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ORTHOGONAL ARRAYS CONSTRUCTED BY
GENERALIZED KRONECKER PRODUCT∗
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Abstract In this paper, we propose a new general approach to construct
asymmetrical orthogonal arrays, namely generalized Kronecker product. The
operation is not usual Kronecker product in the theory of matrices, but it is
interesting since the interaction of two columns of asymmetrical orthogonal
arrays can be often written out by the generalized Kronecker product. As
an application of the method, some new mixed-level orthogonal arrays of run
sizes 72 and 96 are constructed.
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1. Introduction

An n×m matrix A, having ki columns with pi levels, i = 1, . . . , t, t is an integer,

m =
t∑
i=1

ki, pi 6= pj , for i 6= j, is called an orthogonal array (OA) of strength d and

size n if each n× d submatrix of A contains all possible 1× d row vectors with the
same frequency. Unless stated otherwise, we consider an OA of strength 2, using
the notation Ln(pk11 · · · p

kt
t ) for such an array. An OA is said to have mixed level (or

asymmetrical ) if t ≥ 2. The proceeding definition also includes the case t = 1, and
the array is usually called a symmetrical OA, denoted by Ln(pm). For simplicity,
the symmetrical and asymmetrical will only be used when needed.

An essential concept for the construction of asymmetrical OAs is that of dif-
ference matrices. Using the notation for additive (or Abelian) groups, a difference
matrix(or difference scheme) with level p is an λp×m matrix with the entries from a
finite additive group G of order p such that the vector differences of any two columns
of the array, say di − dj if i 6= j, contains every element of G exactly λ times. We
will denote such an array by D(λp,m; p), although this notation suppresses the
relevance of the group G. In most of our examples G will correspond to the addi-
tive group associated with Galois field GF (p). The difference matrix D(λp,m; p) is
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called a generalized Hadamard matrix if λp = m. In particular, D(λ2, λ2; 2) is the
usual Hadamard matrix.

If a D(λp,m; p) exists, it can always be constructed so that only one of its
rows and one of its columns has the zero element of G. Deleting this column from
D(λp,m; p), we obtain a difference matrix, denoted by D0(λp,m− 1; p), called an
atom of difference matrix D(λp,m; p) or an atomic difference matrix. Without loss
of generality, the matrix D(λp,m; p) can be written as

D(λp,m; p) =

 0 0

0 A

 = (0 D0(λp,m− 1; p)).

The property is important for the following discussions.
For two matrices A = (aij)n×m and B = (bij)s×t both with the entries from

group G, define their Kronecker sum (Shrikhande [10]) to be

A⊕B = (aij ⊕B)1≤i≤n,1≤j≤m,

where each submatrix aij⊕B of A⊕B stands for the matrix obtained by adding aij
to each entry of B. Shrikhande [10] showed that A⊕B is a difference matrix if both
A and B are difference matrices. And, Zhang [14] showed that A is a difference
matrix if both A⊕B and B are difference matrices.

A new theory or procedure of constructing asymmetrical OAs by using the or-
thogonal decompositions of projection matrices has been given by Zhang etc [15].
Suen [11], Suen etc [12] and Luo etc [5] have obtained some OAs by this procedure.
Similarly, Leng etc [6] have constructed some fusion frames by investigating de-
compositions of positive matrices as weighted sums of orthogonal projections. The
idea of the orthogonal decompositions of projection matrices for constructing de-
signs comes from the theory of multilateral matrices in Zhang [14]–a mathematical
technique to solve the problems of system with complexity. In general, the proce-
dure of constructing asymmetrical OAs in our theory has been partitioned mainly
into five parties: orthogonal-array addition, subtraction, multiplication, division
and replacement. The technique, namely generalized Kronecker product (Defini-
tion 2.1) which belongs to the class of orthogonal-array multiplications, has also
been proposed for the construction of asymmetrical OAs by Zhang [14] in the the-
ory of multilateral matrices. Pang etc [8] have discussed the generalized concept
of orthogonal-array multiplications, Zhang [16] has discussed the special technique
of Kronecker sum from generalized Hadamard product and Zhang etc [17] have
proposed a particular generalized Kronecker product about generalized difference
matrices. Furthermore, Luo [5] has discussed the relationship between general-
ized difference matrices and mixed OAs. The relationship is similar to a general
“expansive replacement method” for constructing mixed-level OAs of an arbitrary
strength established by Jiang etc [3], a construction and decomposition of OAs
with non-prime-power numbers of symbols on the complement of a Baer subplane
demonstrated by Yamada etc [13], and the existence of mixed OAs with four and
five factors of strength two investigated by Chen etc [1].

In this paper the generalized Kronecker product technique will be further ex-
plained and extended to construct some new asymmetrical (or mixed-level) orthog-
onal arrays by using the orthogonal decompositions of projection matrices.

Section 2 contains the basic concepts and main theorems while in Section 3 we
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describe the method of construction. Some new mixed level OAs with run sizes 72
and 96 are constructed in Section 4.

2. Basic Concepts and Main Theorems

In our procedure, an important idea is to find the relationship among difference
matrices, projection matrices and permutation matrices. A matrix A is called a
projection matrix if ATA = A. The following notations are used.

Let 1r be the r×1 vector of 1’s, 0r the r×1 vector of 0’s, Ir the identity matrix
of order r and Jr,s the r×s matrix of 1’s, also Jr = Jr,r. Of course, the two matrices
Pr = (1/r)1r1

T
r = (1/r)Jr and τr = Ir−Pr are projection matrices for any positive

integer r.
Define

(r) = (0, . . . , r − 1)Tr×1, ei(r) = (0 · · · 0
i
1 0 · · · 0)Tr×1,

where ei(r) is the base vector of Rr (r-dim vector space) for any i. We can construct
two permutation matrices as follows:

Nr = e1(r)eT2 (r) + · · ·+ er−1(r)eTr (r) + er(r)e
T
1 (r)

and

K(p, q) =

p∑
i=1

q∑
j=1

ei(p)e
T
j (q)⊗ ej(q)eTi (p), (2.1)

where ⊗ is the usual Kronecker product in the theory of matrices. The permutation
matrices Nr and K(p, q) have the following properties:

Nr · (r) = 1⊕ (r), mod r, and K(p, λp)((λp)⊕ (p)) = (p)⊕ (λp).

