LIMIT CYCLE BIFURCATION FOR A NILPOTENT SYSTEM IN Z_{3}-EQUIVARIANT VECTOR FIELD*

Chaoxiong Du ${ }^{1, \dagger}$, Qinlong Wang ${ }^{2}$, Yirong Liu ${ }^{3}$ and Qi Zhang ${ }^{3}$

Abstract

Our work is concerned with the problem on limit cycle bifurcation for a class of Z_{3}-equivariant Lyapunov system of five degrees with three third-order nilpotent critical points which lie in a Z_{3}-equivariant vector field. With the help of computer algebra system-MATHEMATICA, the first 5 quasiLyapunov constants are deduced. The fact of existing 12 small amplitude limit cycles created from the three third-order nilpotent critical points is also proved. Our proof is algebraic and symbolic, obtained result is new and interesting in terms of nilpotent critical points' Hilbert number in equivariant vector field.

Keywords Third-order nilpotent critical point, Z_{3}-equivariant, limit cycle bifurcation, Quasi-Lyapunov constant.

MSC(2010) 34C07.

1. Introduction

Consider an autonomous planar ordinary differential equation having three thirdorder nilpotent critical points $(1,0),\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$ and $\left(-\frac{1}{2},-\frac{\sqrt{3}}{2}\right)$ with the form

$$
\begin{align*}
& \frac{d x}{d \tau}=P_{1}(x, y)+P_{2}(x, y)+P_{3}(x, y)+P_{4}(x, y)+P_{5}(x, y) \equiv P(x, y) \\
& \frac{d y}{d \tau}=Q_{1}(x, y)+Q_{2}(x, y)+Q_{3}(x, y)+Q_{4}(x, y)+Q_{5}(x, y) \equiv Q(x, y) \tag{1.1}
\end{align*}
$$

where

$$
\begin{aligned}
P_{1}(x, y)= & -3 B_{10} x-3 A_{10} y, P_{2}(x, y)=12\left(1-2 A_{10}\right) x y-3 B_{02}\left(x^{2}-y^{2}\right), \\
P_{3}(x, y)= & 3\left(3 B_{02} x+6 B_{10} x+\delta x+6 y-6 A_{10} y\right)\left(x^{2}+y^{2}\right), \\
P_{4}(x, y)= & -3\left(3 B_{02}+8 B_{10}+2 \delta\right) x^{4}+6\left(3 A_{13}-12+8 A_{10}\right) x^{3} y \\
& +6\left(9 B_{02}+12 B_{10}+4 \delta\right) x^{2} y^{2}+6\left(12-8 A_{10}-A_{13}\right) x y^{3}-\left(9 B_{02}+2 \delta\right) y^{4}, \\
P_{5}(x, y)= & 3\left(B_{02}+3 B_{10}+\delta\right) x^{5}+3\left(15-A_{10}-6 A_{13}\right) x^{4} y+6\left(7 B_{02}+3 B_{10}+3 \delta\right) x^{3} y^{2}
\end{aligned}
$$

[^0]\[

$$
\begin{aligned}
& +2\left(12 A_{13}-20-3 A_{10}\right) x^{2} y^{3}-\left(9 B_{02}-9 B_{10}+\delta\right) x y^{4}+\left(19-3 A_{10}-6 A_{13}\right) y^{5}, \\
Q_{1}(x, y)= & 3 A_{10} x-3 B_{10} y, Q_{2}(x, y)=6 B_{02} x y+6\left(1-2 A_{10}\right)\left(x^{2}-y^{2}\right), \\
Q_{3}(x, y)= & 3\left(-6 x+6 A_{10} x+3 B_{02} y+6 B_{10} y+\delta y\right)\left(x^{2}+y^{2}\right) \\
Q_{4}(x, y)= & 6\left(3-2 A_{10}\right) x^{4}-12\left(3 B_{02}+2 B_{10}+\delta\right) x^{3} y+18\left(A_{13}-6+4 A_{10}\right) x^{2} y^{2} \\
& +4\left(9 B_{02}+18 B_{10}+5 \delta\right) x y^{3}+6\left(3-2 A_{10}-A_{13}\right) y^{4}, \\
Q_{5}(x, y)= & 3\left(A_{10}-2\right) x^{5}+3\left(7 B_{02}+3 B_{10}+3 \delta\right) x^{4} y+6\left(6 A_{13}-15+A_{10}\right) x^{3} y^{2} \\
& +2\left(9 B_{10}-\delta-9 B_{02}\right) x^{2} y^{3}+\left(20+3 A_{10}-12 A_{13}\right) x y^{4}+\left(9 B_{02}+9 B_{10}+5 \delta\right) y^{5},
\end{aligned}
$$
\]

in which $A_{10}, B_{10}, A_{13}, B_{02} \in R, \delta$ is a small parameter and $\delta \rightarrow 0$.
System (1.1) is invariable under the following transformations

$$
x^{\prime}=x \cos \frac{2}{3} \pi-y \sin \frac{2}{3} \pi, y^{\prime}=x \sin \frac{2}{3} \pi+y \cos \frac{2}{3} \pi
$$

hence system (1.1) lies in a Z_{3}-equivariant vector field and it can be verified that three symmetric critical points $(1,0),\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$ and $\left(-\frac{1}{2},-\frac{\sqrt{3}}{2}\right)$ satisfy (1.1). This paper is devoted to investigating the limit cycle bifurcation problem from the three critical points of the above system.

Clearly, it can be obtained that the three singular points of system (1.1) are three nilpotent critical points. In the qualitative theory of ordinary differential equation, investigation on limit cycle bifurcation for a critical point P of a planar analytic vector field X is a hot topic, and many results occur in published references, for example: Ref. $[14,15]$ and references therein discussed this problem and reported the recent new improvements. Let $H(n)$ be the Hilbert number of n-degrees system in planar vector field, Shi [25] showed $H(2) \geq 4$, Yu and Han [28] gave $H(3) \geq 12$, Jibin Li and Yirong Liu [16] obtained $H(3) \geq 13$. [17-19] gave the relation between focal values and singular point values, and offered a kind of method to compute the focal values which is called singular values method. [29] introduced this kind of method and we obtained many results on center-focus problem and bifurcation of limit cycles by making use of this kind of method, for example References [2-10].

