BIFURCATION ANALYSIS OF AN SIRS EPIDEMIC MODEL WITH STANDARD INCIDENCE RATE AND SATURATED TREATMENT FUNCTION

Yixian Gao¹, Weipeng Zhang¹†, Dan Liu² and Yanju Xiao¹

Abstract An epidemic model with standard incidence rate and saturated treatment function of infectious individuals is proposed to understand the effect of the capacity for treatment of infective individuals on the disease spread. The treatment function in this paper is a continuous and differential function which exhibits the effect of delayed treatment when the rate of treatment is lower and the number of infected individuals is getting larger. It is proved that the existence and stability of the disease-free and endemic equilibria for the model are not only related to the basic reproduction number but also to the capacity for treatment of infective individuals. And a backward bifurcation is found when the capacity is not enough. By computing the first Lyapunov coefficient, we can determine the type of Hopf bifurcation, i.e., subcritical Hopf bifurcation or supercritical Hopf bifurcation. We also show that under some conditions the model undergoes Bogdanov-Takens bifurcation. Finally, numerical simulations are given to support some of the theoretical results.

Keywords Epidemic model, saturated treatment, stability, bifurcation.

1. Introduction

Recently, a lot of research work in the literature has been devoted to detecting the dynamical behavior of all kinds of epidemic models to prevent and control the spread of the infectious disease. We found that the incidence rate is a key factor in conducting the rich dynamical behaviors in many related literatures [1–3, 6, 9, 11, 14, 16, 18, 20, 21, 24–27, 29, 32, 36–40, 42, 44, 45]. Let \(S(t) \) represent the number of susceptible individuals, \(I(t) \) represent the number of infected individuals and \(R(t) \) be the number of the recovered individuals at time \(t \), respectively. Bilinear incidence rate is common in most epidemic models, i.e., \(\beta I(t) S(t) \), where \(\beta \) is the probability...
of transmission per contact. Besides, many other types of incidence rate are also adopted recently. The general incidence rate

$$f(I)S = \frac{\beta IS}{1 + \alpha I}$$

was cited extensively in literature and was proposed by Liu et al. [26]. We can see that when \(p = 1 \) and \(\alpha = 0 \) or \(q = 0 \), the incidence rate changes into bilinear incidence rate. Moreover, when \(p = q = 2 \), Ruan and Wang in [38] studied the global dynamics of an SIRS model with the incidence rate function

$$f(I)S = \frac{\beta IS}{1 + \alpha I^2}$$

and they also exhibited that the epidemic model undergoes a Bogdanov-Takens bifurcation. Yorke and London adopted a special incidence rate in [43], that is,

$$f(I)S = \beta (1 - cI)IS.$$

The continuous-time Susceptible-Infected-Recovered-Susceptible (SIRS) epidemic model with standard incidence rate

$$f(I)S = \frac{\beta IS}{S + I + R}$$

was studied in [30], where the authors discussed the stability of both the disease-free equilibrium and the endemic equilibrium for the model. To have a better understanding of the dynamics of the system, Wei and Cui [40] explored an SIS epidemic model with standard incidence rate function

$$f(I)S = \frac{\beta IS}{I + S},$$

and they found that the model undergoes rich dynamic behaviors and backward bifurcation.

It is common to see in recent research works [18, 23, 25, 33, 37, 38, 44–46, 48] that the researchers began to add treatment function into the epidemic models to prevent the spread of the infectious diseases. Generally speaking, the treatment function of the infective individuals is always supposed to be proportional to the number of the infective individuals. But the treatment of a disease should have a maximal capacity and the treatment resources should be quite large. So, we should adopt a suitable treatment function for the epidemic disease. Wang and Ruan [38] showed a constant treatment function of diseases in an SIR model as follows

$$T(I) = \begin{cases} r, & I > 0, \\ 0, & I = 0. \end{cases}$$

In this SIR model, they showed that the model undertakes saddle-node bifurcation, Hopf bifurcation and Bogdanov-Takens bifurcation. Moreover, [37] adopted a new type of treatment function, that is,

$$T(I) = \begin{cases} kI, & 0 \leq I \leq I_0, \\ m, & I > I_0. \end{cases}$$
This piecewise linear treatment function means that the treatment rate is proportional to the number of the infective individuals when the treatment capacity has not been reached. With this treatment function, Wang [37] found that a backward bifurcation takes place in an SIR epidemic model. In [13], J.C. Eckalbar and W.L. Eckalbar introduced an SIR epidemic model with a quadratic treatment function, that is,

\[T(I) = \max\{rI - gI^2, 0\}, \quad r, g > 0. \]

They found that the model has four equilibria at most, and the system undertakes backward bifurcation and limit cycles under certain conditions.

Now, as seen in [23, 40, 41, 44–48], saturated treatment function is frequently adopted in different models. In [44], Zhang and Liu took a continuous and differentiable saturated treatment function

\[T(I) = \frac{rI}{1 + \alpha I}, \]

where \(r > 0, \alpha \geq 0. \) \(r \) represents the cure rate and \(\alpha \) measures the effect extent of the infected being delayed for treatment. We can realize that the treatment function \(T(I) \approx rI \) when \(I \) is small enough, whereas \(T(I) \approx r/\alpha \) when \(I \) is large enough. In [44], the authors found that \(R_0 = 1 \) is a critical threshold. The disease will be eradicated when the delayed effect is weak. Otherwise, a backward bifurcation will take place. Recently, saturated-type treatment functions have been adopted in all kinds of epidemic models, such as for SIR [44, 46], for SIS [40, 41, 47] as well as for SEIR [23, 48] models and so on. It is well known that in many developing countries the number of patients that need to be treated may exceed the carry capacity of local hospitals because of the restrictions on medical conditions. Hence, saturated treatment function is a suitable choice for this case.

