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Abstract Our work is concerned with the problem on limit cycle bifurca-
tion for a class of Z3-equivariant Lyapunov system of five degrees with three
third-order nilpotent critical points which lie in a Z3-equivariant vector field.
With the help of computer algebra system-MATHEMATICA, the first 5 quasi-
Lyapunov constants are deduced. The fact of existing 12 small amplitude limit
cycles created from the three third-order nilpotent critical points is also proved.
Our proof is algebraic and symbolic, obtained result is new and interesting in
terms of nilpotent critical points’ Hilbert number in equivariant vector field.
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1. Introduction

Consider an autonomous planar ordinary differential equation having three third-

order nilpotent critical points (1, 0), (− 1
2 ,
√
3
2 ) and (− 1

2 ,−
√
3
2 ) with the form

dx

dτ
= P1(x, y) + P2(x, y) + P3(x, y) + P4(x, y) + P5(x, y) ≡ P (x, y),

dy

dτ
= Q1(x, y) +Q2(x, y) +Q3(x, y) +Q4(x, y) +Q5(x, y) ≡ Q(x, y), (1.1)

where

P1(x, y) =− 3B10x− 3A10y, P2(x, y) = 12(1− 2A10)xy − 3B02(x2 − y2),

P3(x, y) =3(3B02x+ 6B10x+ δx+ 6y − 6A10y)(x2 + y2),

P4(x, y) =− 3(3B02 + 8B10 + 2δ)x4 + 6(3A13 − 12 + 8A10)x3y

+ 6(9B02 + 12B10 + 4δ)x2y2 + 6(12− 8A10 −A13)xy3 − (9B02 + 2δ)y4,

P5(x, y) =3(B02+3B10+δ)x5+3(15−A10−6A13)x4y+6(7B02+3B10+3δ)x3y2

†the corresponding author. Email address:duchaoxiong@hotmail.com(C. Du)
1Department of Mathematics, Changsha Normal University, Changsha, Hu-
nan, 410100, China

2Department of Mathematics, Hezhou University, Hezhou, Guangxi 542800,
China

3School of Mathematics, Central South University, ChangSha, Hunan 410083,
China
∗The authors were supported by National Natural Science Foundation of China
(11371373).

http://dx.doi.org/10.11948/2017089


1464 C. Du etc

+2(12A13−20−3A10)x2y3−(9B02−9B10+δ)xy4+(19−3A10−6A13)y5,

Q1(x, y) =3A10x− 3B10y, Q2(x, y) = 6B02xy + 6(1− 2A10)(x2 − y2),

Q3(x, y) =3(−6x+ 6A10x+ 3B02y + 6B10y + δy)(x2 + y2),

Q4(x, y) =6(3− 2A10)x4 − 12(3B02 + 2B10 + δ)x3y + 18(A13 − 6 + 4A10)x2y2

+ 4(9B02 + 18B10 + 5δ)xy3 + 6(3− 2A10 −A13)y4,

Q5(x, y) =3(A10 − 2)x5 + 3(7B02 + 3B10 + 3δ)x4y + 6(6A13 − 15 +A10)x3y2

+ 2(9B10−δ−9B02)x2y3+(20+3A10−12A13)xy4+(9B02+9B10+5δ)y5,

in which A10, B10, A13, B02 ∈ R, δ is a small parameter and δ → 0.
System (1.1) is invariable under the following transformations

x′ = x cos
2

3
π − y sin

2

3
π, y′ = x sin

2

3
π + y cos

2

3
π,

hence system (1.1) lies in a Z3-equivariant vector field and it can be verified that

three symmetric critical points (1, 0), (− 1
2 ,
√
3
2 ) and (− 1

2 ,−
√
3
2 ) satisfy (1.1). This

paper is devoted to investigating the limit cycle bifurcation problem from the three
critical points of the above system.

Clearly, it can be obtained that the three singular points of system (1.1) are three
nilpotent critical points. In the qualitative theory of ordinary differential equation,
investigation on limit cycle bifurcation for a critical point P of a planar analytic
vector field X is a hot topic, and many results occur in published references, for
example: Ref. [14, 15] and references therein discussed this problem and reported
the recent new improvements. Let H(n) be the Hilbert number of n-degrees system
in planar vector field, Shi [25] showed H(2) ≥ 4, Yu and Han [28] gave H(3) ≥ 12,
Jibin Li and Yirong Liu [16] obtained H(3) ≥ 13. [17–19] gave the relation between
focal values and singular point values, and offered a kind of method to compute
the focal values which is called singular values method. [29] introduced this kind of
method and we obtained many results on center-focus problem and bifurcation of
limit cycles by making use of this kind of method, for example References [2–10].