For an elementary singular point, singular values method is a kind of valid method to study limit cycle bifurcation. But singular values method offered by [17-19] is invalid to investigate the limit cycle problem from a nilpotent critical point. Of course, in terms of limit cycle problem around a nilpotent critical point, some significant results have be published, for example: Han etc [11] studied the limit cycle bifurcation in near-hamiltonian systems by perturbing a nilpotent center, A. Algaba etc [1] gave local bifurcation of limit cycles and integrability of a class of nilpotent systems of differential equations, Han etc [12] investigated polynomial Hamiltonian systems with a nilpotent critical point, Jiang [13] considered the limit cycle bifurcation for a quartic near-Hamiltonian system by perturbing a nilpotent center. Liu and Li [20] offered a kind of method (namely integral factor method) to study the limit cycle bifurcation behavior for third-order nilpotent critical points of the following dynamical system:

$$
\begin{equation*}
\frac{d x}{d t}=y+\sum_{i+j=2}^{\infty} a_{i j} x^{i} y^{j}=X(x, y), \frac{d y}{d t}=\sum_{i+j=2}^{\infty} b_{i j} x^{i} y^{j}=Y(x, y) \tag{1.2}
\end{equation*}
$$

in which the function $y=y(x)$ satisfies $X(x, y)=0, y(0)=0$.
[21-24, 26] made use of this kind of method offered by [20] and obtained some examples aout limit cycle bifurcation behavior from a nilpotent critical point. For the simultaneous Hopf bifurcation of several nilpotent critical points, it is hardly seen in published references. Our work in this paper will show this kind of result. We will employ the theory about equivariant vector field in [4] and the integral factor method introduced in [20] to carry out our investigation of system (1.1). For system (1.1), we will discuss several cases, and being based on these cases, we investigate the center-focus problem and prove the singular point $(1,0)$ of system (1.1) can bifurcate 4 small limit cycles. From the equivariant symmetrical quality, the fact of existing 12 small amplitude limit cycles created from the three thirdorder nilpotent critical points is also proved. Our proof is algebraic and symbolic, obtained result is new and interesting in terms of nilpotent critical points' Hilbert number in equivariant vector field.

We will organize this paper as follows. In Section 2, we stated some preliminary knowledge given in [20] which is useful to carry out our work in this paper. In Section 3 , we gave the linear recursive formulae to compute the first 5 quasi-Lyapunov constants of each one critical point of three symmetric critical points $(1,0),\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$ and $\left(-\frac{1}{2},-\frac{\sqrt{3}}{2}\right)$ and obtained some related expressions. Moreover, we gave the condition that each one critical point of three symmetric critical points could become a 5 th-order weak focus, and the example with 12 small limit cycles is also shown in the result of Theorem 3.4.

2. Our method to investigate the bifurcation of nilpotent critical point

In [20], the second author offered a kind of method to study the center-focus problem of third-order nilpotent critical point of the planar dynamical systems. The work focuses on the following system:

$$
\begin{align*}
& \frac{d x}{d t}=y+\mu x^{2}+\sum_{i+2 j=3}^{\infty} a_{i j} x^{i} y^{j}=X(x, y) \\
& \frac{d y}{d t}=-2 x^{3}+2 \mu x y+\sum_{i+2 j=4}^{\infty} b_{i j} x^{i} y^{j}=Y(x, y) \tag{2.1}
\end{align*}
$$

in which

$$
X_{k}(x, y)=\sum_{i+j=k} a_{i j} x^{i} y^{j}, Y_{k}(x, y)=\sum_{i+j=k} b_{i j} x^{i} y^{j}
$$

Under the transformation of generalized polar coordinates

$$
\begin{equation*}
x=r \cos \theta, \quad y=r^{2} \sin \theta \tag{2.2}
\end{equation*}
$$

system (2.1) becomes

$$
\begin{align*}
& \frac{d r}{d t}=\frac{\cos \theta\left[\sin \theta\left(1-2 \cos ^{2} \theta\right)+\mu\left(\cos ^{2} \theta+2 \sin ^{2} \theta\right)\right]}{1+\sin ^{2} \theta} r^{2}+o\left(r^{2}\right) \\
& \frac{d \theta}{d t}=\frac{-r}{2\left(1+\sin ^{2} \theta\right)\left(\cos ^{4} \theta+\sin ^{2} \theta\right)}+o(r) \tag{2.3}
\end{align*}
$$

Hence

$$
\begin{equation*}
\frac{d r}{d \theta}=\frac{-\cos \theta\left[\sin \theta\left(1-2 \cos ^{2} \theta\right)+\mu\left(\cos ^{2} \theta+2 \sin ^{2} \theta\right)\right]}{2\left(\cos ^{4} \theta+\sin ^{2} \theta\right)} r+o(r) \tag{2.4}
\end{equation*}
$$

Let

$$
\begin{equation*}
r=\tilde{r}(\theta, h)=\sum_{k=1}^{\infty} \nu_{k}(\theta) h^{k} \tag{2.5}
\end{equation*}
$$

be a solution of (2.4) satisfying the initial condition $\left.r\right|_{\theta=0}=h$, where h is a small enough real number and

$$
\begin{align*}
& \nu_{1}(\theta)=\left(\cos ^{4} \theta+\sin ^{2} \theta\right)^{\frac{-1}{4}} \exp \left(\frac{-\mu}{2} \arctan \frac{\sin \theta}{\cos ^{2} \theta}\right) \\
& \nu_{1}(k \pi)=1, \quad k=0, \pm 1, \pm 2, \cdots \tag{2.6}
\end{align*}
$$

Because for all sufficiently small $r(r>0)$, from the second expression of (2.3), we have $d \theta / d t<0$. In a small neighborhood, the successor function of system (2.1) can be defined as follows:

$$
\begin{equation*}
\Delta(h)=\tilde{r}(-2 \pi, h)-h=\sum_{k=2}^{\infty} \nu_{k}(-2 \pi) h^{k} . \tag{2.7}
\end{equation*}
$$

For system (2.1), [20] gave the following results.
Lemma 2.1 ([20]). For any positive integer $m, \nu_{2 m+1}(-2 \pi)$ has the form

$$
\begin{equation*}
\nu_{2 m+1}(-2 \pi)=\sum_{k=1}^{m} \zeta_{k}^{(m)} \nu_{2 k}(-2 \pi) \tag{2.8}
\end{equation*}
$$

where $\zeta_{k}^{(m)}$ is a polynomial of $\nu_{j}(\pi), \nu_{j}(2 \pi), \nu_{j}(-2 \pi),(j=2,3, \cdots, 2 m)$ with rational coefficients.

It is different from the center-focus problem for the elementary critical points, we know from Lemma 2.1 that when $k>1$ for the first non-zero $\nu_{k}(-2 \pi), k$ is an even integer.

Definition 2.1. (1) For any positive integer $m, \nu_{2 m}(-2 \pi)$ is called the m th-order focal value of system (2.1) at the origin;
(2) If $\nu_{2}(-2 \pi) \neq 0$, the origin of system (2.1) is called 1 th-order weak focus. If there is an integer $m>1$, such that $\nu_{2}(-2 \pi)=\nu_{4}(-2 \pi)=\cdots=\nu_{2 m-2}(-2 \pi)=$ $0, \nu_{2 m}(-2 \pi) \neq 0$, then, the origin of system (2.1) is called m th-order weak focus;
(3) If for all positive integer m, we have $\nu_{2 m}(-2 \pi)=0$, then the origin of system (2.1) is called a center.