Let D = (dij)λp×m be a matrix over an additive group G of order p. Then for
any given dij ∈ G there exists an permutation matrix σ(dij) such that

σ(dij)(p) = dij ⊕ (p),

where the vector (p) with elements from G is the same as that of (r) if p = r. Define
H(λp,m; p) = (σ(dij))λp2×mp, where each entry or submatrix σ(dij) of H(λp,m; p)
is a p × p permutation matrix. And Zhang [14] has proved that the matrix D =
(dij)λp×m over some group G is a difference matrix D(λp,m; p) if and only if

HT (λp,m; p)H(λp,m; p) = λp(Im ⊗ τp + Jm ⊗ Pp),

where τp and Pp are the same as those of τr and Pr if p = r.
On the other hand, the permutation matrices σ(dij) are often obtained by the

permutation matrices Nr and K(p, q). Furthermore, by the permutation matrices
σ(dij) and K(λp, p), the Kronecker sum (Shrikhande [10]) of difference matrices can
be written as

(p)⊕D(λp,m; p) = K(p, λp)[D(λp,m; p)⊕ (p)]

= K(p, λp)(σ(dij)(p))λp2×m

= K(p, λp)(S1(0λp ⊕ (p)), . . . , Sm(0λp ⊕ (p)))

= (Q1((p)⊕ 0λp), . . . , Qm((p)⊕ 0λp)),
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where

Qj = K(p, λp)SjK(p, λp)T , Sj = diag(σ(d1j), . . . , σ(drj)), (r = λp), (2.2)

are permutation matrices for any j = 1, . . . ,m and where 0λp ⊕ (p) = 1λp ⊗ (p)
holds for the additive group associated with Galois Field GF(p). Therefore, both
the projection matrices Pr and τr and the permutation matrices Nr,K(p, q), Qj and
Sj(defined in Eqs. (2.1) and (2.2)) are often used to construct the asymmetrical
OAs in our procedure.

Definition 2.1. Let k(x, y) be a map from Ω1×Ω2 to V , where Ω1×Ω2 = {(x, y) :
x ∈ Ω1, y ∈ Ω2} and Ω1,Ω2, V are some sets. For two matrices A = (aij)n×m with
entries from Ω1 and B = (buv)s×t with entries from Ω2, define their generalized

Kronecker product, denoted by
k
⊗, as follows

A
k
⊗ B = (k(aij , buv))ns×mt = (k(aij , B))1≤i≤n,1≤j≤m,

where each submatrix k(aij , B) = (k(aij , buv))s×t of A
k
⊗ B stands for the matrix

obtained by operating aij to each entry of B under the map k(x, y).
Unless stated otherwise, we consider that the sets Ω1 and Ω2 are finite, using

the vector notations (p) and (q) for such two sets. When V is a row-vector space
of m-dimensions, the map k(i, j) can be represented by a pq ×m matrix D, i.e.,

k : (p)
k
⊗ (q) = D = (d(1), . . . , d(pq))

T ,

with k(i, j) = dT(iq+j+1)( or k(i, j) is the (iq + j + 1)th row of D where Ω1 = (p) =

(0, 1, · · · , p− 1)T and Ω2 = (q) = (0, 1, · · · , q − 1)T hereinafter the same). For this

case in the following discussions, the generalized Kronecker product
k
⊗ will only be

defined as (p)
k
⊗ (q) = D.

Note 1. Using the notation for a finite multiplicative group G, i.e., let Ω1 =
Ω2 = V = G (a finite multiplicative group) and k(i, j) = ij. Then the generalized

Kronecker product
k
⊗ is really the usual Kronecker product in the theory of matrices,

denoted by ⊗.
Note 2. Using the notation for a finite additive (or Abelian ) group G, i.e., let

Ω1 = Ω2 = V = G (a finite additive group) and k(i, j) = i+ j, then the generalized

Kronecker product
k
⊗ will be the usual Kronecker sum (Shrikhande [10], denoted

by ⊕.
Note 3. Furthermore, if the Ω1,Ω2 and V are additive (or abelian) groups

G1 = (λp) and G2 = (p) of order λp, p and a row-vector space of m-dimensions
respectively, and if k(i, j) is the (ip+j+1)th row of D0(λp,m−1; p)⊕ (p) ( i.e., the
usual Kronecker sum ⊕ of D0(λp,m−1; p) and (p) (Shrikhande [10]), the generalized

Kronecker product
k
⊗ is really denoted by (λp)

k
⊗ (p) = D0(λp,m−1; p)⊕(p), namely

normal Kronecker sum.
Note 4. In general, if the Ω1,Ω2 and V are multiplicative (or additive) groups

G1 = (p) and G2 = (q) of order p, q and a row-vector space of m-dimensions
respectively, and if k(i, j) is the (iq + j + 1)th row of L (an orthogonal array) for
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any i, j, the generalized Kronecker product
k
⊗ can be only defined as (p)

k
⊗ (q) = L,

namely an orthogonal-array product.

The generalized Kronecker product
k
⊗ has many properties similar to the usual

Kronecker product ⊗ and the Kronecker sum ⊕ (Shrihande [10]). Such as

K(p, q) · (p)
k
⊗ (q) = (q)

k
⊗ (p), ( if k(i, j) = k(j, i)which is a row vector),

(0q ⊕ a)
k
⊗ (p) = 0q ⊕ [a

k
⊗ (p)],

(a, b)
k
⊗ (p) = [a

k
⊗ (p), b

k
⊗ (p)].

The generalized Kronecker operations ⊗,⊕,
k
⊗ are very useful for the construction

of asymmetrical OAs and many other designs.
For example, if define

(2)
k
⊗ (2) =


0

1

1

0

 , (4)
k
⊗ (2) =


0 0 0

0 1 1

1 0 1

1 1 0

⊕ (2),

and

(3)
k
⊗ (3) =


0 0

1 2

2 1

⊕ (3), (6)
k
⊗ (3) =



0 0 0 0 0

0 1 1 2 2

1 2 0 1 2

1 0 2 2 1

2 1 2 1 0

2 2 1 0 1


⊕ (3),

then the following arrays

((2)⊕ 04, 02 ⊕ (4))
k
⊗ (2) = (((2)⊕ 02)

k
⊗ (2), (02 ⊕ (4))

k
⊗ (2)),

((3)⊕ 06, 03 ⊕ (6))
k
⊗ (3) = (((3)⊕ 06)

k
⊗ (3), (03 ⊕ (6))

k
⊗ (3)),

are all OAs (Theorem 2.5). The array product is an essential operation of the
generalized Kronecker product for constructing asymmetrical arrays.