For an elementary singular point, singular values method is a kind of valid
method to study limit cycle bifurcation. But singular values method offered by
[17–19] is invalid to investigate the limit cycle problem from a nilpotent critical
point. Of course, in terms of limit cycle problem around a nilpotent critical point,
some significant results have be published, for example: Han etc [11] studied the
limit cycle bifurcation in near-hamiltonian systems by perturbing a nilpotent center,
A. Algaba etc [1] gave local bifurcation of limit cycles and integrability of a class
of nilpotent systems of differential equations, Han etc [12] investigated polynomial
Hamiltonian systems with a nilpotent critical point, Jiang [13] considered the limit
cycle bifurcation for a quartic near-Hamiltonian system by perturbing a nilpotent
center. Liu and Li [20] offered a kind of method (namely integral factor method) to
study the limit cycle bifurcation behavior for third-order nilpotent critical points of
the following dynamical system:

dx

dt
= y +

∞∑
i+j=2

aijx
iyj = X(x, y),

dy

dt
=

∞∑
i+j=2

bijx
iyj = Y (x, y), (1.2)

in which the function y = y(x) satisfies X(x, y) = 0, y(0) = 0.
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[21–24, 26] made use of this kind of method offered by [20] and obtained some
examples aout limit cycle bifurcation behavior from a nilpotent critical point. For
the simultaneous Hopf bifurcation of several nilpotent critical points, it is hardly
seen in published references. Our work in this paper will show this kind of result.
We will employ the theory about equivariant vector field in [4] and the integral
factor method introduced in [20] to carry out our investigation of system (1.1).
For system (1.1), we will discuss several cases, and being based on these cases, we
investigate the center-focus problem and prove the singular point (1,0) of system
(1.1) can bifurcate 4 small limit cycles. From the equivariant symmetrical quality,
the fact of existing 12 small amplitude limit cycles created from the three third-
order nilpotent critical points is also proved. Our proof is algebraic and symbolic,
obtained result is new and interesting in terms of nilpotent critical points’ Hilbert
number in equivariant vector field.

We will organize this paper as follows. In Section 2, we stated some preliminary
knowledge given in [20] which is useful to carry out our work in this paper. In Section
3, we gave the linear recursive formulae to compute the first 5 quasi-Lyapunov

constants of each one critical point of three symmetric critical points (1, 0), (− 1
2 ,
√
3
2 )

and (− 1
2 ,−

√
3
2 ) and obtained some related expressions. Moreover, we gave the

condition that each one critical point of three symmetric critical points could become
a 5th-order weak focus, and the example with 12 small limit cycles is also shown in
the result of Theorem 3.4.

2. Our method to investigate the bifurcation of nilpo-
tent critical point

In [20], the second author offered a kind of method to study the center-focus problem
of third-order nilpotent critical point of the planar dynamical systems. The work
focuses on the following system:

dx

dt
= y + µx2 +

∞∑
i+2j=3

aijx
iyj = X(x, y),

dy

dt
= −2x3 + 2µxy +

∞∑
i+2j=4

bijx
iyj = Y (x, y), (2.1)

in which

Xk(x, y) =
∑
i+j=k

aijx
iyj , Yk(x, y) =

∑
i+j=k

bijx
iyj .

Under the transformation of generalized polar coordinates

x = r cos θ, y = r2 sin θ, (2.2)

system (2.1) becomes

dr

dt
=

cos θ[sin θ(1− 2 cos2 θ) + µ(cos2 θ + 2 sin2 θ)]

1 + sin2 θ
r2 + o(r2),

dθ

dt
=

−r
2(1 + sin2 θ)(cos4 θ + sin2 θ)

+ o(r). (2.3)
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Hence

dr

dθ
=
− cos θ[sin θ(1− 2 cos2 θ) + µ(cos2 θ + 2 sin2 θ)]

2(cos4 θ + sin2 θ)
r + o(r). (2.4)

Let

r = r̃(θ, h) =

∞∑
k=1

νk(θ)hk (2.5)

be a solution of (2.4) satisfying the initial condition r|θ=0 = h, where h is a small
enough real number and

ν1(θ) = (cos4 θ + sin2 θ)
−1
4 exp

(
−µ
2

arctan
sin θ

cos2 θ

)
,

ν1(kπ) = 1, k = 0,±1,±2, · · · . (2.6)

Because for all sufficiently small r (r > 0), from the second expression of (2.3),
we have dθ/dt < 0. In a small neighborhood, the successor function of system (2.1)
can be defined as follows:

∆(h) = r̃(−2π, h)− h =

∞∑
k=2

νk(−2π)hk. (2.7)

For system (2.1), [20] gave the following results.