Moreover the computation of focal value of system (2.1) is also given in [20], which is shown in the following several lemmas.

Lemma 2.2 ([20]). If the origin of system (2.1) is s-class or ∞-class, one can construct successively the terms of the formal power series $M(x, y)=x^{4}+y^{2}+o\left(r^{4}\right)$, such that

$$
\begin{align*}
& \frac{\partial}{\partial x}\left(\frac{X}{M^{s+1}}\right)+\frac{\partial}{\partial y}\left(\frac{Y}{M^{s+1}}\right) \\
& =\frac{1}{M^{s+2}} \sum_{m=1}^{\infty}(2 m-4 s-1) \lambda_{m}\left[x^{2 m+4}+o\left(r^{2 m+4}\right)\right] \tag{2.9}
\end{align*}
$$

i.e.,

$$
\begin{align*}
& \left(\frac{\partial X}{\partial x}+\frac{\partial Y}{\partial y}\right) M-(s+1)\left(\frac{\partial M}{\partial x} X+\frac{\partial M}{\partial y} Y\right) \\
& =\sum_{m=1}^{\infty} \lambda_{m}\left[(2 m-4 s-1) x^{2 m+4}+o\left(r^{2 m+4}\right)\right] \tag{2.10}
\end{align*}
$$

Lemma 2.3 ([20]). For system (2.1), if there exists a natural number s and formal series $M(x, y)=x^{4}+y^{2}+o\left(r^{4}\right)$, such that (2.9) holds, then

$$
\begin{equation*}
\left\{\nu_{2 m}(-2 \pi)\right\} \sim\left\{\sigma_{m}(s, \mu) \lambda_{m}\right\} \tag{2.11}
\end{equation*}
$$

where

$$
\begin{equation*}
\sigma_{m}(s, \mu)=\frac{1}{2} \int_{0}^{2 \pi} \frac{\left(1+\sin ^{2} \theta\right) \cos ^{2 m+4} \theta}{\left(\cos ^{4} \theta+\sin ^{2} \theta\right)^{s+2}} \nu_{1}^{2 m-4 s-1}(\theta) d \theta \tag{2.12}
\end{equation*}
$$

Definition 2.2. If there exists a natural number s and a formal series $M(x, y)=$ $x^{4}+y^{2}+o\left(r^{4}\right)$, such that (2.9) holds, then λ_{m} is called the m-th quasi-Lyapunov constants of the origin of system (2.1).

Lemma 2.4 ([20]). For any positive integer s and a given number sequence

$$
\begin{equation*}
\left\{c_{0 \beta}\right\}, \quad \beta \geq 3 \tag{2.13}
\end{equation*}
$$

one can construct successively the terms with the coefficients $c_{\alpha \beta}$ satisfying $\alpha \neq 0$ of the formal series

$$
\begin{equation*}
M(x, y)=y^{2}+\sum_{\alpha+\beta=3}^{\infty} c_{\alpha \beta} x^{\alpha} y^{\beta}=\sum_{k=2}^{\infty} M_{k}(x, y) \tag{2.14}
\end{equation*}
$$

such that

$$
\begin{equation*}
\frac{\partial}{\partial x}\left(\frac{X}{M^{s+1}}\right)+\frac{\partial}{\partial y}\left(\frac{Y}{M^{s+1}}\right)=\frac{1}{M^{s+2}} \sum_{m=5}^{\infty} \omega_{m}(s, \mu) x^{m} \tag{2.15}
\end{equation*}
$$

where for all $k, M_{k}(x, y)$ is a k-homogeneous polynomial of x, y and $s \mu=0$.
Obviously, (2.15) can also be written as

$$
\begin{equation*}
\left(\frac{\partial X}{\partial x}+\frac{\partial Y}{\partial y}\right) M-(s+1)\left(\frac{\partial M}{\partial x} X+\frac{\partial M}{\partial y} Y\right)=\sum_{m=3}^{\infty} \omega_{m}(s, \mu) x^{m} \tag{2.16}
\end{equation*}
$$

It is clear that (2.16) is linear with respect to the function M, so that we can easily find the following recursive formulae for the calculation of $c_{\alpha \beta}$ and $\omega_{m}(s, \mu)$.

Lemma 2.5 ([20]). For $\alpha \geq 1, \alpha+\beta \geq 3$ in (2.14) and (2.15), $c_{\alpha \beta}$ can be uniquely determined by the recursive formula

$$
\begin{equation*}
c_{\alpha \beta}=\frac{1}{(s+1) \alpha}\left(A_{\alpha-1, \beta+1}+B_{\alpha-1, \beta+1}\right) . \tag{2.17}
\end{equation*}
$$

For $m \geq 1, \omega_{m}(s, \mu)$ can be uniquely determined by the recursive formula

$$
\begin{equation*}
\omega_{m}(s, \mu)=A_{m, 0}+B_{m, 0} \tag{2.18}
\end{equation*}
$$

where

$$
\begin{align*}
& A_{\alpha \beta}=\sum_{k+j=2}^{\alpha+\beta-1}[k-(s+1)(\alpha-k+1)] a_{k j} c_{\alpha-k+1, \beta-j}, \\
& B_{\alpha \beta}=\sum_{k+j=2}^{\alpha+\beta-1}[j-(s+1)(\beta-j+1)] b_{k j} c_{\alpha-k, \beta-j+1} . \tag{2.19}
\end{align*}
$$

Notice that in (2.18), we set

$$
\begin{equation*}
c_{00}=c_{10}=c_{01}=0, c_{20}=c_{11}=0, c_{02}=1, c_{\alpha \beta}=0, \text { if } \alpha<0 \text { or } \beta<0 \tag{2.20}
\end{equation*}
$$

By choosing $\left\{c_{\alpha \beta}\right\}$, such that

$$
\begin{equation*}
\omega_{2 k+1}(s, \mu)=0, \quad k=1,2, \cdots, \tag{2.21}
\end{equation*}
$$

we can obtain a solution group of $\left\{c_{\alpha \beta}\right\}$ of (2.21), thus, we have

$$
\begin{equation*}
\lambda_{m}=\frac{\omega_{2 m+4}(s, \mu)}{2 m-4 s-1} . \tag{2.22}
\end{equation*}
$$

Obviously, the recursive formulae in Lemma 2.5 is linear with respect to all $c_{\alpha \beta}$ which offered a good way for us to compute quasi-Lyapunov constants with help of computer algebraic system like MATHEMATICA.