Definition 2.2. Let A be an OA of strength 1, i.e.,

A = (a1, . . . , am) = (T1(0r1 ⊕ (p1)), . . . , Tm(0rm ⊕ (pm))),

where ripi = n, Ti is a permutation matrix for any i = 1, . . . ,m. The following
projection matrix,

Aj = Tj(Prj ⊗ τpj )TTj , (2.3)

is called the matrix image (MI) of the jth column aj of A, denoted by m(aj) = Aj
for j = 1, . . . ,m. In general, the MI of a subarray of A is defined as the sum of the
MI’s of all its columns. In particular, we denote the MI of A by m(A).
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In Definition 2.2, for a given column aj = Tj(0rj⊕(pj)), the matrices Aj defined
in equation (2.3) are unique though the permutation matrix Tj introduced here is
not unique.

If a design is an OA, then the MI’s of its columns has some interesting properties
which can be used to construct OAs. For example, by the definition, we have

m(0r) = Pr and m((r)) = τr.

Theorem 2.1. For any permutation matrix T and any orthogonal array L with
strength at least one, we have

m(T (L⊕ 0r)) = T (m(L)⊗ Pr)TT and m(T (0r ⊕ L)) = T (Pr ⊗m(L))TT .

Theorem 2.2. Let the array A be an OA of strength 1, i.e.,

A = (a1, . . . , am) = (T1(0r1 ⊕ (p1)), . . . , Tm(0rm ⊕ (pm))),

where ripi = n, Ti is a permutation matrix, for i = 1, . . . ,m.
The following statements are equivalent.

(1) A is an OA of strength 2.

(2) The MI of A is a projection matrix.

(3) The MI’s of any two columns of A are orthogonal, i.e., m(ai)m(aj) = 0(i 6= j).

(4) The projection matrix τn can be decomposed as

τn = m(a1) + . . .+m(am) +4,

where rk(4) = n− 1−
m∑
j=1

(pj − 1) is the rank of the matrix 4.

Definition 2.3. An OA A is said to be saturated if
m∑
j=1

(pj − 1) = n − 1 ( or,

equivalently, m(A) = τn).

Corollary 2.1. Let (L,H) and K be OAs of run size n. Then (K,H) is an or-
thogonal array if m(K) ≤ m(L), where m(K) ≤ m(L) means that the difference
m(L)−m(K) is nonnegative definite.

Corollary 2.2. Suppose L and H are OAs. Then K = (L,H) is also an OA
if m(L) and m(H) are orthogonal, i.e., m(L)m(H) = 0. In this case m(K) =
m(L) +m(H).

By Corollaries 2.1 and 2.2, in order to construct an OA Ln of run size n, we
should decompose the projection matrix τn into C1 + · · ·+ Ck such that CiCj = 0
for i 6= j and find OAs Hj such that m(Hj) ≤ Cj for j = 1, 2, · · · , k, because
the array Ln = (H1, · · · , Hk) is an OA of run size n. The method of constructing
OAs by using the orthogonal decompositions of projection matrices is also called
orthogonal-array addition (Zhang etc [15]).

Definition 2.4. An OA Ln is called satisfactory if there doesn’t exist any OA K
such that (Ln,K) is an OA.
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Theorem 2.3. (Optimality) Let p, q and r be integers satisfying p, q ≥ 2, n = pqr
and (p, q) = 1 where (p, q) = 1 means the maximal common divisor of p and q is 1.
Then there is not any OA K of run size n such that m(K) ≤ τp ⊗ Ir ⊗ τq.

Note 5. Satisfactory OAs and maximal OAs are different concepts, because OA
Ln(pk11 · · · p

kt
t ) is called maximal if (k1, · · · , kt) is maximal for fixed (n, p1, · · · , pt).

A maximal OA must be a satisfactory OA, but a satisfactory OA is not always a
maximal OA.

Theorem 2.4. Let D0(λp,m − 1; p) be an atom of difference matrix D(λp,m; p).
Then D0(λp,m − 1; p) ⊕ (p) is an OA whose MI (defined in (2.3)) is less than or
equal to τλp ⊗ τp.

These theorems and corollaries can be found in Zhang [14].
The following definition is a main idea in our procedure of generalized Kronecker

product for constructing the asymmetrical OAs.

Definition 2.5. Let Ln1
=[Ln1

(px1
1 ), . . . ,Ln1

(pxs
s )] and Ln2

=[Ln2
(qy11 ), . . . ,Ln2

(qytt )]

be two OAs. If for given i, j the map kij(s, t) of generalized Kronecker product
kij
⊗

is kij : (pi)
kij
⊗ (qj) = Hij (an OA) such that m(Hij) ≤ τpi ⊗ τqj , then we define the

orthogonal-array product of Ln1 and Ln2 as

Ln1

K
⊗ Ln2

= [. . . , Ln1
(pxi
i )

kij
⊗ Ln2

(q
yj
j ), . . .],

where K = {kij ; i = 1, 2, . . . , s, j = 1, 2, . . . , t}.

The following theorem is a main result in our procedure of generalized Kronecker
product for constructing the asymmetrical OAs.

Theorem 2.5. Suppose that

Ln1
= [Ln1

(px1
1 ), . . . , Ln1

(pxs
s )]

and
Ln2 = [Ln2(qy11 ), . . . , Ln2(qytt )]

are two orthogonal arrays. Then the array product of Ln1 and Ln2 , i.e., Ln1

K
⊗ Ln2 ,

is also OA whose MI is less than or equal to m(Ln1
)⊗m(Ln2

).

Proof. Without loss of generality, the OAs Ln1 and Ln2 can be written as

Ln1
= [S1(0r1 ⊕ (p1)), . . . , Sm1

(0rm1
⊕ (pm1

))]

and
Ln2

= [Q1((q1)⊕ 0t1), . . . , Qm2
((qm2

)⊕ 0tm2
)]

where ripi = n1, tjqj = n2, and Sj , Qj are permutation matrices for any i, j. By
Theorems 2.1 and 2.2, we have

m(Ln1
)⊗m(Ln2

) =[

m1∑
i=1

Si(Pri ⊗ τpi)STi ]⊗ [

m2∑
j=1

Qj(τqj ⊗ Ptj )QTj ]

=

m1∑
i=1

m2∑
j=1

(Si ⊗Qj)(Pri ⊗ τpi ⊗ τqj ⊗ Ptj )(Si ⊗Qj)T



OAs constructed by generalized Kronecker product 735

is an orthogonal decomposition of projection matrix m(Ln1
) ⊗ m(Ln2

). If there

exists an OA Hij such that m(Hij) ≤ τpi ⊗ τqj , i.e., kij : (pi)
kij
⊗ (qj) = Hij for any

i, j, then we have

(. . . , (Si ⊗Qj)(0ri ⊕ (pi)
kij
⊗ (qj)⊕ 0tj ), . . .)

is an OA by Theorems 2.1 and 2.2 , Corollary 2.1 and Definition 2.5. The proof is
completed.