Lemma 2.1 ( [20]). For any positive integer m, ν2m+1(−2π) has the form

ν2m+1(−2π) =

m∑
k=1

ζ
(m)
k ν2k(−2π), (2.8)

where ζ
(m)
k is a polynomial of νj(π), νj(2π), νj(−2π), (j = 2, 3, · · · , 2m) with rational

coefficients.

It is different from the center-focus problem for the elementary critical points,
we know from Lemma 2.1 that when k > 1 for the first non-zero νk(−2π), k is an
even integer.

Definition 2.1. (1) For any positive integer m, ν2m(−2π) is called the mth-order
focal value of system (2.1) at the origin;

(2) If ν2(−2π) 6= 0, the origin of system (2.1) is called 1th-order weak focus. If
there is an integerm > 1, such that ν2(−2π) = ν4(−2π) = · · · = ν2m−2(−2π) =
0, ν2m(−2π) 6= 0, then, the origin of system (2.1) is called mth-order weak
focus;

(3) If for all positive integer m, we have ν2m(−2π) = 0, then the origin of system
(2.1) is called a center.

Moreover the computation of focal value of system (2.1) is also given in [20],
which is shown in the following several lemmas.
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Lemma 2.2 ( [20]). If the origin of system (2.1) is s-class or ∞-class, one can
construct successively the terms of the formal power series M(x, y) = x4+y2+o(r4),
such that

∂

∂x

(
X

Ms+1

)
+

∂

∂y

(
Y

Ms+1

)
=

1

Ms+2

∞∑
m=1

(2m− 4s− 1)λm[x2m+4 + o(r2m+4)], (2.9)

i.e., (
∂X

∂x
+
∂Y

∂y

)
M − (s+ 1)

(
∂M

∂x
X +

∂M

∂y
Y

)
=

∞∑
m=1

λm[(2m− 4s− 1)x2m+4 + o(r2m+4)]. (2.10)

Lemma 2.3 ( [20]). For system (2.1), if there exists a natural number s and formal
series M(x, y) = x4 + y2 + o(r4), such that (2.9) holds, then

{ν2m(−2π)} ∼ {σm(s, µ)λm}, (2.11)

where

σm(s, µ) =
1

2

∫ 2π

0

(1 + sin2 θ) cos2m+4 θ

(cos4 θ + sin2 θ)s+2
ν2m−4s−11 (θ)dθ. (2.12)

Definition 2.2. If there exists a natural number s and a formal series M(x, y) =
x4 + y2 + o(r4), such that (2.9) holds, then λm is called the m-th quasi-Lyapunov
constants of the origin of system (2.1).

Lemma 2.4 ( [20]). For any positive integer s and a given number sequence

{c0β}, β ≥ 3, (2.13)

one can construct successively the terms with the coefficients cαβ satisfying α 6= 0
of the formal series

M(x, y) = y2 +

∞∑
α+β=3

cαβx
αyβ =

∞∑
k=2

Mk(x, y), (2.14)

such that

∂

∂x

(
X

Ms+1

)
+

∂

∂y

(
Y

Ms+1

)
=

1

Ms+2

∞∑
m=5

ωm(s, µ)xm, (2.15)

where for all k, Mk(x, y) is a k-homogeneous polynomial of x, y and sµ = 0.