3. Quasi-Lyapunov constants of system (1.1) and bifurcation of limit cycles

In order to obtain the expressions of quasi-Lyapunov constants of the three symmetric critical points $(1,0),\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$ and $\left(-\frac{1}{2},-\frac{\sqrt{3}}{2}\right)$ of system (1.1) and study the limit cycle bifurcation. May as well make the following transformations:

$$
\begin{equation*}
x=x_{1}+1, y=y_{1}, d t=3 d \tau \tag{3.1}
\end{equation*}
$$

system (1.1) is changed into

$$
\begin{align*}
& \frac{d x_{1}}{d t}=y_{1}+\delta x_{1}^{2}+\sum_{i+2 j=3}^{5} a_{i j} x_{1}^{i} y_{1}^{j} \\
& \frac{d y_{1}}{d t}=-2 x_{1}^{3}+2 \delta x_{1} y_{1}+\sum_{i+2 j=4}^{5} b_{i j} x_{1}^{i} y_{1}^{j} \tag{3.2}
\end{align*}
$$

Comparing system (2.1) and system (3.2), it is clear that the origin of system (3.2) is a nilpotent critical point. According to the quality of equivariant vector field and translation's invariable property, system (3.2) has three symmetric nilpotent critical points $(0,0),\left(-\frac{3}{2}, \frac{\sqrt{3}}{2}\right)$ and $\left(-\frac{3}{2},-\frac{\sqrt{3}}{2}\right)$ which have the same topological property and bifurcation behavior. Hence the study on the origin of system (3.2) will can derive the similar property for the three symmetric nilpotent critical points $(1,0)$, $\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$ and $\left(-\frac{1}{2},-\frac{\sqrt{3}}{2}\right)$ of system (1.1). Next we will investigate the bifurcation behavior of the origin of system (3.2).

According to Lemma 2.4, for system (3.2), we can find a positive integer s and a formal series $M(x, y)=x^{4}+y^{2}+o\left(r^{4}\right)$, such that (2.14) holds. Applying the recursive formulae presented in Lemma 2.5 to carry out calculations in MATHEMATICA, we have

$$
\begin{align*}
\omega_{3}= & \omega_{4}=\omega_{5}=0, \quad \omega_{6}=-4\left(B_{02}+B_{10}\right)(-1+4 s), \\
\omega_{7} \sim & 220 B_{10}-144 A_{10} B_{10}-45 A_{13} B_{10}-440 B_{10} s+288 A_{10} B_{10} s \\
& +90 A_{13} B_{10} s+3 c_{03}+3 s c_{03} \\
\omega_{8} \sim & \frac{1}{5}\left(33434-27676 A_{10}+3600 A_{10}^{2}-17382 A_{13}+8037 A_{10} A_{13}+2160 A_{13}^{2}\right) B_{10}(-3+4 s), \\
\omega_{9} \sim & \frac{1}{120} B_{10}\left(-850764+1444946 A_{10}-801820 A_{10}^{2}+159120 A_{10}^{3}+228852 A_{13}-265212\right. \\
& \left.\quad \times A_{10} A_{13}+49725 A_{10}^{2} A_{13}-475200 B_{10}^{2}+311040 A_{10} B_{10}^{2}+97200 A_{13} B_{10}^{2}\right)(s-1) . \tag{3.3}
\end{align*}
$$

From (2.22) and (3.3), we obtain the first two quasi-Lyapunov constants of system (3.3):
$\lambda_{1} \sim 4\left(B_{02}+B_{10}\right)$,
$\lambda_{2} \sim-\frac{1}{5}\left(33434-27676 A_{10}+3600 A_{10}^{2}-17382 A_{13}+8037 A_{10} A_{13}+2160 A_{13}^{2}\right) B_{10}$.

In order to let $\omega_{9} \sim 0$, may as well let $s=1$. Then we can obtain the first quasi-Lyapunov constants of the origin for system (3.2) as follows:

Theorem 3.1. The first 5 quasi-Lyapunov constants of the origin for system (3.2) are as follows:

$$
\begin{aligned}
\lambda_{1} \sim & 4\left(B_{02}+B_{10}\right) \\
\lambda_{2} \sim & -\frac{1}{5} B_{10}\left(33434-27676 A_{10}+3600 A_{10}^{2}-17382 A_{13}+8037 A_{10} A_{13}+2160 A_{13}^{2}\right) \\
\lambda_{3} \sim & -\frac{1}{8400} B_{10}\left(-289275320+579302848 A_{10}-167333682 A_{10}^{2}-124367700 A_{10}^{3}\right. \\
& +34847280 A_{10}^{4}+97161960 A_{13}-194957964 A_{10} A_{13}+74661534 A_{10}^{2} A_{13} \\
& +10889775 A_{10}^{3} A_{13}+73407600 B_{10}^{2}-146370240 A_{10} B_{10}^{2}+68117760 A_{10}^{2} B_{10}^{2} \\
& \left.-14968800 A_{13} B_{10}^{2}+21286800 A_{10} A_{13} B_{10}^{2}\right) \\
\lambda_{4} \sim & \frac{2}{24310125} B_{10} m_{1} m_{2} /\left(n_{1}^{3} n_{2}^{2}\right)
\end{aligned}
$$

in which

$$
\begin{aligned}
& n_{1}= 24310125\left(2356900+11443764 A_{10}-43655643 A_{10}^{2}+40303008 A_{10}^{3},\right. \\
& n_{2}= 32387320-64985988 A_{10}+24887178 A_{10}^{2}+3629925 A_{10}^{3} \\
&-4989600 B_{10}^{2}+7095600 A_{10} B_{10}^{2}, \\
& m_{1}= 432457081000-2114784149580 A_{10}+3981317097582 A_{10}^{2} \\
&-3350088088065 A_{10}^{3}+1027908919008 A_{10}^{4}, \\
& m_{2}=-614264028736651331157057072471355200000 \\
&+11895851535416392363529935837437747488000 A_{10} \\
&-107766362896838983243294455955188278073600 A_{10}^{2} \\
&+605142289372630676169104721115880813657600 A_{10}^{3} \\
&-2352438812212562063077837428522473268313536 A_{10}^{4} \\
&+6694951588284207648221497734807879888755424 A_{10}^{5} \\
&-14378941971565333990605851497597007406345024 A_{10}^{6} \\
&+23660892635875446177771110792017371263606544 A_{10}^{7} \\
&-29945373654876502119865249451818830180871122 A_{10}^{8} \\
&+28949796635772205843294709064058792967619477 A_{10}^{9} \\
&-20951746648069853909581155290035572225488775 A_{10}^{10} \\
&+10880769933820920499526730545255068428443463 A_{10}^{11} \\
&-3688349239049582685636429795170020500377607 A_{10}^{12} \\
&+593860206291618558791899091595216005083944 A_{10}^{13} \\
&+70928422593915180614456799184414384006272 A_{10}^{14} \\
&-49546081528776009218616097368818315132928 A_{10}^{15} \\
&+6539589788630853482250264834573907132416 A_{10}^{16} \\
&-802227631135331722996195085425644000000 B_{10}^{2} \\
&+13766121628592628487321707952731557760000 A_{10} B_{10}^{2} \\
&-109870672550053815434477721222916449408000 A_{10}^{2} B_{10}^{2} \\
&+539367774670193512722507735588740085350400 A_{10}^{3} B_{10}^{2} \\
&-1814365150916952602269207140999990597919584 A_{10}^{4} B_{10}^{2} \\
&+4407819179526408462154136365477519243954368 A_{10}^{5} B_{10}^{2} \\
&-7934611459360495609646786611605935000531808 A_{10}^{6} B_{10}^{2} \\
&+10670525482074046319346659296170888441554784 A_{10}^{7} B_{10}^{2} \\
&-10642811245583301737458089555883855600145295 A_{10}^{8} B_{10}^{2} \\
&+7666723483493406466055510944502940641714064 A_{10}^{9} B_{10}^{2} \\
&-3750683150060150457609564508262855072917008 A_{10}^{10} B_{10}^{2} \\
&+1059469698742662320655624194646063359207808 A_{10}^{11} B_{10}^{2} \\
&-60931471241140097715899127790127908227072 A_{10}^{12} B_{10}^{2} \\
& \hline
\end{aligned}
$$