In the real world, some infectious diseases confer temporary immunity. After a period of time, such infections with loss of immunity become susceptible again after infection. This type of disease can be modeled by the SIRS type. To the best of our knowledge, the SIRS epidemic models with different types of incidence rates have been extensively investigated in the literatures about epidemic models [2, 19, 21, 26, 28, 32, 34, 36, 49], etc. But there is no much research about the saturated treatment function.

Motivated by these points, this paper considers the following SIRS epidemic model with standard incidence rate and saturated treatment function.

\[
\begin{align*}
\frac{dS}{dt} &= B - dS - \frac{\lambda IS}{N} + \nu R, \\
\frac{dI}{dt} &= \frac{\lambda IS}{N} - (d + r)I - \frac{\beta I}{1 + \alpha I}, \\
\frac{dR}{dt} &= rI - (d + \nu)R + \frac{\beta I}{1 + \alpha I},
\end{align*}
\]

(1.10)

where \(S \) and \(I \) denotes the number of susceptible and infective, respectively. \(R \) denotes the number of removed individuals and \(B \) is the rate of recruitment of individuals. \(N \equiv S + I + R \) is the total population size, \(d \) is the natural death rate and \(r \) is the recovery rate, \(\nu \) is the rate at which recovered individuals lose their immunity (acquired by infection) and return to susceptible class. The standard incidence rate is \(\frac{\lambda IS}{N} \), where \(\lambda \) is the probability of infection per contact per unit time. The saturated treatment function \(h(I) \equiv \frac{\beta I}{1 + \alpha I} \), where \(\beta \) is positive and \(\alpha \) is nonnegative.
Our study shows that the SIRS model may also exhibit multiple stable equilibria even when the basic reproductive number R_0 is less than unity. In most classical epidemic models, the disease will be eradicated if $R_0 < 1$ and persist if $R_0 > 1$. However, recent work has shown that there are cases for which the necessary condition $R_0 < 1$ is not sufficient to completely remove the disease from the population. Here, we prove that the disease will be eradicated if and only if $R_0 < R_0^* < 1$. This paper focuses on the detailed dynamics analysis of the model (1.10). The stability of the disease-free equilibria and endemic equilibria is investigated. We show that the system exhibits backward bifurcation, Hopf bifurcation and Bogdanov-Takens bifurcation under some conditions.

The organization of this paper is as follows. In Section 2, we discuss the existence of the equilibria and backward bifurcation by reducing the model to a two dimensional system. In Section 3, we investigate the stability analysis of the equilibria. In Section 4, we explore the Hopf bifurcation of system (1.10). In Section 5, we show that Bogdanov-Takens bifurcation happens in system (1.10). In Section 6, we make numerical simulations for the model. The paper ends with a brief discussion of the mathematical results and epidemiological implications in Section 7.

2. Model equilibria

From the model (1.10), we note that the equation for the total population is given by $\frac{dN}{dt} = B - dN$. Since $N \to B/d$ as $t \to \infty$, it follows that at any equilibrium $E^* = (S^*, I^*, R^*)$, $N^* = S^* + I^* + R^* = B/d$, and

$$\Omega = \{(S, I, R) : S, I, R \geq 0, S + I + R = B/d\}$$

is a positively invariant region for the model. Henceforth, we restrict our attention to the dynamics of the model in Ω.

Since Ω is a positively invariant region for the model (1.10), assuming that the size of the population has reached its limiting value, i.e., $N \equiv B/d = S + I + R$, and using $R = B/d - S - I$, we can reduce the model (1.10) to the following model:

$$\begin{align*}
\frac{dS}{dt} &= B - dS - \frac{\lambda dSI}{B} + \nu(B/d - S - I), \\
\frac{dI}{dt} &= \frac{\lambda dSI}{B} - (d + r)I - \frac{\beta I}{1 + \alpha I}.
\end{align*}$$

In the absence of the disease ($I = 0$), the model (2.1) exhibits a unique disease-free equilibrium, given by $E_0 = (B/d, 0)$. The Jacobian matrix of (2.1) at E_0 is

$$M(E_0) = \begin{pmatrix}
-d - \nu & -\lambda - \nu \\
0 & \lambda - d - r - \beta
\end{pmatrix}.$$

In the following, let us recall how to calculate the basic reproduction number R_0 by using the next generation matrix [10,12], where the whole population is divided into n compartments in which there are $m < n$ infected compartments. Let $x_i, i = 1, 2, 3, \ldots, m$ be the numbers of infected individuals in the ith infected compartment at time t. Now, the epidemic model is

$$\frac{dx_i}{dt} = \mathcal{F}_i(x) - \mathcal{V}_i(x),$$
where \(V_i(x) = [V_i^-(x) - V_i^+(x)], \ i = 1, 2, \ldots, n. \ F_i = 0, \text{ if } i > m. \)

In the above equations, \(F_i(x) \) represents the rate of appearance of new infections in compartment \(i. \) \(V_i^+ \) represents the rate of transfer of individuals into compartment \(i \) by all other means, and \(V_i^- \) represents the rate of transfer of individuals out of compartment \(i. \) The above model can also be written as

\[
\frac{dx}{dt} = F(x) - V(x),
\]

where

\[
x = (x_1, x_2, \ldots, x_n)^T,
\]

\[
F(x) = \left(F_1(x), F_2(x), \ldots, F_n(x) \right)^T,
\]

and

\[
V(x) = \left(V_1(x), V_2(x), \ldots, V_n(x) \right)^T.
\]

Let \(x_0 \) be the disease-free equilibrium. The values of the Jacobian matrices \(F(x) \) and \(V(x) \) are

\[
DF(x_0) = \begin{pmatrix} F & 0 \\ 0 & 0 \end{pmatrix}
\]

and

\[
DV(x_0) = \begin{pmatrix} V & 0 \\ J_3 & J_4 \end{pmatrix},
\]

respectively.