Obviously, (2.15) can also be written as(
∂X

∂x
+
∂Y

∂y

)
M − (s+ 1)

(
∂M

∂x
X +

∂M

∂y
Y

)
=

∞∑
m=3

ωm(s, µ)xm. (2.16)

It is clear that (2.16) is linear with respect to the function M , so that we can easily
find the following recursive formulae for the calculation of cαβ and ωm(s, µ).
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Lemma 2.5 ( [20]). For α ≥ 1, α+β ≥ 3 in (2.14) and (2.15), cαβ can be uniquely
determined by the recursive formula

cαβ =
1

(s+ 1)α
(Aα−1,β+1 +Bα−1,β+1). (2.17)

For m ≥ 1, ωm(s, µ) can be uniquely determined by the recursive formula

ωm(s, µ) = Am,0 +Bm,0, (2.18)

where

Aαβ =

α+β−1∑
k+j=2

[k − (s+ 1)(α− k + 1)]akjcα−k+1,β−j ,

Bαβ =

α+β−1∑
k+j=2

[j − (s+ 1)(β − j + 1)]bkjcα−k,β−j+1. (2.19)

Notice that in (2.18), we set

c00 = c10 = c01 = 0, c20 = c11 = 0, c02 = 1, cαβ = 0, if α < 0 or β < 0. (2.20)

By choosing {cαβ}, such that

ω2k+1(s, µ) = 0, k = 1, 2, · · · , (2.21)

we can obtain a solution group of {cαβ} of (2.21), thus, we have

λm =
ω2m+4(s, µ)

2m− 4s− 1
. (2.22)

Obviously, the recursive formulae in Lemma 2.5 is linear with respect to all cαβ
which offered a good way for us to compute quasi-Lyapunov constants with help of
computer algebraic system like MATHEMATICA.

3. Quasi-Lyapunov constants of system (1.1) and b-
ifurcation of limit cycles

In order to obtain the expressions of quasi-Lyapunov constants of the three sym-

metric critical points (1, 0), (− 1
2 ,
√
3
2 ) and (− 1

2 ,−
√
3
2 ) of system (1.1) and study the

limit cycle bifurcation. May as well make the following transformations:

x = x1 + 1, y = y1, dt = 3dτ, (3.1)

system (1.1) is changed into

dx1
dt

= y1 + δx21 +

5∑
i+2j=3

aijx
i
1y
j
1,

dy1
dt

= −2x31 + 2δx1y1 +

5∑
i+2j=4

bijx
i
1y
j
1. (3.2)
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Comparing system (2.1) and system (3.2), it is clear that the origin of system (3.2)
is a nilpotent critical point. According to the quality of equivariant vector field and
translation’s invariable property, system (3.2) has three symmetric nilpotent critical

points (0, 0), (− 3
2 ,
√
3
2 ) and (− 3

2 ,−
√
3
2 ) which have the same topological property

and bifurcation behavior. Hence the study on the origin of system (3.2) will can
derive the similar property for the three symmetric nilpotent critical points (1, 0),

(− 1
2 ,
√
3
2 ) and (− 1

2 ,−
√
3
2 ) of system (1.1). Next we will investigate the bifurcation

behavior of the origin of system (3.2).
According to Lemma 2.4, for system (3.2), we can find a positive integer s and

a formal series M(x, y) = x4 + y2 + o(r4), such that (2.14) holds. Applying the
recursive formulae presented in Lemma 2.5 to carry out calculations in MATHE-
MATICA, we have

ω3 = ω4 = ω5 = 0, ω6 = −4(B02 +B10)(−1 + 4s),

ω7 ∼ 220B10 − 144A10B10 − 45A13B10 − 440B10s+ 288A10B10s

+ 90A13B10s+ 3c03 + 3sc03,

ω8 ∼
1

5
(33434−27676A10+3600A2

10−17382A13+8037A10A13+2160A2
13)B10(−3+4s),

ω9 ∼
1

120
B10(−850764+1444946A10−801820A2

10+159120A3
10+228852A13−265212

×A10A13+49725A2
10A13−475200B2

10+311040A10B
2
10+97200A13B

2
10)(s−1).

(3.3)

From (2.22) and (3.3), we obtain the first two quasi-Lyapunov constants of
system (3.3):

λ1 ∼ 4(B02 +B10),

λ2 ∼ −
1

5
(33434− 27676A10 + 3600A2

10 − 17382A13 + 8037A10A13 + 2160A2
13)B10.