$$
\begin{aligned}
& -56381337328021732386246441858647412178944 A_{10}^{13} B_{10}^{2} \\
& +12783270537052166082950743930026822991872 A_{10}^{14} B_{10}^{2}
\end{aligned}
$$

and
(1) If $m_{1}=0$, then $\lambda_{5} \sim 0$.
(2) If $m_{2}=0$, then $\lambda_{5} \sim B_{10} m_{3} m_{4}^{3} m_{5} /\left(n_{3}^{3} n_{4}^{4}\right)$, in which
$m_{3}=282-857 A_{10}+648 A_{10}^{2}$,
$m_{4}=-89136403459481302555132787269516000000$
$+1529569069843625387480189772525728640000 A_{10}$

- $12207852505561535048275302358101827712000 A_{10}^{2}$
$+59929752741132612524723081732082231705600 A_{10}^{3}$
- $201596127879661400252134126777776733102176 A_{10}^{4}$
$+489757686614045384683792929497502138217152 A_{10}^{5}$
$-881623495484499512182976290178437222281312 A_{10}^{6}$
$+1185613942452671813260739921796765382394976 A_{10}^{7}$
$-1182534582842589081939787728431539511127255 A_{10}^{8}$
$+851858164832600718450612327166993404634896 A_{10}^{9}$
$-416742572228905606401062723140317230324112 A_{10}^{10}$
$+117718855415851368961736021627340373245312 A_{10}^{11}$
$-6770163471237788635099903087791989803008 A_{10}^{12}$
$-6264593036446859154027382428738601353216 A_{10}^{13}$
$+1420363393005796231438971547780758110208 A_{10}^{14}$,
$m_{5}=-429153322621986110300383359835263714786469083016100768000000$
$+12135294214967177193691107989616593544872181416571940858240000 A_{10}$
$-163897155533505425205714209384503303011448079638983707806476800 A_{10}^{2}$
$+1405458899632513797814865718369576308680157087239724151212279040 A_{10}^{3}$
- $8580379214231524333047555721080053068636193062186819630778777600 A_{10}^{4}$
$+39632258996948626961851032850273632985183691001346805309372557952 A_{10}^{5}$
$-143658107082931901022664968059807755306616478851422792652055543104 A_{10}^{6}$
$+418266618559351085176026372150260324745269063380489253399889289632 A_{10}^{7}$
- $992826567841577804692961345333382602120563046223675339755111354664 A_{10}^{8}$
$+1938437857458792187913663363694430297505906459660447044028337679596 A_{10}^{9}$
$-3125827727412598988220287444403917881423245359370468029748128387298 A_{10}^{10}$ $+4161688243397171335465311073143463419921007938617617260337924679601 A_{10}^{11}$
$-4551575255893649975534205220888035223309835894495444049193477357875 A_{10}^{12}$
$+4044112846771249001086874969333447246445935246911269088347024135609 A_{10}^{13}$
$-2860605704668885309659262607792026218816474670013658211635701481840 A_{10}^{14}$
$+1551690152172988433027301122675729000514736248520512286370856969030 A_{10}^{15}$
- $595605313963884008298209700833328386298368547714197176072036536978 A_{10}^{16}$

```
    +124634018826691773309014936985512382371781410580598531586799407856 A10
    +12707155555768148718289695054317509770186922978936586377214756688 A 18
    - 19207760170838338003056363394420583033032604503432355199178235136 A10
    +6398296296419108836162869487210778344228427466591266160451092480 A 20
    - 989103619616268000037970335256517352476646245400735468934135808 A 21 
    +55204271873258557861072808480380095062766407616829302125887488 A 22;
n}\mp@subsup{n}{3}{}=40111706250(2356900+11443764\mp@subsup{A}{10}{}-43655643\mp@subsup{A}{10}{2}+40303008\mp@subsup{A}{10}{3}
n4}=-7463023134133691009821563460000000
    +1078209261468536241220903079404800000 }\mp@subsup{A}{10}{
    - 713116430844566663885617359077836800 A 2 
    +2844541270346291948127963306964276224 A 30
    - 7583853608339658577135198612660468512 A 4
    +14136219152432887673712877866097657920 有5
    - 18681974327081692670059096122237915744A 盾
    +17304088268303913256376502538827153504 A10
    - 10730206834827871187516152380596328573 A 8
    + 3932181821913156193706272128137142816 A 90
    -490885141160583277010515864933899264 A10
    - 171179345278968761993762160825237504 A 11
    +53795148521586502820501181828169728 A 12.
```

In the above expression of λ_{k}, we have already let $\lambda_{1}=\cdots=\lambda_{k-1}=0, k=2,3,4,5$.
Remark 3.1. During the fourth quasi-Lyapunov constants, we let $c_{04=0}$ and

$$
\begin{aligned}
c_{05}= & -\frac{1}{1016064000 l_{1}^{2} l_{2}} B_{10}(-57081227180199515616869699899200000 \\
& +848679618148099024307554651377568000 A_{10} \\
& -5864981027785242886659704048512896000 A_{10}^{2} \\
& +25085733146741756984623139614884075520 A_{10}^{3} \\
& -74579187650915402256346644306404619840 A_{10}^{4} \\
& +163840695084806040212458237548247737504 A_{10}^{5} \\
& -275114086127094312589065084600007214592 A_{10}^{6} \\
& +358281810850215965790428298489640162464 A_{10}^{7} \\
& -360978543307923516184270907056358414394 A_{10}^{8} \\
& +275884923287721990807520647662227344165 A_{10}^{9} \\
& -153759260652137209137318032303451720648 A_{10}^{1} 0 \\
& +58389308198174848514472758397758297472 A_{10}^{11} \\
& -13338542677706998438116796959312986112 A_{10}^{12} \\
& +1360663355923347255280716116038385664 A_{10}^{13}
\end{aligned}
$$