By Theorem 2.4, the OAs Hij in Definition 2.5 can be taken into

D0(pi, ui; qj)⊕ (qj) or (pi)⊕D0(qj , vj ; pi),

for any i, j.
For example, in Definition 2.1, we can define

(2)
k
⊗ (2) = D0(2, 1; 2)⊕ (2), (4)

k
⊗ (2) = D0(4, 3; 2)⊕ (2),

(3)
k
⊗ (3) = D0(3, 2; 3)⊕ (3), (6)

k
⊗ (3) = D0(6, 5; 3)⊕ (3), . . . ,

where each of the above maps k(i, j)’s can be defined by the corresponding formula.
By Theorem 2.5, finding all OAs H such that m(H) ≤ τp⊗τq is also an essential

operation of the generalized Kronecker product for constructing asymmetrical OAs.
If there exists an OA H such that m(H) = τp ⊗ τq, then the OA H is called the
interaction of two columns (p ⊕ 0q) and 0p ⊕ (q). Thus the operation of finding
the generalized Kronecker products is similar to that of finding the interactions in
experiment designs.

In fact, Theorems 2.4 and 2.5 in our this article are same as Theorem 3.6 and
Corollaries 2.4-2.5 in Zhang [16], respectively. But Theorem 3.6 and Corollaries
2.4-2.5 in Zhang [16] are no proof and have stated in cited.

3. General Methods for Constructing OAs by Gen-
eralized Kronecker Product

Our procedure of constructing mixed-level OAs by using the generalized Kronecker
product based on the orthogonal decomposition of the projection matrix τn consists
of the following three steps:

Step 1. Orthogonally decompose the projection matrix τn :

τn = T1(A1 ⊗B1)TT1 + · · ·+ Tk1(Ak1 ⊗Bk1)TTk1 + C1 + · · ·+ Ck2 +4,

where all Ai, Bj , Cs,4 are projection matrices and all Tt are permutation matrices.
Step 2. Find OAs H1

i , H
2
j and Hs from some known OAs such that

m(H1
i ) ≤ Ai,m(H2

j ) ≤ Bj and m(Hs) ≤ Cs.

Step 3. Lay out the new OA L by Theorem 2.5, Corollaries 2.1 and 2.2:

L = (T1(H1
1

K1

⊗ H2
1 ), . . . , Tk1(H1

k1

Kk1

⊗ H2
k1), H1, . . . ,Hk2),
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where all
K1

⊗ , . . . ,
Kk1

⊗ are orthogonal-array products.
In applying Step 1, the following orthogonal decomposition of τn is very useful,

τpq = Ip ⊗ τq + τp ⊗ Pq = τp ⊗ Pq + Pp ⊗ τq + τp ⊗ τq = τp ⊗ Iq + Pp ⊗ τq,
τprq=τp ⊗ Ir ⊗ Pq + Pp ⊗ τrq + τp ⊗ Ir ⊗ τq=τpr ⊗ Pq+Pp ⊗ Ir ⊗ τq+τp ⊗ Ir ⊗ τq.

(3.1)
These equations are easy to verify from τp = Ip − Pp, Ppq = Pp ⊗ Pq and Ipq =

Ip ⊗ Iq.
The following properties play very a useful role in the procedure:

Corollary 3.1 (Two-factor method). Let L1
p, L

2
p, L

1
q and L2

q be OAs.Then

(L1
p ⊕ 0q, 0p ⊕ L1

q, L
2
p

K
⊗ L2

q)

is an OA.

Proof. The proof follows from Theorem 2.5 and the orthogonal decomposition of
τpq (in Eq.(3.1)):

τpq = τp ⊗ Pq + Pp ⊗ τq + τp ⊗ τq.

Corollary 3.2 (Three-factor method). Let n = prq and Lpr, Lrq, Lq be OAs of

run sizes pr, rq, q, respectively. If there exist OAs L
(−)
pr , L

(=)
pr and L

(−)
rq such that

m(L
(−)
pr ),m(L

(=)
pr ) ≤ τp ⊗ Ir and m(L

(−)
rq ) ≤ Ir ⊗ τq, then

[Lpr ⊕ 0q, 0p ⊕ L(−)
rq , L

(=)
pr

K
⊗ Lq]

and

[L(−)
pr ⊕ 0q, 0p ⊕ Lrq, L(=)

pr

K
⊗ Lq]

are OAs.

Proof. The proof follows from Theorem 2.5 and the orthogonal decompositions
of τprq (in Eq. (3.1)):

τprq = τpr ⊗ Pq + Pp ⊗ [Ir ⊗ τq] + [τp ⊗ Ir]⊗ τq

and
τprq = [τp ⊗ Ir]⊗ Pq + Pp ⊗ τrq + [τp ⊗ Ir]⊗ τq.

On Corollary 3.2 (Three factor method), it is useful to mention that the two

OAs L
(−)
pr and L

(=)
pr in the second constructed array are not necessarily the same.

4. Constructions of OAs with Run Sizes 72 and 96

4.1. Construction of OA L72(2
613141)

Since 72 = 18× 2× 2, by Corollary 3.2 (Three-factor method), we have

[L
(−)
36 ⊕ 02, 018 ⊕ (4), L

(=)
36 (234)

k
⊗ (2)]
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is an OA for any OAs L
(−)
36 and L

(=)
36 (234) such that m(L

(−)
36 ) ≤ τ18 ⊗ I2 and

m(L
(=)
36 (234)) = τ18 ⊗ I2.