(3.4)

In order to let ω9 ∼ 0, may as well let s = 1. Then we can obtain the first
quasi-Lyapunov constants of the origin for system (3.2) as follows:

Theorem 3.1. The first 5 quasi-Lyapunov constants of the origin for system (3.2)
are as follows:

λ1 ∼ 4(B02 +B10);

λ2 ∼ −
1

5
B10(33434− 27676A10 + 3600A2

10 − 17382A13 + 8037A10A13 + 2160A2
13);

λ3 ∼−
1

8400
B10(−289275320 + 579302848A10 − 167333682A2

10 − 124367700A3
10

+ 34847280A4
10 + 97161960A13 − 194957964A10A13 + 74661534A2

10A13

+ 10889775A3
10A13 + 73407600B2

10 − 146370240A10B
2
10 + 68117760A2

10B
2
10

− 14968800A13B
2
10 + 21286800A10A13B

2
10);

λ4 ∼
2

24310125
B10m1m2/(n

3
1n

2
2);
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in which

n1 =24310125(2356900 + 11443764A10 − 43655643A2
10 + 40303008A3

10,

n2 =32387320− 64985988A10 + 24887178A2
10 + 3629925A3

10

− 4989600B2
10 + 7095600A10B

2
10,

m1 =432457081000− 2114784149580A10 + 3981317097582A2
10

− 3350088088065A3
10 + 1027908919008A4

10,

m2 =− 614264028736651331157057072471355200000

+ 11895851535416392363529935837437747488000A10

− 107766362896838983243294455955188278073600A2
10

+ 605142289372630676169104721115880813657600A3
10

− 2352438812212562063077837428522473268313536A4
10

+ 6694951588284207648221497734807879888755424A5
10

− 14378941971565333990605851497597007406345024A6
10

+ 23660892635875446177771110792017371263606544A7
10

− 29945373654876502119865249451818830180871122A8
10

+ 28949796635772205843294709064058792967619477A9
10

− 20951746648069853909581155290035572225488775A10
10

+ 10880769933820920499526730545255068428443463A11
10

− 3688349239049582685636429795170020500377607A12
10

+ 593860206291618558791899091595216005083944A13
10

+ 70928422593915180614456799184414384006272A14
10

− 49546081528776009218616097368818315132928A15
10

+ 6539589788630853482250264834573907132416A16
10

− 802227631135331722996195085425644000000B2
10

+ 13766121628592628487321707952731557760000A10B
2
10

− 109870672550053815434477721222916449408000A2
10B

2
10

+ 539367774670193512722507735588740085350400A3
10B

2
10

− 1814365150916952602269207140999990597919584A4
10B

2
10

+ 4407819179526408462154136365477519243954368A5
10B

2
10

− 7934611459360495609646786611605935000531808A6
10B

2
10

+ 10670525482074046319346659296170888441554784A7
10B

2
10

− 10642811245583301737458089555883855600145295A8
10B

2
10

+ 7666723483493406466055510944502940641714064A9
10B

2
10

− 3750683150060150457609564508262855072917008A10
10B

2
10

+ 1059469698742662320655624194646063359207808A11
10B

2
10

− 60931471241140097715899127790127908227072A12
10B

2
10
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− 56381337328021732386246441858647412178944A13
10B