$$
\begin{aligned}
& -72585510263451053179853756004000000 B_{10}^{2} \\
& +948938297919072277881577851344160000 A_{10} B_{10}^{2} \\
& -5654563653097099998472323411250416000 A_{10}^{2} B_{10}^{2} \\
& +20201882163845266443842682280516895040 A_{10}^{3} B_{10}^{2} \\
& -47870670883372691899984862186960801280 A_{10}^{4} B_{10}^{2} \\
& +78536965778783114818611442092433332336 A_{10}^{5} B_{10}^{2} \\
& -90266968523403962542479801722394096936 A_{10}^{6} B_{10}^{2} \\
& +71740865548384843804060446514909710396 A_{10}^{7} B_{10}^{2} \\
& -37779078560075046313420861378141900623 A_{10}^{8} B_{10}^{2} \\
& +11999285863572021085818690522673108320 A_{10}^{9} B_{10}^{2} \\
& -1834454493657903415001297676340294656 A_{10}^{10} B_{10}^{2} \\
& \left.+50710721082522904069047208038924288 A_{10}^{11} B_{10}^{2}\right),
\end{aligned}
$$

in which

$$
\begin{aligned}
l_{1}= & 2356900+11443764 A_{10}-43655643 A_{10}^{2}+40303008 A_{10}^{3}, \\
l_{2}= & 32387320-64985988 A_{10}+24887178 A_{10}^{2}+3629925 A_{10}^{3} \\
& -4989600 B_{10}^{2}+7095600 A_{10} B_{10}^{2} .
\end{aligned}
$$

By analyzing the construction of quasi-Lyapunov constants of Theorem 3.1, we can obtain the following result.
Theorem 3.2. The origin for system (3.2) can become a 5th-order nilpotent weak focus if and only if the following condition holds.

$$
\begin{aligned}
B_{10} \neq & 0, B_{02}=-B_{10}, m_{1} \neq 0, m_{2}=0, \\
A_{13}= & \frac{2}{3\left(32387320-64985988 A_{10}+24887178 A_{10}^{2}+3629925 A_{10}^{3}-4989600 B_{10}^{2}+7095600 A_{10} B_{10}^{2}\right)} \\
& \times\left(144637660-289651424 A_{10}+83666841 A_{10}^{2}-+62183850 A_{10}^{3}-17423640 A_{10}^{4}\right. \\
& \left.-36703800 B_{10}^{2}+73185120 A_{10} B_{10}^{2}-34058880 A_{10}^{2} B_{10}^{2}\right) .
\end{aligned}
$$

Proof. From the expressions of $\lambda_{k}, k=1,2,3,4,5$, clearly the necessity holds. Next we prove the sufficiency. In order to prove the origin for system (3.2) is a 5th-order weak focus, we only need to prove that there exists a group of solutions about $B_{10}, A_{10}, A_{13}, B_{02}$ such that $\lambda_{1}=\lambda_{2}=\lambda_{3}=\lambda_{4}=0, \lambda_{5} \neq 0$.

From $\lambda_{1}=0$, it is clear that $B_{02}=-B_{10}$. According to $\lambda_{2}=0$, we can obtain $A_{13}^{2}=\left(-33434+27676 A_{10}-3600 A_{10}^{2}+17382 A_{13}-8037 A_{10} A_{13}\right) / 2160$ and the expression of λ_{3}. Next $\lambda_{3}=0$ will deduce

$$
\begin{aligned}
A_{13}= & \frac{2}{3\left(32387320-64985988 A_{10}+24887178 A_{10}^{2}+3629925 A_{10}^{3}-4989600 B_{10}^{2}+7095600 A_{10} B_{10}^{2}\right)} \\
& \times\left(144637660-289651424 A_{10}+83666841 A_{10}^{2}-+62183850 A_{10}^{3}-17423640 A_{10}^{4}\right. \\
& \left.-36703800 B_{10}^{2}+73185120 A_{10} B_{10}^{2}-34058880 A_{10}^{2} B_{10}^{2}\right) .
\end{aligned}
$$

Next let $\lambda_{4}=0$, then $m_{1}=0$ or $m_{2}=0$. At this time, $m_{1}=0$ will deduce $\lambda_{5}=0$, and $m_{2}=0$ will deduce $\lambda_{5} \sim B_{10} m_{3} m_{4}^{3} m_{5} /\left(n_{3}^{3} n_{4}^{4}\right)$. And under the condition of Theorem 3.2, the all 6 groups of real number solutions of $\lambda_{1}=\lambda_{2}=\lambda_{3}=m_{2}=0$
about $B_{10}, A_{10}, A_{13}, B_{02}$ can be obtained as follows:
$\left(S_{1}\right) A_{10} \approx-4.7269849, B_{10} \approx 52.3894621, B_{02} \approx-52.3894621, A_{13} \approx 19.9598497$,
$\left(S_{2}\right) A_{10} \approx-4.7269849, B_{10} \approx-52.3894621, B_{02} \approx 52.3894621, A_{13} \approx 19.9598497$,
$\left(S_{3}\right) A_{10} \approx 1.5929351, B_{10} \approx-3.1514449, B_{02} \approx 3.1514449, A_{13} \approx-0.2912932$,
$\left(S_{4}\right) A_{10} \approx 1.5929351, B_{10} \approx 3.1514449, B_{02} \approx-3.1514449, A_{13} \approx-0.2912932$,
$\left(S_{5}\right) A_{10} \approx 1.3374828, B_{10} \approx-0.5427501, B_{02} \approx 0.5427501, A_{13} \approx 3.7000000$,
$\left(S_{6}\right) A_{10} \approx 1.3374828, B_{10} \approx 0.5427501, B_{02} \approx-0.5427501, A_{13} \approx 3.7000000$.

The above solutions will all deduce $\lambda_{5} \neq 0$, namely the following values about λ_{5} :

$$
\begin{aligned}
& \left.\lambda_{5}\right|_{S_{1}} \approx-4.00689531488106867117295172933484362130282514912205641 \times 10^{16}, \\
& \left.\lambda_{5}\right|_{S_{2}} \approx 4.00689531488106867117295172933484362130282514912205641 \times 10^{16}, \\
& \left.\lambda_{5}\right|_{S_{3}} \approx 2.307736989154777961898338861146264870654949614306984727 \times 10^{7}, \\
& \left.\lambda_{5}\right|_{S_{4}} \approx-2.307736989154777961898338861146264870654949614306984727 \times 10^{7}, \\
& \left.\lambda_{5}\right|_{S_{5}} \approx-3.59504777956435126769985374024617279827806651933804383 \times 10^{8}, \\
& \left.\lambda_{5}\right|_{S_{6}} \approx 3.59504777956435126769985374024617279827806651933804383 \times 10^{8} .
\end{aligned}
$$

Hence the conclusion of Theorem 3.2 holds.
According the equivariant symmetric quality, one can obtain the following theorem.
Theorem 3.3. The three symmetric critical points $(1,0),\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$ and $\left(-\frac{1}{2},-\frac{\sqrt{3}}{2}\right)$ of system (1.1) become three nilpotent weak focuses of 5th-order if and only if condition of Theorem 3.2 holds.