Here, \(F \) and \(V \) are \(m \times m \) matrices, defined as \(F = \frac{\partial F_i}{\partial x_j}(x_0) \) and \(V = \frac{\partial V_i}{\partial x_j}(x_0). \)

Now, the matrix \(FV^{-1} \) is known as the next-generation matrix. The largest eigenvalue or spectral radius of \(FV^{-1} \) is the basic reproduction number of the model, i.e., \(R_0 = \rho(FV^{-1}). \)

Then, we calculate the basic reproduction number of model (2.1). Firstly, system (2.1) is written as the following model

\[
\begin{aligned}
\frac{dI}{dt} &= \lambda dSI - (d + r)I - \frac{\beta I}{1 + \alpha I}, \\
\frac{dS}{dt} &= B - dS - \frac{\lambda dSI}{B} + \nu(B/d - S - I).
\end{aligned}
\tag{2.3}
\]

We get

\[
F = \left(\frac{\lambda dSI}{B} \right)
\]

and

\[
V = \begin{pmatrix} (d + r)I + \frac{\beta I}{1 + \alpha I} \\ -B + dS + \frac{\lambda dSI}{B} - \nu(B/d - S - I) \end{pmatrix}.
\]

The infected compartment are \(I, \) giving \(m = 1. \) In system (2.3), a disease-free equilibrium is \(x_0 = (0, B/d). \) Then

\[
F = \lambda, \quad V = d + r + \beta,
\]
giving
\[V^{-1} = \frac{1}{d + r + \beta} \]
and the basic reproduction number
\[R_0 = \rho(FV^{-1}) = \frac{\lambda}{d + r + \beta}. \]

For convenience, we define
\[R_0^* \triangleq \frac{4B\lambda^2 d\alpha(d+r+\nu)}{[(d+r)\alpha(d+r-\lambda)+d\lambda(d+r+\nu+\beta)]^2+4\lambda^2 d\alpha(d+r)B(d+r+\nu)}. \]

Next, we consider all endemic equilibria in system (2.1) and get the following theorem.

Theorem 2.1. The following results hold.

(A) Let \(\alpha = 0 \). Then system (2.1) has a unique endemic equilibrium when \(R_0 > 1 \), and has no endemic equilibrium when \(R_0 \leq 1 \).

(B) Let \(\alpha > 0 \). If \(b > 0 \), then system (2.1) has a unique endemic equilibrium when \(R_0 > 1 \), and no endemic equilibrium when \(R_0 \leq 1 \).

(C) Let \(\alpha > 0 \). If \(b < 0 \), then system (2.1) has a unique endemic equilibrium when \(R_0 \geq 1 \), and no endemic equilibrium when \(R_0 < R_0^* \), and two endemic equilibria \(E_1 \) and \(E_2 \) when \(R_0^* \leq R_0 < 1 \), and \(E_1 = E_2 \) when \(R_0 = R_0^* \).

Proof. In order to find the endemic equilibrium in the presence of the disease \((I \neq 0) \), we consider the model (2.1). An endemic equilibrium always satisfies
\[
\begin{cases}
B - dS - \frac{\lambda dS I}{B} + \nu\left(\frac{B}{d} - S - I\right) = 0,
\frac{\lambda dS I}{B} - (d + r)I - \frac{\beta I}{1 + \alpha I} = 0.
\end{cases} \tag{2.5}
\]

Since \(I \neq 0 \), we can solve \(S = \frac{B}{d\alpha}(d + r + \frac{\beta}{1 + \alpha I}) \) by the second equation of (2.5), then substitute it into the first equation of (2.5), and get
\[
B - \frac{(d + \nu)B}{d\alpha}(d + r + \frac{\beta}{1 + \alpha I}) - (d + r + \frac{\beta}{1 + \alpha I})I + \frac{B\nu}{d} - \nu I = 0.
\]

Then we obtain the following equation form
\[aI^2 + bI + c = 0, \tag{2.6} \]
where
\[
\begin{align*}
\alpha &= d\lambda\alpha(d + r + \nu),
\beta &= (d + \nu)B\alpha(d + r - \lambda) + d\lambda(d + r + \nu + \beta),
c &= B(d + \nu)(d + r + \beta - \lambda).
\end{align*}
\]
This equation may admit positive solution
\[
I_1 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}, \quad I_2 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}.
\]
Obviously, if $R_0 = 1$ then $c = 0$, if $R_0 > 1$ then $c < 0$, and if $R_0 < 1$ then $c > 0$. From (2.6), It follows that the results (A), (B) and (C) hold.

As well known, many different approaches can be used to prove the occurrence of a backward bifurcation for a system. For example, the normal form theory [14] or the Castillo-Chavez and Song method [8] or the qualitative approach proposed by Brauer [7] which is based on the analysis of the equilibria curve in the neighborhood of the critical threshold $R_0 = 1$. In this paper, we use this last method to prove our results. Then, we have the following theorem.

Theorem 2.2. If $\alpha > 0$, $b < 0$, then system (2.1) has a backward bifurcation at $R_0 = 1$ (see Figure 1).

Proof. In order to prove the bifurcation curve (the graph of I as a function of R_0) in Figure 1, we think of β as a variable with the other parameters as constants. Through implicit differentiation of the equation (2.6) with respect to β, we get

$$
(2aI + b) \frac{dI}{d\beta} = -Id\lambda - B(d + \nu) < 0.
$$

From equation (2.7), we know the sign of $\frac{dI}{d\beta}$ is opposite with that of $2aI + b$. And from the definition of R_0 we know that R_0 decreases when β increases. It implies that the bifurcation curve has positive slope at equilibrium values with $2aI + b > 0$, and negative slope at equilibrium values with $2aI + b < 0$. If there is no backward bifurcation at $R_0 = 1$, then the unique endemic equilibrium for $R_0 > 1$ satisfies

$$
2aI + b = \sqrt{b^2 - 4ac} > 0,
$$

and the bifurcation curve has positive slope at all points where $I > 0$. When $\alpha > 0$, $b < 0$, if there is a backward bifurcation at $R_0 = 1$, then there is an interval on which there are two endemic equilibria given by

$$
2aI + b = \pm \sqrt{b^2 - 4ac}.
$$

The bifurcation curve has negative slope at the smaller one and positive slope at the larger one. This shows that if $\alpha > 0$, $b < 0$, there is a backward bifurcation as well as a positive equilibrium at $R_0 = 1$.