2
10

+ 12783270537052166082950743930026822991872A14
10B

2
10,

and
(1) If m1 = 0, then λ5 ∼ 0.
(2) If m2 = 0, then λ5 ∼ B10m3m

3
4m5/(n

3
3n

4
4),

in which

m3 =282 − 857A10 + 648A2
10,

m4 = − 89136403459481302555132787269516000000

+ 1529569069843625387480189772525728640000A10

− 12207852505561535048275302358101827712000A2
10

+ 59929752741132612524723081732082231705600A3
10

− 201596127879661400252134126777776733102176A4
10

+ 489757686614045384683792929497502138217152A5
10

− 881623495484499512182976290178437222281312A6
10

+ 1185613942452671813260739921796765382394976A7
10

− 1182534582842589081939787728431539511127255A8
10

+ 851858164832600718450612327166993404634896A9
10

− 416742572228905606401062723140317230324112A10
10

+ 117718855415851368961736021627340373245312A11
10

− 6770163471237788635099903087791989803008A12
10

− 6264593036446859154027382428738601353216A13
10

+ 1420363393005796231438971547780758110208A14
10,

m5 = − 429153322621986110300383359835263714786469083016100768000000

+ 12135294214967177193691107989616593544872181416571940858240000A10

− 163897155533505425205714209384503303011448079638983707806476800A2
10

+ 1405458899632513797814865718369576308680157087239724151212279040A3
10

− 8580379214231524333047555721080053068636193062186819630778777600A4
10

+ 39632258996948626961851032850273632985183691001346805309372557952A5
10

− 143658107082931901022664968059807755306616478851422792652055543104A6
10

+ 418266618559351085176026372150260324745269063380489253399889289632A7
10

− 992826567841577804692961345333382602120563046223675339755111354664A8
10

+ 1938437857458792187913663363694430297505906459660447044028337679596A9
10

− 3125827727412598988220287444403917881423245359370468029748128387298A10
10

+ 4161688243397171335465311073143463419921007938617617260337924679601A11
10

− 4551575255893649975534205220888035223309835894495444049193477357875A12
10

+ 4044112846771249001086874969333447246445935246911269088347024135609A13
10

− 2860605704668885309659262607792026218816474670013658211635701481840A14
10

+ 1551690152172988433027301122675729000514736248520512286370856969030A15
10

− 595605313963884008298209700833328386298368547714197176072036536978A16
10
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+ 124634018826691773309014936985512382371781410580598531586799407856A17
10

+ 12707155555768148718289695054317509770186922978936586377214756688A18
10

− 19207760170838338003056363394420583033032604503432355199178235136A19
10

+ 6398296296419108836162869487210778344228427466591266160451092480A20
10

− 989103619616268000037970335256517352476646245400735468934135808A21
10

+ 55204271873258557861072808480380095062766407616829302125887488A22
10;

n3 =40111706250(2356900 + 11443764A10 − 43655643A2
10 + 40303008A3

10,

n4 = − 7463023134133691009821563460000000

+ 107820926146853624122090307940480000A10

− 713116430844566663885617359077836800A2
10

+ 2844541270346291948127963306964276224A3
10

− 7583853608339658577135198612660468512A4
10

+ 14136219152432887673712877866097657920A5
10

− 18681974327081692670059096122237915744A6
10

+ 17304088268303913256376502538827153504A7
10

− 10730206834827871187516152380596328573A8
10

+ 3932181821913156193706272128137142816A9
10

− 490885141160583277010515864933899264A10
10

− 171179345278968761993762160825237504A11
10

+ 53795148521586502820501181828169728A12
10.

In the above expression of λk, we have already let λ1 = · · · = λk−1 = 0, k = 2, 3, 4, 5.

Remark 3.1. During the fourth quasi-Lyapunov constants, we let c04=0 and

c05 =− 1

1016064000l21l2
B10(−57081227180199515616869699899200000

+ 848679618148099024307554651377568000A10

− 5864981027785242886659704048512896000A2
10

+ 25085733146741756984623139614884075520A3
10

− 74579187650915402256346644306404619840A4
10

+ 163840695084806040212458237548247737504A5
10

− 275114086127094312589065084600007214592A6
10

+ 358281810850215965790428298489640162464A7
10

− 360978543307923516184270907056358414394A8
10

+ 275884923287721990807520647662227344165A9
10

− 153759260652137209137318032303451720648A1
100

+ 58389308198174848514472758397758297472A11
10

− 13338542677706998438116796959312986112A12
10

+ 1360663355923347255280716116038385664A13
10
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− 72585510263451053179853756004000000B2
10

+ 948938297919072277881577851344160000A10B
2
10

− 5654563653097099998472323411250416000A2
10B

2
10

+ 20201882163845266443842682280516895040A3
10B

2
10

− 47870670883372691899984862186960801280A4
10B

2
10

+ 78536965778783114818611442092433332336A5
10B

2
10

− 90266968523403962542479801722394096936A6
10B

2
10

+ 71740865548384843804060446514909710396A7
10B

2
10

− 37779078560075046313420861378141900623A8
10B

2
10

+ 11999285863572021085818690522673108320A9
10B

2
10

− 1834454493657903415001297676340294656A10
10B

2
10

+ 50710721082522904069047208038924288A11
10B

2
10),

in which

l1 =2356900 + 11443764A10 − 43655643A2
10 + 40303008A3

10,

l2 =32387320− 64985988A10 + 24887178A2
10 + 3629925A3

10

− 4989600B2
10 + 7095600A10B

2
10.

By analyzing the construction of quasi-Lyapunov constants of Theorem 3.1, we
can obtain the following result.

Theorem 3.2. The origin for system (3.2) can become a 5th-order nilpotent weak
focus if and only if the following condition holds.

B10 6= 0, B02 = −B10,m1 6= 0, m2 = 0,

A13 =
2

3(32387320− 64985988A10 + 24887178A2
10 + 3629925A3

10 − 4989600B2
10 + 7095600A10B2

10)

× (144637660− 289651424A10 + 83666841A
2
10 −+62183850A

3
10 − 17423640A

4
10

− 36703800B
2
10 + 73185120A10B

2
10 − 34058880A

2
10B

2
10).