After discussing the weak focus problem of system (1.1), we will consider the limit cycle bifurcation of system (1.1). From Theorem 3.2 and Theorem 3.3, we can obtain the following theorem.
Theorem 3.4. Each one of the three symmetric critical points $(1,0),\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$ and $\left(-\frac{1}{2},-\frac{\sqrt{3}}{2}\right)$ of system (1.1) can bifurcate 4 small limit cycles under appropriate perturbations about parameter group $\left(B_{02}, B_{10}, A_{10}, A_{13}\right)$ if one of the three given critical points of system (1.1) is a nilpotent weak focus of 5th-order, in sum 12 limit cycles can yield by simultaneous Hopf bifurcation.
Proof. If one of the three symmetric critical points $(1,0),\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$ and $\left(-\frac{1}{2},-\frac{\sqrt{3}}{2}\right)$ of system (1.1) is a nilpotent weak focus of 5 th-order, then other two critical points are also two nilpotent weak focuses of 5 th-order because system (1.1) lies in a Z_{3} equivariant vector field. At this time, let values of parameter group $\left(B_{02}, B_{10}, A_{10}, A_{13}\right)$ are (a, b, c, d), namely $\lambda_{5} \neq 0$ and $\lambda_{1}=\lambda_{2}=\lambda_{3}=\lambda_{4}=0$ if $\left(B_{02}, B_{10}, A_{10}, A_{13}\right)=$ (a, b, c, d). Of course, during proving Theorem 3.2, we have show that this kind of solutions have 6 groups, i.e., $S_{1} \sim S_{6}$, here we only express them as (a, b, c, d).

Give a suitable perturbation about these parameters, we may as well let

$$
\begin{equation*}
\lambda_{1}=\varepsilon_{1}, \lambda_{2}=\varepsilon_{2}, \lambda_{3}=\varepsilon_{3}, \lambda_{4}=\varepsilon_{4} \tag{3.5}
\end{equation*}
$$

in which $\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}, \varepsilon_{4}$ can be a group of arbitrary real numbers. When the three symmetric critical points of undisturbed system (1.1)| $\left.\right|_{\delta=0}$ are three nilpotent weak focuses of 5 th order, then the jacobin of the functions group $\left(\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}, \varepsilon_{4}\right)$ with respect to the variables group ($B_{02}, B_{10}, A_{13}, A_{10}$)

$$
J=\frac{D\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}\right)}{D\left(B_{02}, B_{10}, A_{13}, A_{10}\right)}=\left|\begin{array}{llll}
\frac{\partial \lambda_{1}}{\partial B_{02}} & \frac{\partial \lambda_{1}}{\partial B_{10}} & \frac{\partial \lambda_{1}}{\partial A_{13}} & \frac{\partial \lambda_{1}}{\partial A_{10}} \\
\frac{\partial \lambda_{2}}{\partial B_{02}} & \frac{\partial \lambda_{2}}{\partial B_{10}} & \frac{\partial \lambda_{2}}{\partial A_{13}} & \frac{\partial \lambda_{2}}{\partial A_{10}} \\
\frac{\partial \lambda_{3}}{\partial B_{02}} & \frac{\partial \lambda_{3}}{\partial B_{10}} & \frac{\partial \lambda_{3}}{\partial A_{13}} & \frac{\partial \lambda_{3}}{\partial A_{10}} \\
\frac{\partial \lambda_{4}}{\partial B_{02}} & \frac{\partial \lambda_{4}}{\partial B_{10}} & \frac{\partial \lambda_{4}}{\partial A_{13}} & \frac{\partial \lambda_{4}}{\partial A_{10}}
\end{array}\right|=f\left(B_{02}, B_{10}, A_{13}, A_{10}\right)
$$

in which $f\left(B_{02}, B_{10}, A_{13}, A_{10}\right)$ is a function about $B_{02}, B_{10}, A_{13}, A_{10}$. We can obtain that $f\left(B_{10}, A_{13}, A_{10}\right) \neq 0$ if the three symmetric critical points of undisturbed system (1.1) $\left.\right|_{\delta=0}$ are three nilpotent weak focuses of 5 th order. In fact, if they become nilpotent weak focuses of 5 th order, then

$$
\begin{aligned}
& \left.f\left(B_{02}, B_{10}, A_{13}, A_{10}\right)\right|_{S_{1}} \approx 5.374760669957396 \times 10^{24} \neq 0 \\
& \left.f\left(B_{02}, B_{10}, A_{13}, A_{10}\right)\right|_{S_{2}} \approx 5.374760669957396 \times 10^{24} \neq 0 \\
& \left.f\left(B_{02}, B_{10}, A_{13}, A_{10}\right)\right|_{S_{3}} \approx 6.18776801205598707424489 \times 10^{15} \neq 0 \\
& \left.f\left(B_{02}, B_{10}, A_{13}, A_{10}\right)\right|_{S_{4}} \approx 6.18776801205598707424489 \times 10^{15} \neq 0 \\
& \left.f\left(B_{02}, B_{10}, A_{13}, A_{10}\right)\right|_{S_{5}} \approx 1.59504777956435126769985 \times 10^{18} \neq 0 \\
& \left.f\left(B_{02}, B_{10}, A_{13}, A_{10}\right)\right|_{S_{6}} \approx 1.59504777956435126769985 \times 10^{18} \neq 0
\end{aligned}
$$

Hence, according to existence theorem of implicit function, equations groups (3.5) have a group of solutions as follows:

$$
\begin{align*}
& B_{02}=a+f_{1}\left(\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}, \varepsilon_{4}\right), B_{10}=b+f_{2}\left(\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}, \varepsilon_{4}\right) \\
& A_{13}=c+f_{3}\left(\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}, \varepsilon_{4}\right), A_{10}=d+f_{4}\left(\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}, \varepsilon_{4}\right) \tag{3.6}
\end{align*}
$$

Obviously, given perturbations by (3.6) will let (3.5) hold. Because $\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}, \varepsilon_{4}$ can be a group of arbitrary real numbers, one can give many kinds of perturbations's methods by (3.6). Hence, there exists a vector on small parameters $\varepsilon_{k}=\left(\varepsilon_{1}^{(k)}, \varepsilon_{2}^{(k)}, \varepsilon_{3}^{(k)}, \varepsilon_{4}^{(k)}\right)$ such that the first 5 quasi-Lyapunov constants of nilpotent singular point $(1,0)$ of system (1.1) satisfy

$$
\begin{align*}
& \lambda_{1} \lambda_{2}<0, \quad \lambda_{2} \lambda_{3}<0, \quad \lambda_{3} \lambda_{4}<0, \quad \lambda_{4} \lambda_{5}<0 \\
& \left|\lambda_{1}\right| \ll\left|\lambda_{2}\right| \ll\left|\lambda_{3}\right| \ll\left|\lambda_{4}\right| \ll\left|\lambda_{5}\right| \tag{3.7}
\end{align*}
$$

According to (3.5), we only need to let $\left|\varepsilon_{1}\right| \ll\left|\varepsilon_{2}\right| \ll\left|\varepsilon_{3}\right| \ll\left|\varepsilon_{4}\right|$, then (3.7) holds. According to Theorem 4 in [27], 4 small limit cycles can occur near singular point $(1,0)$ of system (1.1). From the quality of equivariant vector field, each one of singular points $\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$ and $\left(-\frac{1}{2},-\frac{\sqrt{3}}{2}\right)$ of system (1.1) also can bifurcate 4 limit cycles. Hence, in sum 12 small limit cycles can bifurcate from disturbed system (1.1) by simultaneous Hopf bifurcation.