From Figure 1, we can see that there is a critical value R_0^* as a new threshold if a backward bifurcation takes place, that is to say, the disease will die out when $R_0 < R_0^*$. Now, we give a corollary of a backward bifurcation at $R_0 = 1$ as follows. Set

$$
\alpha_0 := \frac{d\lambda(d + r + \nu + \beta)}{B\beta(d + \nu)},
$$

Corollary 2.1. When $\alpha > \alpha_0$, then system (2.1) has a backward bifurcation at $R_0 = 1$.

Proof. When $R_0 = 1$, which is equivalent to

$$
\lambda = d + r + \beta.
$$

From $\alpha > \alpha_0 = \frac{d\lambda(d + r + \nu + \beta)}{B\beta(d + \nu)}$, it follows that $\alpha B \beta(d + \nu) > d\lambda(d + r + \nu + \beta)$. Furthermore, we get

$$
\alpha B \beta(d + \nu) + \alpha B(d + \nu)(d + r) > d\lambda(d + r + \nu + \beta) + \alpha B(d + \nu)(d + r).
$$
From (2.8), we have
\[(d + \nu)B\alpha(d + r) + d\lambda(d + r + \nu + \beta) < (d + \nu)B\lambda\alpha, \tag{2.9}\]
i.e., \(b < 0\). From Theorem 2.2, it follows that system (2.1) has a backward bifurcation at \(R_0 = 1\). Therefore, the proof is complete.

3. Stability analysis

By (2.2) and the basic reproduction number \(R_0 = \frac{\lambda}{\bar{d} + \bar{r} + \bar{\nu}}\), it is obvious that \(M(E_0)\) has negative eigenvalues if \(\lambda - d - r - \beta < 0\), i.e., \(R_0 < 1\). Then we have the following result.

Theorem 3.1. The disease-free equilibrium \(E_0\) is locally asymptotically stable when \(R_0 < 1\) (see Figure 2), and \(E_0\) is unstable when \(R_0 > 1\) (see Figure 3).

By Figure 1, we know that system (2.1) have a unique endemic equilibrium when \(R_0 > 1\), then we consider the local stability of the unique endemic equilibrium when \(R_0 > 1\).

Theorem 3.2. When \(R_0 > 1\) and \(0 \leq \alpha < \frac{d\lambda B}{\bar{d} + \bar{r} + \bar{\nu}}\), the unique endemic equilibrium \(E^*\) is locally asymptotically stable.

Proof. From Theorem 2.1, we know system (2.1) has a unique endemic equilibrium \(E^*\) when \(R_0 > 1\). Moreover, the Jacobian matrix of system (2.1) is
\[
M = \begin{pmatrix}
 -d - \frac{dM}{B} - \nu & -\frac{d\lambda S}{B} - \nu \\
 \frac{dM}{B} & d\lambda - (d + r) - \frac{\beta}{(1+\alpha I)^2}
\end{pmatrix}. \tag{3.1}
\]
From the second equation of (2.5), we have
\[
\frac{d\lambda S}{B} = d + r + \frac{\beta}{1+\alpha I}. \tag{3.2}
\]
From (3.2), the Jacobian matrix \(M\) reduces to
\[
M = \begin{pmatrix}
 -d - \frac{dM}{B} - \nu & -(d + r + \nu) - \frac{\beta}{1+\alpha I} \\
 \frac{dM}{B} & \frac{\beta}{1+\alpha I} - \frac{\beta}{(1+\alpha I)^2}
\end{pmatrix}.
\]
We obtain
\[
\det(M) = \frac{I}{(1+\alpha I)^2} \left[\frac{d\lambda}{B} (d + r + \nu)(1 + \alpha I)^2 + \frac{d\lambda \beta}{B} (1 + \alpha I) + (d + \nu)\alpha \beta \right],
\]
which is positive if and only if
\[
\frac{d\lambda}{B} (d + r + \nu)(1 + \alpha I)^2 + \frac{d\lambda \beta}{B} (1 + \alpha I) + (d + \nu)\alpha \beta > (d + \nu)\alpha \beta. \tag{3.3}
\]
In fact, it holds that \(\frac{d\lambda}{B} (d + r + \nu)(1 + \alpha I)^2 + \frac{d\lambda \beta}{B} (1 + \alpha I) + \frac{d\lambda \beta}{B} (d + r + \nu + \beta) = \frac{d\lambda}{B} (d + r + \nu + \beta)\). So \(\det(M) > 0\) if
\[
\frac{d\lambda}{B} (d + r + \nu + \beta) > (d + \nu)\alpha \beta.
\]
which is equivalent to
\[\alpha < \frac{d\lambda(d + r + \nu + \beta)}{B\beta(d + \nu)}. \]

The trace of \(M \) is given by
\[\text{tr}(M) = \frac{1}{(1 + \alpha I)^2}[\alpha \beta I - (d + \nu + \frac{d\lambda I}{B})(1 + \alpha I)^2], \]
which is negative if
\[(d + \nu + \frac{d\lambda I}{B})(1 + \alpha I)^2 > \alpha \beta I. \]

Again, we have
\[(d + \nu + \frac{d\lambda I}{B})(1 + \alpha I)^2 > d + \nu + \frac{d\lambda I}{B} > \frac{d\lambda I}{B}. \]
So only if
\[\frac{d\lambda I}{B} > \alpha \beta I, \]
we can obtain
\[\alpha < \frac{d\lambda}{B\beta}. \]
And also
\[\alpha < \frac{d\lambda}{B\beta} < \frac{d\lambda(d + r + \nu + \beta)}{B\beta(d + \nu)}. \]

The proof is complete. \(\square \)

Now we consider the case that there are two endemic equilibria \(E_1 \) and \(E_2 \). Let \(M_i \) be the Jacobian matrix at \(E_i \), \(i = 1, 2 \).