Now we want to find an OA L
(=)
36 (234) whose MI is equal to τ18 ⊗ I2. Many

forms of OA L36(235) can be constructed such as Plackett etc [9]. Without loss
of generality, the first column can always be changed to be 018 ⊕ (2) by some row
permutation. Deleting the column 018⊕(2) from L36(235), we obtain an OA in Table

1, denoted by L
(=)
36 (234), whose MI is equal to τ18⊗I2 since τ18⊗I2 = τ36−P18⊗τ2.

By Theorem 2.4, there exists a generalized Kronecker product (2)
k
⊗ (2) =

(0 1 1 0)T = (2)⊕ (2), mod 2, i.e., the Kronecker sum (Shrikhande [10]). Therefore

by Theorem 2.5 the Kronecker sum L
(=)
36 (234)⊕(2) is an OA whose MI is τ18⊗I2⊗τ2.

On the other hand, a satisfactory OA L36(22831) which has a 2-level column
018 ⊕ (2) (in Table 1) can be obtained by an approach similar to that by Zhang
etc [15] through complicated computing by using Theorem 2.3. Deleting the column

018 ⊕ (2) from L36(22831), we obtain an OA, denoted by L
(−)
36 (22731), whose MI is

less than τ18 ⊗ I2 since τ18 ⊗ I2 = τ36 − P18 ⊗ τ2.
By Corollary 3.2 (Three-factor method), we obtain an OA L72(2613141) as fol-

lows:
L72(2613141) = [L

(−)
36 (22731)⊕ 02, 018 ⊕ (4), L

(=)
32 (234)⊕ (2)],

which is satisfactory since 4 = τ72 −m(L72(26131)) ≤ (τ36 −m(L36(22831)))⊗ P2.
The OA is new, which is not included in Hedayat etc [2] and Kuhfeld [4] yet.

Furthermore, replacing the OA L36(22831) by any one of OAs L36(2x · · · ) which
has at least a 2-level column, we will able to construct an OA for this family which
are included in Table 2.

4.2. Construction of OA L72(2
2831161121)

Since 72 = 12× 3× 2, by Corollary 3.2 (Three - factor method), we have

[L
(−)
36 ⊕ 02, 012 ⊕ (6), L

(=)
36 (228)

k
⊗ (2)]

is an OA for any OAs L
(−)
36 and L

(=)
36 (228) such that m(L

(−)
36 ) ≤ τ12 ⊗ I3 and

m(L
(=)
36 (228)) ≤ τ12 ⊗ I3. Similarly to Section 4.1, we can find an OA L

(=)
36 (228)

from L36(31228) (in Table 1) such that m(L
(=)
36 (228)) ≤ τ12⊗ I3. Thus the Kroneck-

er sum L
(=)
36 (228)⊕(2) is an OA whose MI is τ12 ⊗ I3 ⊗ τ2.

On the other hand, there is a saturated OA L36(312121) which has a 3-level
column 012⊕(3). Deleting the column 012⊕(3) from L36(312121), we obtain an OA,

denoted by L
(−)
36 (311121), whose MI is equal to τ12⊗I3 since τ12⊗I3 = τ36−P12⊗τ3.

By Corollary 3.2 (Three-factor method), we obtain an OA L72(22831161121) as
follows:

L72(22831161121) = [L
(−)
36 (311121)⊕ 02, 012 ⊕ (6), L

(=)
36 (228)⊕ (2)],

which is satisfactory since4 = τ72−m(L72(31161121)) ≤ (τ36−m(L36(22831)))⊗τ2.
This OA is new, which is not included in Hedayat etc [2] and Kuhfeld(2006) yet.

Furthermore, replacing the OA L36(312121) by any one of OAs L36(3x · · · ) which
has at least a 3-level column, we will able to construct an OA for this family. There
are at least 11 new OAs of run size 72 for this family which are included in Table 2.
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Table 1. Orthogonal arrays L36(· · · ) used in Sections 4.1 and 4.2.