References

[1] A. Algaba, C. Garca and M. Reyes, Local bifurcation of limit cycles and integrability of a class of nilpotent systems of differential equations, Applied Mathematics and Computation, 2009, 215, 314-323.
[2] C. Du and W. Huang, Center-focus problem and limit cycles bifurcations for a class of cubic Kolmogorov model, Nonlinear Dynamics, 2013, 72, 197-206.
[3] C. Du, Q. Wang and W. Huang, Three-Dimensional Hopf bifurcation for a class of cubic Kolmogorov model, International Journal of Bifurcation and Chaos, 2014, 24(3), 1450036.
[4] C. Du, Y. Liu and W. Huang, Limit cycles bifurcations for a class of Kolmogorov model in symmetrical vector field, International Journal of Bifurcation and Chaos, 2014, 24(3), 1450040.
[5] C. Du, W. Huang and Q. Zhang, Center problem and the bifurcation of limit cycles for a cubic polynomial system, Applied Mathematical Modelling, 2015, 39, 5200-5215.
[6] C. Du, Y. Liu and Q. Zhang, Limit cycles in a class of quartic Kolmogorov model with three positive equilibrium points, International Journal of Bifurcation and Chaos, 2015, 25(6), 1550080.
[7] C. Du, Y. Liu and W. Huang, Limit cycles bifurcations behavior for a class of quartic Kolmogorov model in symmetrical vector field, Applied Mathematical Modelling, 2016, 40, 4094-4108.
[8] C. Du and Y. Liu, Limit cycle bifurcation of the infinity and degenerate singular point in 3-dimensional vector field,International Journal of Bifurcation and Chaos, 2016, 26(9), 1650152.
[9] C. Du, Y. Liu and W. Huang, A Class of 3-Dimensional Quadratic Systems with 10 Limit Cycles, International Journal of Bifurcation and Chaos, 2016, 26(9), 1650149.
[10] C. Du and Y. Liu, Isochronicity for a Z_{2}-equivariant cubic system, Nonlinear Dynamics, 2016. DOI: 10.1007/s11071/016/3112/7.
[11] M. Han, J. Jiang and H. Zhu, Limit cycle bifurcations in near-hamiltonian systems by perturbing a nilpotent center, International Journal of Bifurcation and Chaos, 2008, 18, 3013-3027.
[12] M. Han, C. Shu, J. Yang and A. C.-L. Chian, Polynomial Hamiltonian systems with a nilpotent critical point, Advances in Space Research, 2010, 46, 521-525.
[13] J. Jiang, Bifurcation of limit cycles for a quartic near-Hamiltonian system by perturbing a nilpotent center, Journal of Mathematical Analysis and Applications, 2010, 365, 376-384.
[14] J. Li, Hilbert's 16th problem and bifurcation of Planar polynomial vector fields, International Journal of Bifurcation and Chaos, 2003, 13, 47-106.
[15] J. Llibre, R. Ramírez and N. Sadovskaia, On the 16th Hilbert problem for limit cycles on nonsingular algebraic curves, Journal of Differential Equations, 2011, 250(2), 983-999.
[16] J. Li and Y. Liu, New results on the study of Zq-equivariant planar polynomial vector fields, Qualitative Theory of Dynamical Systems, 2010, 9, 167-219.
[17] Y. Liu, Theory of center-focus for a class of higher-degree critical points and infinite points, Science in China (Series A), 2001, 44, 37-48.
[18] Y. Liu and J. Li, Theory of values of singular point in complex autonomous differential system, Science in China (Series A), 1990, 33, 10-24.
[19] Y. Liu, J. Li and W. Huang, Singular point values, center problem and bifurcations of limit cycles of two dimensional differential autonomous systems, Science Press, Beijing, China, 2008.
[20] Y. Liu and J. Li, On third-order nilpotent critical points: integral factor method, International Journal of Bifurcation and Chaos, 2011, 21(5), 497-504.
[21] Y. Liu and J. Li, Bifurcations of limit cycles created by a multiple nilpotent critical point of planar dynamical systems, International Journal of Bifurcation and Chaos, 2011, 21(2), 293-1309.
[22] F. Li and M. Wang, Bifurcation of limit cycles in a quintic system with ten parameters, Nonlinear Dynamics, 2013, 71, 213-222.
[23] F. Li, Y. Liu and Y. Wu, Center conditions and bifurcation of limit cycles at three-order nilpotent critical point in a seventh degree Lyapunov system, Communications in Nonlinear Science and Numerical Simulation, 2011, 16, 2598-2608.
[24] X. Pan, Bifurcation of limit cycles for a class of cubic polynomial system having a nilpotent singular point, Applied Mathematics and Computation, 2011, 218, 1161-1165.
[25] S. Shi, A concrete example of the existence of four limit cycles for quadratic systems, Science in China, Ser A, 1980, 23, 16-21.
[26] Y. Wu, F. Li and H. Chen, Center conditions and bifurcation of limit cycles at three-order nilpotent critical point in a cubic Lyapunov system, Communications in Nonlinear Science and Numerical Simulation, 2012, 17, 292-304.
[27] L. Yirong and L. Feng, Double bifurcation of nilpotent focus, International Journal of Bifurcation and Chaos, 2015, 25, 1550036.
[28] P. Yu and M. Han, Small limit cycles bifurcation from fine focus points in cubic order z_{2}-equivariant vector fields, Chaos,Solitons and Fractals, 2005, 24, 329-348.
[29] W. Zhang and H. Hu, New Development of Theory and Applications on Nonlinear Dynamics, Science Press, Beijing, 2009.

[^0]: \dagger the corresponding author. Email address:duchaoxiong@hotmail.com(C. Du)
 ${ }^{1}$ Department of Mathematics, Changsha Normal University, Changsha, Hunan, 410100, China
 ${ }^{2}$ Department of Mathematics, Hezhou University, Hezhou, Guangxi 542800, China
 ${ }^{3}$ School of Mathematics, Central South University, ChangSha, Hunan 410083, China
 *The authors were supported by National Natural Science Foundation of China (11371373).