Theorem 3.3. When \(B\alpha(d + \nu)(d + r - \lambda) + d\lambda(d + r + \nu) > 0 \), the endemic equilibrium \(E_1 \) is a saddle.

Proof. Since \(I_1 = \frac{-b - \sqrt{b^2 - 4ac}}{2a} \) and \(\Delta = b^2 - 4ac \), we have \(I_1 = \frac{-b - \sqrt{\Delta}}{2a} \).

\[
\det(M_1) = \frac{I_1}{B(1 + \alpha I_1)^2}[d\lambda(d + r + \nu)(1 + \alpha I_1)^2 + d\lambda \beta - B\alpha \beta(d + \nu)]
\]
\[\triangleq \frac{I_1}{B(1 + \alpha I_1)^2} \times \psi(I_1). \]

From the existence of \(E_1 \), we know that \(b < 0 \) and \(R_0 < 1 \), then we obtain
\[\psi(0) < 0. \]
Again, \(\psi'(I_1) = 2ad\lambda(d + r + \nu)(1 + \alpha I_1) > 0 \), so \(\psi(I_1) \) is a monotone increasing function. It follows that there is a unique \(I^* > 0 \) such that
\[
\begin{align*}
\psi(I_1) &= 0, \quad \text{when } I_1 = I^*, \\
\psi(I_1) &< 0, \quad \text{when } 0 < I_1 < I^*, \\
\psi(I_1) &> 0, \quad \text{when } I_1 > I^*,
\end{align*}
\]
where

\[I^* = \frac{1}{\alpha} \sqrt{\frac{B\alpha(d + \nu) - d\lambda\beta}{d\lambda(d + r + \nu)}} - \frac{1}{\alpha}. \]

Besides,

\[I_1 = I^* + \frac{P - \sqrt{\Delta}}{2\alpha d\lambda(d + r + \nu)}, \]

where

\[P = d\lambda(d + r + \nu - \beta) - 2\sqrt{[B\alpha\beta(d + \nu) - \lambda\beta]d\lambda(d + r + \nu)} \]
\[+ B\alpha(d + \nu)(\lambda - d - r), \]

and

\[\Delta = [(d + \nu)B\alpha(d + r - \lambda) + d\lambda(d + r + \nu + \beta)]^2 \]
\[- 4d\lambda\alpha(d + r + \nu)B(d + \nu)(d + r + \beta - \lambda), \]

After tedious calculations (see Appendix A), we show that \(I_1 < I^* \). So we get

\[\det(M_1) < 0. \]

Hence the endemic equilibria \(E_1 \) is a saddle. The proof is complete.

In order to explore the stability of the endemic equilibrium \(E_2 \), define

\[m_1 := a^2C - a\Lambda C - abE + \Lambda b^2, \quad m_2 := a^2D - acE + bc\Lambda, \]

where \(\Lambda, E, C \) and \(D \) are defined in (3.7).

Theorem 3.4. If \(\eta > 0 \), then endemic equilibrium \(E_2 \) is locally asymptotically stable; if \(\eta < 0 \), then endemic equilibrium \(E_2 \) is unstable, where \(\eta := 2am_2 + m_1(\sqrt{b^2 - 4ac} - b). \)

Proof. Since

\[\det(M_2) = \frac{I_2}{B(1 + \alpha I_2)^2} [d\lambda(d + r + \nu)(1 + \alpha I_1)^2 + d\lambda\beta - B\alpha\beta(d + \nu)] \]
\[= \frac{I_2}{B(1 + \alpha I_2)^2} \times \psi(I_2). \]

(3.5)

Similar to the arguments of Theorem 3.3, we have \(I_2 > I^* \). Therefore, \(\det(M_2) > 0 \).

Now, we only consider the trace of the endemic equilibrium \(E_2 \),

\[\text{tr}(M_2) = -d - \nu - \frac{dM_2}{B} + \frac{\beta}{1 + \alpha I_2} - \frac{\beta}{(1 + \alpha I_2)^2} \]
\[= -\frac{1}{B(1 + \alpha I_2)^2} [d\lambda\alpha^2I_2^3 + (2d\lambda\alpha + B(d + \nu)\alpha^2)I_2^2 \]
\[+ (2B(d + \nu)\alpha + d\lambda - B\alpha\beta)I_2 - B(d + \nu)] \]
\[= -\frac{\Lambda I_2^3 + EI_2 + CI_2 + D}{B(1 + \alpha I_2)^2}, \]

(3.6)

where

\[\Lambda = d\lambda\alpha^2, \quad E = 2d\lambda\alpha + B(d + \nu)\alpha^2, \]
\[C = 2B(d + \nu)\alpha + d\lambda - B\alpha\beta, \quad D = B(d + \nu), \]

(3.7)
then \(\text{sgn}(\text{tr}(M_2)) = -\text{sgn}(G(I_2)) \), where

\[
G(x) = \Lambda x^3 + Ex^2 + Cx + D.
\]

Using the expression of \(m_1 = a^2C - a\Lambda C - abE + \Lambda b^2 \) and \(m_2 = a^2D - acE + bc\Lambda \), one has

\[
G(I_2) = (aI_2^2 + bI_2 + c)\varphi_0 + \frac{m_1I_2 + m_2}{a^2},
\]

where \(\varphi_0 = \frac{\Lambda}{a} + \frac{m_1I_2 + m_2}{a^2} \). From \(aI_2^2 + bI_2 + c = 0 \), it follows that \(\text{sgn}(\text{tr}(M_2)) = -\text{sgn}(G(I_2)) = -\text{sgn}(m_1I_2 + m_2) \). From the expression of \(I_2 \), we conclude

\[
\text{sgn}(m_1I_2 + m_2) = \text{sgn}(2am_2 + m_1(\sqrt{b^2 - 4ac} - b)) \equiv \text{sgn}(\eta).
\]

Thus, \(E_2 \) is locally asymptotically stable if \(\eta > 0 \) and \(E_2 \) is unstable if \(\eta < 0 \). The proof is complete.