No. B1 −B8 B9 −B17 B18 −B26 B27 −B35 CF

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 1 1 1 0 1 0 0 1 1 1 1 1 1 1
3 0 1 1 1 0 0 1 1 1 0 0 0 1 0 1 0 1 1 1 1 0 1 0 0 1 0 1 0 0 0 0 1 1 1 0 2 2
4 1 1 0 0 1 0 0 1 0 1 1 1 1 0 0 0 1 1 1 1 0 0 1 1 0 0 0 0 1 0 0 1 0 1 1 0 3
5 0 0 0 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 1 1 0 0 0 1 4
6 1 1 1 0 1 0 1 0 1 0 0 0 0 1 1 1 0 1 0 0 0 0 1 1 1 0 0 1 1 1 0 1 0 1 0 2 5
7 0 0 1 0 1 1 0 1 0 0 0 1 0 1 1 0 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 0 0 1 0 0 0
8 1 1 0 1 0 1 0 0 0 0 0 1 0 1 1 0 1 1 0 1 0 1 1 0 0 1 1 1 0 1 0 1 0 0 1 1 1
9 0 1 1 1 0 0 1 1 0 0 1 0 0 1 0 1 1 1 1 0 1 0 1 0 0 1 0 1 1 0 0 0 1 0 1 2 2
10 1 1 0 0 1 0 0 1 1 0 0 1 1 1 0 1 0 0 1 1 1 1 0 0 0 1 0 1 0 1 0 0 1 1 0 0 3
11 0 1 1 1 1 1 0 0 1 1 1 0 1 0 0 1 0 0 0 1 0 0 1 0 1 1 1 1 0 0 0 0 0 1 1 1 4
12 1 1 1 0 1 0 1 0 0 1 1 0 0 0 1 0 1 0 1 1 0 0 0 1 0 1 1 1 0 1 1 0 1 0 0 2 5
13 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 1 0 1 0 0 1 1 1 1 1 0 1 0 0 1 1 1 1 1 0 0
14 1 0 0 1 1 1 1 1 0 1 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 1 1 1 1 1
15 0 1 1 1 0 0 1 1 0 1 0 1 0 0 1 1 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 0 0 1 1 2 2
16 1 1 0 0 1 0 0 1 1 1 1 0 0 1 1 0 0 1 0 0 1 1 1 0 1 0 1 0 0 0 1 0 1 0 1 0 3
17 0 0 0 1 1 0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 4
18 1 1 1 0 1 0 1 0 0 0 0 1 1 0 0 1 1 0 0 0 1 1 0 0 1 1 1 0 1 0 1 1 0 0 1 2 5
19 0 0 1 0 1 1 0 1 0 0 1 0 1 0 1 1 0 1 1 0 1 1 0 1 0 0 1 1 0 1 0 1 0 0 1 0 0
20 1 1 0 1 0 1 0 0 0 0 1 0 1 0 1 1 0 0 1 1 1 0 1 0 1 0 0 0 1 1 1 1 1 0 0 1 1
21 0 1 0 0 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 0 0 0 0 0 1 1 1 0 0 1 1 1 0 1 0 2 2
22 1 0 1 1 0 0 0 1 0 1 1 1 0 1 0 1 0 0 0 1 0 1 0 1 1 0 1 1 1 0 0 1 1 0 0 0 3
23 0 1 1 1 1 1 0 0 1 1 0 1 0 1 0 0 1 0 1 0 1 0 0 1 1 0 0 0 0 1 0 1 1 0 1 1 4
24 1 0 1 0 0 1 1 0 0 1 1 1 1 0 0 0 1 1 0 0 1 1 1 0 1 0 0 1 0 1 0 0 1 1 0 2 5
25 0 0 0 0 0 0 0 0 1 0 1 1 0 0 1 1 1 1 0 1 1 0 0 1 1 1 1 0 1 1 0 0 1 1 1 0 0
26 1 0 0 1 1 1 1 1 1 0 1 1 0 0 1 1 1 0 1 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1
27 0 1 0 0 0 1 1 1 1 1 0 1 1 0 1 0 0 0 0 0 1 0 1 1 0 1 1 1 1 0 0 1 1 0 0 2 2
28 1 0 1 1 0 0 0 1 1 1 0 1 1 0 1 0 0 1 1 0 0 0 0 0 1 1 0 1 1 1 1 0 0 0 1 0 3
29 0 0 0 1 1 0 1 0 0 1 0 0 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 0 0 0 1 4
30 1 0 1 0 0 1 1 0 1 0 0 1 1 1 0 1 0 1 1 1 0 0 1 1 0 0 1 0 0 0 1 0 1 0 1 2 5
31 0 0 1 0 1 1 0 1 1 1 0 0 0 0 0 1 1 1 0 1 0 1 1 0 0 1 0 0 1 1 1 1 1 0 0 0 0
32 1 1 0 1 0 1 0 0 1 1 0 0 0 0 0 1 1 1 1 0 1 1 0 1 0 0 1 1 1 0 1 0 0 1 0 1 1
33 0 1 0 0 0 1 1 1 1 0 1 0 1 1 0 0 1 0 0 1 0 1 0 1 1 0 0 1 1 1 1 0 0 0 1 2 2
34 1 0 1 1 0 0 0 1 1 0 1 0 1 1 0 0 1 0 0 0 1 0 1 1 0 1 1 0 0 1 1 1 0 1 0 0 3
35 0 1 1 1 1 1 0 0 0 0 1 1 1 1 1 0 0 1 0 0 0 1 0 1 0 1 0 0 1 0 1 0 1 1 0 1 4
36 1 0 1 0 0 1 1 0 1 1 1 0 0 1 1 0 0 0 1 1 1 1 0 0 0 1 0 0 1 0 0 1 0 1 1 2 5

L36(235) = (B1 −B35) = [018 ⊕ (2), L
(=)
36 (234)],

L36(31228) = (CB1B9 −B35) = [012 ⊕ (3), L
(=)
36 (228)],

L36(61218) = (FB18 −B35) = [06 ⊕ (6), L
(=)
36 (218)].

Similarly, by using OAs L36(21861) = [06 ⊕ (6), L
(=)
36 (218)] (in Table 1) and

L36(6x · · · ) = [06 ⊕ (6), L
(−)
36 (· · · )], we can construct the following OAs

[L
(−)
36 (· · · )⊕ 02, 012 ⊕ (12), L

(=)
36 (218)

k
⊗ (2)].

There are at least 7 new OAs of run size 72 for this family which are included in
Table 2.

There are lots of asymmetrical OAs with moderate run sizes (of course run size
72) which can be obtained by only using the simple procedures of both the two
factor method and the three factor method. The generalized Kronecker product (or
orthogonal-array product) is more useful for constructing larger arrays from lesser
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Table 2. Orthogonal arrays L72(· · · ) Obtained in Sections 4.1 and 4.2.
No. Krown OAs L36(· · · ) Obtained OAs L72(· · · 41) Obtained OAs L72(· · · 6x) Obtained OAs L72(· · · 121)

1 L36(235) L72(26841) − −

2 L36(22831)(new) L72(2613141)(new) L72(25661) (new) −

3 L36(22032) L72(2533241) L72(2483161) −

4 L36(2183161) L72(251316141) L72(24662) L72(23631121)

5 L36(21634) L72(2493441) L72(2443361) −

6 L36(21691) L72(2499141) − −

7 L36(21362) L72(2466241) − L72(23161121) (new)

8 L36(211312) L72(24431241) L72(23931161) (new) −

9 L36(2113261) L72(244326141) L72(2393162) L72(22932121)

10 L36(2103861) L72(243386141) L72(2383762) (new) L72(22838121)

11 L36(2103162) L72(243316241) L72(23863) L72(2283161121) (new)

12 L36(293462) L72(242346241) L72(2373363) L72(2273461121)

13 L36(2863) L72(2416341) − L72(22662121) (new)

14 L36(24313) L72(23731341) L72(23231261) −

15 L36(243163) L72(237316341) L72(23264) (new) L72(2223162121) (new)

16 L36(233961) L72(236396141) L72(2313862) L72(22139121)

17 L36(233263) L72(236326341) L72(2313164) (new) L72(2213262121) (new)

18 L36(2231261) L72(2353126141) L72(23031162)(new) L72(220312121)

19 L36(223562) L72(235356241) L72(2303463)(new) L72(2203561121)

20 L36(22181) L72(23518141) − −

21 L36(213862) L72(234386241) L72(2293763)(new) L72(2193861121)

22 L36(213363) L72(234336341) L72(2293264)(new) L72(2193362121) (new)

23 L36(31341) − L72(2283126141) −

24 L36(312121) − L72(22831161121)(new) −

25 L36(3763) − L72(2283664)(new) L72(2183762121) (new)

26 L36(4191) − − −

· · · · · · · · · · · ·

Note. These OAs(new) in above table are new, which are not included in
Hedayat etc [2] and Kuhfeld [4] yet.

ones.

