.1. Finally by Theorem 3.1, (4.5) has a weak solution
in S̊1,(p1−2)q1,q1 (Ω) ∩ Lθ(x) (Ω) for ∀h ∈W−1,q1 (Ω) + Lθ

∗(x) (Ω).

Remark 4.3. We prove that by Lemma 4.3, |u|γ(x)
u is solution of problem (4.4)

and |u|γ(x)
u ∈ S̊1,(p1−2)q1,q1 (Ω) ∩ Lθ(x) (Ω).

Lemma 4.4. Let the conditions of Theorem 4.1 hold. If |u|γ(x)
u ∈ S̊1,(p1−2)q1,q1 (Ω)∩

Lθ(x) (Ω) then u ∈ P0.

Proof. As v = |u|γ(x)
u ∈ Lθ(x) (Ω) and σθ (v) = σξ+γ (u) thus we have u ∈

Lξ(x)+γ(x) (Ω).
Since we have the embedding (Theorem 2.2)

S̊1,(p1−2)q1,q1 (Ω) ⊂ Lp̃1 (Ω) ,

thus |u|γ(x)
u ∈ Lp̃1 (Ω) which implies that u ∈ L

nq1(p(x)−1)
n−q1 (Ω).

Moreover using this fact and Lemma 4.1, one can see that

|u|p(x)−2
u ln |u| = |u|γ(x)+(γ(x)+1)(p1−2)

u ln |u| ∈ Lq1 (Ω) .
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Also by the definition of S̊1,(p1−2)q1,q1 (Ω), it follows that v ∈ S̊1,(p1−2)q1,q1 (Ω) ⇔
|v|p1−2

Div ∈ Lq1 (Ω) .

Using these and the definition of v, we obtain the following equality for ∀w ∈
Lp1 (Ω):

〈|v|p1−2
Div, w〉 − 〈(Diγ) |u|γ(x)+(γ(x)+1)(p1−2)

u ln |u| , w〉

=〈(1 + γ (x)) |u|γ(x)+(γ(x)+1)(p1−2)
Diu,w〉.

Applying Hölder inequality to the left hand side of above equality, we get

C

(∥∥∥|v|p1−2
Div

∥∥∥
q1
‖w‖p1 +

∥∥∥|u|p(x)−1
ln |u|

∥∥∥
q1
‖w‖p1

)
≥
∣∣∣〈(1 + γ (x)) |u|γ(x)+(γ(x)+1)(p1−2)

Diu,w〉
∣∣∣ ,

where C = C
(
‖γ‖C1(Ω)

)
> 0.

From the last inequality, we obtain∥∥∥|v|p1−2
Div

∥∥∥
q1

+
∥∥∥|u|p(x)−1

ln |u|
∥∥∥
q1

≥C̃
∥∥∥|u|γ(x)+(γ(x)+1)(p1−2)

Diu
∥∥∥
q1

=C̃
∥∥∥|u|p(x)−2

Diu
∥∥∥
q1
.

Consequently we get that u ∈ P0.

Now we give the proof of Theorem 4.1.

Proof of Theorem 4.1. For the proof we use Theorem 2.3 in general form. We
introduce the following spaces and mappings in order to apply this theorem to prove
Theorem 4.1.

S0 ≡ P0, Y ≡W−1,q1 (Ω) + Lθ
∗(x) (Ω) , X0 ≡ P̃0

and

Y ∗0 ≡ Y ∗ ≡W
1,p1
0 (Ω) ∩ Lθ(x) (Ω) ,

f : S0 −→ Y,

f (u) ≡ − ∆
(
|u|p(x)−2

u
)

+ a (x, u) ,

g : X0 ⊂ S0 −→ Y ∗,

g (u) ≡ |u|γ(x)
u.

To apply this theorem we have to show the conditions of Theorem 2.3 is hold.
Weak compactness and boundness of f : P0 −→ W−1,q1 (Ω) + Lθ

∗(x) (Ω) follows
from Remark 4.2, Lemma 4.3 and Lemma 4.4 by virtue of Lemma 3.2 and 3.3.
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For u ∈ P̃0 we have the equality

〈f (u) , g (u)〉 =〈− ∆
(
|u|p(x)−2

u
)

+ a (x, u) , |u|γ(x)
u〉

=〈− ∆

(∣∣∣|u|γ(x)
u
∣∣∣p1−2

|u|γ(x)
u

)
+ b

(
x, |u|γ(x)

u
)
, |u|γ(x)

u〉

=〈(p1 − 1)

n∑
i=1

−Di

(∣∣∣|u|γ(x)
u
∣∣∣p1−2

Di

(
|u|γ(x)

u
))

, |u|γ(x)
u〉

+ 〈b
(
x, |u|γ(x)

u
)
, |u|γ(x)

u〉

=〈(p1 − 1)

n∑
i=1

(∣∣∣|u|γ(x)
u
∣∣∣p1−2

Di

(
|u|γ(x)

u
))

, Di

(
|u|γ(x)

u
)
〉

+ 〈b
(
x, |u|γ(x)

u
)
, |u|γ(x)

u〉.

Generating a ”coercive pair” of the mappings f and g on P̃0 follows from the above
equality and Lemma 4.3 by virtue of Lemma 3.1.

Also as g : P̃0 ⊂ P0 −→ W 1,p1
0 (Ω) ∩ Lθ(x) (Ω) is bounded and satisfies the

conditions of (2) in Theorem 2.3. Thus we show that mappings f and g satisfy all
the conditions of Theorem 2.3. Consequently applying that to problem (1.1), we
obtain that ∀h ∈W−1,q1 (Ω) + Lθ

∗(x) (Ω) the equation

−
∫

Ω

[
∆
(
|u|p(x)−2

u
)

+ a (x, u)
]
wdx =

∫
Ω

h (x)wdx, w ∈W 1,p1
0 (Ω) ∩ Lθ(x) (Ω)

is solvable in P0.
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