Now we consider the global stability of the disease-free equilibrium \(E_0 \). Let \(N = S + I + R \) be the total population size. We note that the equation for total population is given by \(\frac{dN}{dt} = B - dN \). It follows that \(\lim_{t \to +\infty} N(t) = \frac{B}{d} \). Let

\[
\Omega = \{(S, I, R) : S, I, R \geq 0, S + I + R = B/d\},
\]

which is positively invariant with respect to system (2.1).

Theorem 3.5. If \(R_0 < R_0^* \), the disease-free equilibrium \(E_0(\frac{B}{d}, 0) \) is globally asymptotically stable, i.e., the disease dies out.

Proof. Suppose \(R_0 < R_0^* \). From the \((H_3)\) of Theorem 2.2, we know the model has no endemic equilibrium. From the corollary of Poincaré-Bendixson theorem [17], we know there is no periodic orbits in \(\Omega \) as there is a disease-free equilibrium in \(\Omega \). Since \(\Omega \) is a bounded positively invariant region and \(E_0 \) is the only equilibrium in \(\Omega \), the local stability of \(E_0 \) implies that every solution initiating in \(\Omega \) approaches \(E_0 \). Thus, the disease free equilibrium \(E_0 \) is globally asymptotically stable. The proof is complete.

Now we analyze the global dynamics of the unique endemic equilibrium when \(R_0 > 1 \).

Theorem 3.6. If \(R_0 > 1 \) and \(0 \leq \alpha < \frac{\alpha_\lambda}{\pi} \), then system (2.1) has no limit cycle.

Proof. We use Dulac theorem to exclude the existence of any limit cycle. Let

\[
P(S, I) = B - dS - \frac{d\Lambda SI}{B} + \nu\left(\frac{B}{d} - S - I\right),
\]

\[
Q(S, I) = \frac{d\Lambda SI}{B} - (d + r)I - \frac{\beta I}{1 + \alpha I},
\]

and take the Dulac function

\[
D = \frac{1}{I}.
\]
Bifurcation analysis of an SIRS model

From \(0 \leq \alpha < \frac{d\lambda}{B\beta} \), it follows that \(\alpha \beta < \frac{d\lambda}{B} \). In addition,

\[
\frac{\partial (PD)}{\partial S} + \frac{\partial (QD)}{\partial I} = -\frac{d}{I} - \frac{d\lambda}{B} \frac{\nu}{I} + \frac{\alpha \beta}{(1 + \alpha I)^2}
\]

\[
= \frac{1}{(1 + \alpha I)^2}[-(d + \nu)(1 + \alpha I)^2 - \frac{d\lambda}{B}(1 + \alpha I)^2 + \alpha \beta I]
\]

\[
< \frac{1}{(1 + \alpha I)^2}[-(d + \nu)(1 + \alpha I)^2 - \frac{d\lambda}{B}(1 + \alpha I)^2 + \frac{d\lambda I}{B}]
\]

\[
= \frac{1}{(1 + \alpha I)^2}[-(d + \nu)(1 + \alpha I)^2 - \frac{d\lambda}{B}((1 + \alpha I)^2 - 1)]
\]

\[
< 0.
\]

Hence, the system (2.1) has no limit cycle. The proof is complete.

Therefore, we obtain the global result of the unique endemic equilibrium.

Theorem 3.7. If \(R_0 > 1 \) and \(0 \leq \alpha < \frac{d\lambda}{B\beta} \), the unique endemic equilibrium \(E^* \) is globally asymptotically stable (see Figure 5).

4. Hopf bifurcation

In this section, we study the Hopf bifurcation of system (2.1). From the above discussion, we know that there is no closed orbit surrounding \(E_0 \) or \(E_1 \) because the S-axis is invariant with respect to system (2.1) and \(E_1 \) is always a saddle. Therefore, Hopf bifurcation can only occur at \(E_2 \).

By the proof of Theorem 3.4, it shows that \(\text{tr}(M_2) = 0 \) if and only if \(\eta = 0 \), and \(\det(M_2) > 0 \) when \(E_2 \) exists. Therefore, the eigenvalues of \(M_2 \) are a pair of pure imaginary roots if and only if \(\eta = 0 \). The direct calculations show that

\[
\frac{d(\text{tr}(M_2))}{d\eta}|_{\eta=0} = -\frac{1}{2a^3(1 + \alpha I_2)^2B} < 0.
\]

By [14, Theorem 3.4.2], \(\eta = 0 \) is the Hopf bifurcation point for system (2.1).

Now, we consider the equivalent system of (2.1)

\[
\begin{align*}
\frac{dS}{dt} &= B(1 + \alpha I) - dS(1 + \alpha I) - \frac{d\lambda S(1 + \alpha I)}{B} + \nu(\frac{B}{d} - S - I)(1 + \alpha I), \\
\frac{dI}{dt} &= \frac{d\lambda S(1 + \alpha I)}{B} - (d + r)I(1 + \alpha I) - \beta I.
\end{align*}
\]

(4.1)

Let \(S = x + S_2 \) and \(I = y + I_2 \), then (4.1) becomes

\[
\begin{align*}
\frac{dx}{dt} &= a_{11}x + a_{12}y + c_1y^2 + c_2xy - \frac{d\lambda}{B}xy = a_{11}x + a_{12}y + f_1(x, y), \\
\frac{dy}{dt} &= a_{21}x + a_{22}y + c_3y^2 + c_4xy + \frac{d\lambda}{B}xy = a_{21}x + a_{22}y + f_2(x, y),
\end{align*}
\]