4.3. Construction of OA L96(2
12420241)

Consider the three-step procedure of generalized Kronecker product in Section 3.
The following is a recipe for constructing the OA L96(212420241) (Zhang [16]) by
using the three-step procedure of generalized Kronecker product for case k1 = 3,
k2 = 1 and 4 = 0.

The specific result of OA L96(212420241) has been given in Zhang [16], but
gave no detail construction process. To illustrate the three-step procedure of the
generalized Kronecker product to construct OAs in this paper, this section will give
the special structure of this OA.

Step 1. Orthogonally decompose the projection matrix τ96. From Eq.(3.1), we
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have
τ96 = I24 ⊗ τ4 + τ24 ⊗ P4. (4.1)

Based on the Abelian group G = {0, 1, 2, 3} of order 4 with the addition table:

(4)⊕ (4)T =


0 1 2 3

1 0 3 2

2 3 0 1

3 2 1 0

 , (4.2)

consider the particular form of difference matrix D(12, 12; 4) (Zhang [14]) as follows

D(12, 12; 4) =



0 0 0 1 1 1 2 2 2 3 3 3

0 0 0 2 2 2 3 3 3 1 1 1

0 0 0 3 3 3 1 1 1 2 2 2

1 2 3 1 2 3 1 2 3 1 2 3

1 2 3 2 3 1 2 3 1 2 3 1

1 2 3 3 1 2 3 1 2 3 1 2

2 3 1 1 2 3 2 3 1 3 1 2

2 3 1 2 3 1 3 1 2 1 2 3

2 3 1 3 1 2 1 2 3 2 3 1

3 1 2 1 2 3 3 1 2 2 3 1

3 1 2 2 3 1 1 2 3 3 1 2

3 1 2 3 1 2 2 3 1 1 2 3



,

By Definition 2.5, we obtain

D(12, 12; 4)
k
⊗ (4) = [((4)⊕ 03)

k
⊗ (4), T1(((4)⊕ 03)

k
⊗ (4)),

T2(((4)⊕ 03)
k
⊗ (4)), T3(((4)⊕ 03)

k
⊗ (4)) ],

where the map k(i, j) of generalized Kronecker product (4)
k
⊗ (4) over above Abelian

group G of order 4 satisfies

k : (4)
k
⊗ (4) =


0 0 0

1 2 3

2 3 1

3 1 2

⊕ (4) =


0 1 2 3 1 0 3 2 2 3 0 1 3 2 1 0

0 1 2 3 2 3 0 1 3 2 1 0 1 0 3 2

0 1 2 3 3 2 1 0 1 0 3 2 2 3 0 1


T

,

and the permutation matrices T1, T2, T3 are defined as

T1 = diag(σ(1), σ(2), σ(3),K(3, 3)⊗ I4),

T2 = diag(σ(2), σ(3), σ(1), [diag(I3, N3, N
2
3 )K(3, 3)]⊗ I4),

T3 = diag(σ(3), σ(1), σ(2), [diag(I3, N
2
3 , N3)K(3, 3)]⊗ I4),
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in which the permutation matrices N3 and K(3, 3) are defined in (1) and σ(j)(4) =
j⊕ (4) over above Abelian group G of order 4 for j = 0, 1, 2, 3. For example, by the
notations of the permutation matrices I2 and N2 in (1), we can take

σ(0) = I4, σ(1) = I2 ⊗N2, σ(2) = N2 ⊗ I2, σ(3) = N2 ⊗N2.

By Theorem 2.5 and Eq. (2.2), we obtain

I12 ⊗ τ4 = m(D(12, 12; 4)
k
⊗ (4))

=

3∑
i=0

m(Ti((4)
k
⊗ 13 ⊗ (4)))

=

3∑
i=0

Tim((4)
k
⊗ 13 ⊗ (4))TTi

=

3∑
i=0

Ti(τ4 ⊗ P3 ⊗ τ4)TTi ,

where T0 = I48. By Theorem 2.5 and Eq.(4.3), an orthogonal decomposition of
projection matrix I24 ⊗ τ4 can be obtained as follows:

I24 ⊗ τ4 = I2 ⊗ [I12 ⊗ τ4]

= I2 ⊗
(

3∑
i=0

Ti(τ4 ⊗ P3 ⊗ τ4)TTi

)
=

3∑
i=0

(I2 ⊗ Ti) (I2 ⊗ τ4 ⊗ P3 ⊗ τ4) (I2 ⊗ Ti)T ,

=
3∑
i=0

Si(I2 ⊗ τ4 ⊗ P3 ⊗ τ4)STi ,

where S0 = I96, Si = I2 ⊗ Ti, i = 1, 2, 3.
Denoted that Mi = SiK(8, 12) for i = 0, 1, 2, 3. Since K(8, 12)(P3 ⊗ τ4 ⊗ I2 ⊗

τ4)K(8, 12)T = I2 ⊗ τ4 ⊗ P3 ⊗ τ4, from Eq.(4.1) and above equation we obtain an
orthogonal decomposition of projection matrix τ96 as follows:

τ96 = I24 ⊗ τ4 + τ24 ⊗ P8 =

3∑
i=0

Mi(P3 ⊗ τ4 ⊗ I2 ⊗ τ4)MT
i + τ24 ⊗ P4. (4.3)

The above decompositions are orthogonal because of the orthogonality in each step.
Step 2. First, we now want to find an OA L32(2345) such that its MI is

τ4⊗ I2⊗ τ4. From Eq.(3.1) and some operations of matrices , we have the following
orthogonal decomposition of projection matrix τ4 ⊗ I2 ⊗ τ4 :

τ4 ⊗ I2 ⊗ τ4
=(τ2 ⊗ P4 ⊗ τ2 ⊗ P2 + P2 ⊗ τ2 ⊗ P2 ⊗ P2 ⊗ τ2 + τ2 ⊗ τ2 ⊗ P2 ⊗ τ2 ⊗ τ2)

+ (τ2 ⊗ τ2 ⊗ P2 ⊗ τ2 ⊗ P2 + P2 ⊗ τ2 ⊗ τ2 ⊗ P2 ⊗ τ2 + τ2 ⊗ P2 ⊗ τ2 ⊗ τ2 ⊗ τ2)

+ (τ2 ⊗ τ2 ⊗ τ2 ⊗ τ2 ⊗ P2 + τ2 ⊗ P2 ⊗ τ2 ⊗ P2 ⊗ τ2 + P2 ⊗ τ2 ⊗ P2 ⊗ τ2 ⊗ τ2)