Proof. From the expressions of λk, k = 1, 2, 3, 4, 5, clearly the necessity holds.
Next we prove the sufficiency. In order to prove the origin for system (3.2) is a
5th-order weak focus, we only need to prove that there exists a group of solutions
about B10, A10, A13, B02 such that λ1 = λ2 = λ3 = λ4 = 0, λ5 6= 0.

From λ1 = 0, it is clear that B02 = −B10. According to λ2 = 0, we can obtain
A2

13 = (−33434 + 27676A10 − 3600A2
10 + 17382A13 − 8037A10A13)/2160 and the

expression of λ3. Next λ3 = 0 will deduce

A13 =
2

3(32387320− 64985988A10 + 24887178A2
10 + 3629925A3

10 − 4989600B2
10 + 7095600A10B2

10)

× (144637660− 289651424A10 + 83666841A
2
10 −+62183850A

3
10 − 17423640A

4
10

− 36703800B
2
10 + 73185120A10B

2
10 − 34058880A

2
10B

2
10).

Next let λ4 = 0, then m1 = 0 or m2 = 0. At this time, m1 = 0 will deduce λ5 = 0,
and m2 = 0 will deduce λ5 ∼ B10m3m

3
4m5/(n

3
3n

4
4). And under the condition of

Theorem 3.2, the all 6 groups of real number solutions of λ1 = λ2 = λ3 = m2 = 0
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about B10, A10, A13, B02 can be obtained as follows:

(S1)A10 ≈ −4.7269849, B10 ≈ 52.3894621, B02 ≈ −52.3894621, A13 ≈ 19.9598497,

(S2)A10 ≈ −4.7269849, B10 ≈ −52.3894621, B02 ≈ 52.3894621, A13 ≈ 19.9598497,

(S3)A10 ≈ 1.5929351, B10 ≈ −3.1514449, B02 ≈ 3.1514449, A13 ≈ −0.2912932,

(S4)A10 ≈ 1.5929351, B10 ≈ 3.1514449, B02 ≈ −3.1514449, A13 ≈ −0.2912932,

(S5)A10 ≈ 1.3374828, B10 ≈ −0.5427501, B02 ≈ 0.5427501, A13 ≈ 3.7000000,

(S6)A10 ≈ 1.3374828, B10 ≈ 0.5427501, B02 ≈ −0.5427501, A13 ≈ 3.7000000.

The above solutions will all deduce λ5 6= 0, namely the following values about λ5:

λ5|S1
≈ −4.00689531488106867117295172933484362130282514912205641× 1016,

λ5|S2 ≈ 4.00689531488106867117295172933484362130282514912205641× 1016,

λ5|S3
≈ 2.307736989154777961898338861146264870654949614306984727× 107,

λ5|S4 ≈ −2.307736989154777961898338861146264870654949614306984727× 107,

λ5|S5
≈ −3.59504777956435126769985374024617279827806651933804383× 108,

λ5|S6
≈ 3.59504777956435126769985374024617279827806651933804383× 108.

Hence the conclusion of Theorem 3.2 holds.
According the equivariant symmetric quality, one can obtain the following the-

orem.

Theorem 3.3. The three symmetric critical points (1, 0), (− 1
2 ,
√
3
2 ) and (− 1

2 ,−
√
3
2 )

of system (1.1) become three nilpotent weak focuses of 5th-order if and only if con-
dition of Theorem 3.2 holds.

After discussing the weak focus problem of system (1.1), we will consider the
limit cycle bifurcation of system (1.1). From Theorem 3.2 and Theorem 3.3, we can
obtain the following theorem.

Theorem 3.4. Each one of the three symmetric critical points (1, 0), (− 1
2 ,
√
3
2 ) and

(− 1
2 ,−

√
3
2 ) of system (1.1) can bifurcate 4 small limit cycles under appropriate

perturbations about parameter group (B02, B10, A10, A13) if one of the three given
critical points of system (1.1) is a nilpotent weak focus of 5th-order, in sum 12 limit
cycles can yield by simultaneous Hopf bifurcation.