(4.2)
where

\[a_{11} = - [d + \nu + (d\alpha + \frac{d\lambda}{B} + d\nu)I_2 + \frac{d\lambda\alpha}{B} I_2^2], \]
\[a_{12} = B\alpha + \frac{\nu B\alpha}{d} - \nu - (d\alpha + \frac{d\lambda}{B} + \alpha\nu)S_2 - 2\frac{d\lambda\alpha}{B} I_2 S_2 - 2\nu\alpha I_2, \]
\[c_1 = - \frac{d\lambda\alpha}{B} S_2 - \nu\alpha, \]
\[c_2 = - (d\alpha + \frac{d\lambda}{B} + \nu + 2\frac{d\lambda\alpha}{B} I_2), \]
\[a_{21} = \frac{d\lambda}{B} I_2 + \frac{d\lambda\alpha}{B} I_2^2, \]
\[a_{22} = \frac{d\lambda}{B} S_2 + 2\frac{d\lambda\alpha}{B} I_2 S_2 - (d + r) - 2\alpha(d + r)I_2 - \beta, \]
\[c_3 = \frac{d\lambda\alpha}{B} S_2 - \alpha(d + r), \]
\[c_4 = \frac{d\lambda}{B} + 2\frac{d\lambda\alpha}{B} I_2. \]

Let \(\hat{E}^* \) denote the origin of \(x-y \) plane. Since \(E_2 = (S_2, I_2) \) satisfies Eq. (2.5), we obtain

\[
\det(M(\hat{E}^*)) = a_{11}a_{22} - a_{12}a_{21} = \frac{I_2}{B(1 + \alpha I_2)^2}(1 + \alpha I_2)^2 \times \psi(I_2) = \frac{I_2}{B} \times \psi(I_2).
\]

From the proof of Theorem 3.4, it follows that \(\psi(I_2) \) is always positive. It is easy to verify that \(a_{11} + a_{22} = 0 \) if and only if \(\eta = 0 \). Set

\[D = \sqrt{\det(M(\hat{E}^*))}, \]

then

\[D^2 = a_{11}a_{22} - a_{12}a_{21}. \]

Let \(X = x \) and \(Y = a_{11}x + a_{12}y \), then system (2.1) becomes

\[
\begin{align*}
\frac{dX}{dt} &= Y + f_1(X, \frac{Y-a_{11}X}{a_{12}}), \\
\frac{dY}{dt} &= -D^2X + a_{11}f_1(X, \frac{Y-a_{11}X}{a_{12}}) + a_{12}f_2(X, \frac{Y-a_{11}X}{a_{12}}).
\end{align*}
\]

(4.4)

Again, set \(u = -X \) and \(v = Y/D \), then system (4.4) becomes

\[
\begin{align*}
\frac{du}{dt} &= -Dv + F_1(u, v), \\
\frac{dv}{dt} &= Du + F_2(u, v),
\end{align*}
\]

(4.5)
where

\[F_1(u, v) = -f_1(-u, \frac{Dv + a_{11}u}{a_{12}}), \]
\[= \frac{c_2}{a_{12}}(Dv + a_{11}u) - (Dv + a_{11}u)^2(\frac{c_1}{a_{12}^2} + \frac{ud\lambda\alpha}{Ba_{12}^2}), \]
\[F_2(u, v) = \frac{a_{11}}{D}f_1(-u, \frac{Dv + a_{11}u}{a_{12}}) + \frac{a_{12}}{D}f_2(-u, \frac{Dv + a_{11}u}{a_{12}}) \]
\[= (Dv + a_{11}u)^2(\frac{a_1c_1}{D_a_{12}} + \frac{a_1ud\lambda\alpha}{BD_a_{12}^2}) + \frac{c_3}{Da_{12}} - \frac{d\lambda u}{BD_a_{12}} - (Dv + a_{11}u)(\frac{a_1c_2u}{D_a_{12}} + \frac{c_4u}{D}). \]

Set

\[\sigma = \frac{1}{16}[F_1 uu + F_1 uv + F_2 u v + F_2 v] + \frac{1}{16D}|F_1 u v (F_1 u + F_1 v) - F_2 u v (F_2 u + F_2 v)|, \]

where \(F_1 uv \) denotes \((\partial^2 F_1 / \partial u \partial v)(0, 0) \), \(F_2 uv \) denotes \((\partial^2 F_2 / \partial u \partial v)(0, 0) \), etc. Then

\[\sigma = \frac{1}{8B^2D_a_{12}} [BD^3 a_{12}^2 d\lambda(-a_{11}^2 - D - 2a_{11}a_{12}) + D^2(BD_a_{12} - 2a_{11}BD_a_{12}) \]
\[- 4Da_{11}ud\lambda)(Ba_{11}a_{12}c_2 - Ba_{11}c_1 - 3a_{11}ud\lambda - 2a_{11}Dv d\lambda - BD_a_{12}c_1 \]
\[- 2D(Dv + a_{11}u)(a_{11} - a_{12})d\lambda - 2a_{12}Dv d\lambda + 2a_{12}uDv d\lambda + 2a_{11}Dv + a_{11}u)(a_{11} - a_{12})d\lambda \]
\[+ a_{11}ud\lambda + B_c a_{12} - a_{12}ud\lambda) + 2a_{11}(Dv + a_{11}u)(a_{11} - a_{12})d\lambda \]
\[+ D^2(Ba_{11}c_1 + 4a_{11}ud\lambda + Bc a_{12} - a_{12}ud\lambda))] - D(2Bc a_{11}a_{12} - 2Ba_{12}c_1 \]
\[- 6a_{11}ud\lambda - 4a_{11}Dv d\lambda)(a_{11}^2(Ba_{11}c_1 + a_{11}ud\lambda + Bc a_{12} - a_{12}ud\lambda) \]
\[+ 2a_{11}(Dv + a_{11}u)(a_{11} - a_{12})d\lambda) - 2D^5(Bc_1 + ud\lambda)(Ba_{11}c_1 + a_{11}ud\lambda \]
\[+ B a_{12}c_3 - a_{12}ud\lambda]). \]

By [14, Theorem 3.4.2 and (3.4.11)], we have the following Theorem.