+ (τ2 ⊗ P2 ⊗ τ2 ⊗ τ2 ⊗ P2 + τ2 ⊗ τ2 ⊗ P2 ⊗ P2 ⊗ τ2 + P2 ⊗ τ2 ⊗ τ2 ⊗ τ2 ⊗ τ2)

+ (P2 ⊗ τ2 ⊗ τ2 ⊗ τ2 ⊗ P2 + τ2 ⊗ τ2 ⊗ τ2 ⊗ P2 ⊗ τ2 + τ2 ⊗ P4 ⊗ τ2 ⊗ τ2)

+ P2 ⊗ τ2 ⊗ P2 ⊗ τ2 ⊗ P2 + τ2 ⊗ P8 ⊗ τ2 + τ2 ⊗ τ2 ⊗ τ2 ⊗ τ2 ⊗ τ2. (4.4)
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By Theorem 2.4, we have m((2)⊕ (2)) = τ2⊗τ2. If define the generalized Kronecker

product (2)
k
⊗ (2) = (2) ⊕ (2), then we can construct an OA L32(218) whose MI is

equal to τ4 ⊗ I2 ⊗ τ4 as follows

L32(218)

=[(4)⊕ 02, (4)
k
⊗ (2)]

k
⊗ (4)

=[((2)⊕ 04 ⊕ (2)⊕ 02, 02 ⊕ (2)⊕ 02 ⊕ 02 ⊕ (2), (2)⊕ (2)⊕ 02 ⊕ (2)⊕ (2)),

((2)⊕ (2)⊕ 02 ⊕ (2)⊕ 02, 02 ⊕ (2)⊕ (2)⊕ 02 ⊕ (2), (2)⊕ 02 ⊕ (2)⊕ (2)⊕ (2)),

((2)⊕ (2)⊕ (2)⊕ (2)⊕ 02, (2)⊕ 02 ⊕ (2)⊕ 02 ⊕ (2), 02 ⊕ (2)⊕ 02 ⊕ (2)⊕ (2)),

((2)⊕ 02 ⊕ (2)⊕ (2)⊕ 02, (2)⊕ (2)⊕ 02 ⊕ 02 ⊕ (2), 02 ⊕ (2)⊕ (2)⊕ (2)⊕ (2)),

(02 ⊕ (2)⊕ (2)⊕ (2)⊕ 02, (2)⊕ (2)⊕ (2)⊕ 02 ⊕ (2), (2)⊕ 04 ⊕ (2)⊕ (2)),

02 ⊕ (2)⊕ 02 ⊕ (2)⊕ 02, (2)⊕ 08 ⊕ (2), (2)⊕ (2)⊕ (2)⊕ (2)⊕ (2)], (4.5)

where 02 = (0, 0)T , (2) = (0, 1)T ,⊕, . . . are corresponding to P2, τ2,⊗, . . ., respec-
tively.

By the usual Hadamard product ◦ in matrix theory, we find the each of items
in Eq.(4.4) corresponding to the each of items in Eq.(4.5) having the forms

(A+B + 32A ◦B) and (a, b, a+ b), respectively,

where A = m(a), B = m(b) and the addition ′+′ of a + b is the usual modulo 2.

From the method of generalized Hadamard product
h◦= � where h(i, j) = 2i + j,

each of the items (a, b, a+ b) can be replaced by a 4-level column whose form is a� b
where [(2) ⊕ 02] � [02 ⊕ (2)] = (4). Thus we obtain an orthogonal array L32(2345)
whose MI is equal to τ4 ⊗ I2 ⊗ τ4 and whose form is

L32(2345) =[02 ⊕ (2)⊕ 02 ⊕ (2)⊕ 02, (2)⊕ 08 ⊕ (2),

(2)⊕ (2)⊕ (2)⊕ (2)⊕ (2), D(8, 5; 4)⊕ (4)],

in which the structure of difference matrix D(8, 5; 4) can be obtained by using the
definition of the generalized Hadamard product above � as follows:

D(8, 5; 4) =



0 0 0 0 0

0 1 3 3 2

1 3 3 2 1

1 2 0 1 3

2 2 1 3 3

2 3 2 0 1

3 1 2 1 2

3 0 1 2 0


,

over the additive group G = {0, 1, 2, 3} with the addition table (4.2).
Step 3. By Corollaries 1, 2 and Eq.(4.3), we lay out the new OA

L96(212420241) =[M0(03 ⊕ L32(2345)),M1(03 ⊕ L32(2345)),

M2(03 ⊕ L32(2345)),M3(03 ⊕ L32(2345)), (24)⊕ 04].
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By the definition of permutation matrices M0,M1,M2,M3 and the form of orthog-
onal array L32(2345), we can change the OA L96(212420241) into the form

L96(212420241) =[D1(12, 4; 2)⊕ 02 ⊕ (2)⊕ 02, D
2(12, 4; 2)⊕ 04 ⊕ (2),

D3(12, 4; 2)⊕ (2)⊕ (2)⊕ (2), D(24, 20; 4)⊕ (4), (24)⊕ 04],

or the form

L96(212420241) =[(2)⊕ 02 ⊕D1(12, 4; 2)⊕ 02, 02 ⊕ (2)⊕D2(12, 4; 2)⊕ 02,

(2)⊕ (2)⊕D3(12, 4; 2)⊕ (2), (4)⊕D(24, 20; 4), 04 ⊕ (24)].

Thus a new difference matrix D(24, 20; 4) and a repeating-column difference ma-
trix(See Zhang [16])

[D(24, 20; 4), D1(12, 4; 2)⊕ 02, D
2(12, 4; 2)⊕ 02, D

3(12, 4; 2)⊕ (2)]

also can be obtained from the OA over the additive group G = {0, 1, 2, 3} with the
addition table (4.2). From the repeating-column difference matrix also can obtained
equivalently a normal mixed difference matrix in Zhang [16].

Furthermore, replacing the column (24) by 24-run OAs:

L24(223), L24(22041), L24(2134131), L24(212121), L24(2114161), L24(3181),

we can construct new mixed-level OAs as follows:

L96(235420), L96(232421), L96(224420121), L96(22542131),

L96(22342161), L96(2124203181),

respectively. Based on these OAs and by generalized Hadamard product �, Zhang
[16] had obtained and exhibited the following arrays:

L96(212420241), L96(218422121), L96(21742361), L96(21942331), L96(226423).
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