Proof. If one of the three symmetric critical points (1, 0), (− 1
2 ,
√
3
2 ) and (− 1

2 ,−
√
3
2 )

of system (1.1) is a nilpotent weak focus of 5th-order, then other two critical points
are also two nilpotent weak focuses of 5th-order because system (1.1) lies in a Z3-
equivariant vector field. At this time, let values of parameter group (B02, B10, A10, A13)
are (a, b, c, d), namely λ5 6= 0 and λ1 = λ2 = λ3 = λ4 = 0 if (B02, B10, A10, A13) =
(a, b, c, d). Of course, during proving Theorem 3.2, we have show that this kind of
solutions have 6 groups, i.e., S1 ∼ S6, here we only express them as (a, b, c, d).

Give a suitable perturbation about these parameters, we may as well let

λ1 = ε1, λ2 = ε2, λ3 = ε3, λ4 = ε4, (3.5)
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in which ε1, ε2, ε3, ε4 can be a group of arbitrary real numbers. When the three
symmetric critical points of undisturbed system (1.1)|δ=0 are three nilpotent weak
focuses of 5th order, then the jacobin of the functions group (ε1, ε2, ε3, ε4) with
respect to the variables group (B02, B10, A13, A10)

J =
D(λ1, λ2, λ3, λ4)

D(B02, B10, A13, A10)
=

∣∣∣∣∣∣∣∣∣∣∣∣

∂λ1

∂B02

∂λ1

∂B10

∂λ1

∂A13

∂λ1

∂A10

∂λ2

∂B02

∂λ2

∂B10

∂λ2

∂A13

∂λ2

∂A10

∂λ3

∂B02

∂λ3

∂B10

∂λ3

∂A13

∂λ3

∂A10

∂λ4

∂B02

∂λ4

∂B10

∂λ4

∂A13

∂λ4

∂A10

∣∣∣∣∣∣∣∣∣∣∣∣
= f(B02, B10, A13, A10),

in which f(B02, B10, A13, A10) is a function about B02, B10, A13, A10. We can obtain
that f(B10, A13, A10) 6= 0 if the three symmetric critical points of undisturbed
system (1.1)|δ=0 are three nilpotent weak focuses of 5th order. In fact, if they
become nilpotent weak focuses of 5th order, then

f(B02, B10, A13, A10)|S1
≈ 5.374760669957396× 1024 6= 0,

f(B02, B10, A13, A10)|S2 ≈ 5.374760669957396× 1024 6= 0,

f(B02, B10, A13, A10)|S3
≈ 6.18776801205598707424489× 1015 6= 0,

f(B02, B10, A13, A10)|S4 ≈ 6.18776801205598707424489× 1015 6= 0,

f(B02, B10, A13, A10)|S5
≈ 1.59504777956435126769985× 1018 6= 0,

f(B02, B10, A13, A10)|S6
≈ 1.59504777956435126769985× 1018 6= 0.

Hence, according to existence theorem of implicit function, equations groups (3.5)
have a group of solutions as follows:

B02 = a+ f1(ε1, ε2, ε3, ε4), B10 = b+ f2(ε1, ε2, ε3, ε4),

A13 = c+ f3(ε1, ε2, ε3, ε4), A10 = d+ f4(ε1, ε2, ε3, ε4). (3.6)

Obviously, given perturbations by (3.6) will let (3.5) hold. Because ε1, ε2, ε3, ε4
can be a group of arbitrary real numbers, one can give many kinds of pertur-
bations’s methods by (3.6). Hence, there exists a vector on small parameters

εk =
(
ε
(k)
1 , ε

(k)
2 , ε

(k)
3 , ε

(k)
4

)
such that the first 5 quasi-Lyapunov constants of nilpo-

tent singular point (1,0) of system (1.1) satisfy

λ1λ2 < 0, λ2λ3 < 0, λ3λ4 < 0, λ4λ5 < 0,

|λ1| � |λ2| � |λ3| � |λ4| � |λ5|. (3.7)

According to (3.5), we only need to let |ε1| � |ε2| � |ε3| � |ε4|, then (3.7)
holds. According to Theorem 4 in [27], 4 small limit cycles can occur near singular
point (1,0) of system (1.1). From the quality of equivariant vector field, each one of

singular points (− 1
2 ,
√
3
2 ) and (− 1

2 ,−
√
3
2 ) of system (1.1) also can bifurcate 4 limit

cycles. Hence, in sum 12 small limit cycles can bifurcate from disturbed system
(1.1) by simultaneous Hopf bifurcation.
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