Theorem 4.1. System (2.1) undergoes a Hopf bifurcation if \(\eta = 0 \). Moreover, if \(\sigma \neq 0 \), then a curve of periodic solutions bifurcates from the endemic equilibrium \(E_2 \) such that

(a) for \(\sigma < 0 \), then the model undergoes a supercritical Hopf bifurcation.
(b) for \(\sigma > 0 \), then the model undergoes a subcritical Hopf bifurcation.

5. Bogdanov-Takens bifurcations

The Bogdanov-Takens bifurcation is a bifurcation of an equilibrium point in a two-parameter family of autonomous ODEs at which the critical equilibrium has a zero eigenvalue of (algebraic) multiplicity two. For nearby parameter values, the system has two equilibria (a saddle and a nonsaddle) which collide and disappear via a saddle-node bifurcation. The nonsaddle equilibrium undergoes an Andronov-Hopf
bifurcation generating a limit cycle. This cycle degenerates into an orbit homoclinic to the saddle and disappears via a saddle homoclinic bifurcation [15].

The Bogdanov-Takens bifurcation (for short, BT bifurcation) is a type of codimension-2 bifurcation that emerges when (2.1) admits a unique degenerate equilibrium. Assume the following two assumptions hold.

\((H_1)\) \(b < 0\) and \(b^2 - 4ac = 0\).

Then (2.5) admits a unique positive equilibrium \(\bar{E}^* = (S^*, I^*)\), where

\[
I^* = -\frac{b}{2a}, \quad S^* = \frac{P}{d} + \frac{\beta}{1 + \alpha I^*}.
\] (5.1)

The Jacobian matrix of system (2.1) at \(\bar{E}^*\) is

\[
M^* = \begin{pmatrix}
-d - \frac{dM^*}{B} - \nu - \frac{\beta}{1 + \alpha I^*} - (d + r + \nu) \\
\frac{dM^*}{B} \\
\frac{\beta}{1 + \alpha I^*} - \frac{\beta}{(1 + \alpha I^*)^2}
\end{pmatrix}.
\] (5.2)

Since we are interested in codimension 2 bifurcations, we assume further

\((H_2)\) \((Bd\lambda r + d^2\lambda^2)b = 2aB(d + \nu)[d\lambda - Ba(d + \nu)]\).

By (5.2), we have

\[
det(M^*) = \frac{I^*}{B(1 + \alpha I^*)^2}[d\lambda(d + r + \nu)(1 + \alpha I^*)^2 + d\lambda\beta - Ba\beta(d + \nu)]
\] (5.3)

where the last equality follows from

\[
(1 + \alpha I^*)^2 = \frac{4a^2 - 4ab + a^2 b^2}{4a^2}
= \frac{4a^2 - 4ab + a^2 4ac}{4a^2}
= \frac{a - ab + a^2 c}{a}
= \frac{Ba^2(d + \nu)\beta - d\lambda\alpha\beta}{a}.
\] (5.4)

Furthermore, \((H_2)\) implies that

\[tr(M^*) = 0.\] (5.5)

Thus, \((H_1)\) and \((H_2)\) imply that the Jacobian matrix has a zero eigenvalue with multiplicity 2. This suggests that (2.1) may admit a Bogdanov-Takens singularity.

Theorem 5.1. Suppose that \((H_1), (H_2), 2b_1 + b_4 \neq 0\) and \(b_3 \neq 0\) hold. Then the endemic equilibrium \(\bar{E}^* = (S^*, I^*)\) of (2.1) is a cusp of codimension 2, i.e., it is a Bogdanov-Takens singularity.

Proof. Using the transformation of \(x = I - I^*\) and \(y = S - S^*\), system (2.1) becomes

\[
\begin{aligned}
\frac{dx}{dt} &= a_1 x + a_2 y + \hat{a}_{21} xy + \hat{a}_{11} x^2 + P_1(x), \\
\frac{dy}{dt} &= -\frac{a_2^2}{a_2} x - a_1 y - \hat{a}_{21} xy,
\end{aligned}
\] (5.6)
where $P_1(x)$ are smooth functions in x at least of the third order and

$$a_1 = \frac{d\lambda}{B} S^* - d - r - \frac{\beta}{(1 + \alpha I^*)^3} > 0,$$

$$a_2 = \frac{d\lambda}{B} I^* > 0,$$

$$\hat{a}_{21} = \frac{d\lambda}{B} > 0,$$

$$\hat{a}_{11} = \frac{\alpha \beta}{(1 + \alpha I^*)^3} > 0.$$

(5.7)

Set $X = x, Y = a_1 x + a_2 y$. Then (5.6) is transformed into

$$\begin{cases}
\frac{dX}{dt} = Y + b_1 X^2 + b_2 XY + P_1(X), \\
\frac{dY}{dt} = b_3 X^2 + b_4 XY + P_2(X),
\end{cases}$$

(5.8)

where $P_1(X)$ are smooth functions in X at least of the third order and

$$b_1 = \hat{a}_{11} - \frac{\hat{a}_{21} a_1}{a_2},$$

$$b_2 = \frac{\hat{a}_{21}}{a_2},$$

$$b_3 = a_1 \hat{a}_{11} - \frac{\hat{a}_{21} a_1^2}{a_2} + a_1 \hat{a}_{21},$$

$$b_4 = \frac{\hat{a}_{21} a_1}{a_2} - \hat{a}_{21}.$$

(5.9)

In order to obtain the canonical normal form, we use the following transformation of variables

$$u = X - \frac{b_2}{2} X^2, v = Y + b_1 X^2.$$

(5.10)

Then, we obtain

$$\begin{cases}
\frac{du}{dt} = v + R_1(u), \\
\frac{dv}{dt} = b_3 u^2 + (2b_1 + b_4) uv + R_2(u),
\end{cases}$$

(5.11)

where $R_i(u)$ are smooth functions of u at least of the third order.

Note that $b_3 \neq 0$ and $2b_1 + b_4 \neq 0$. It follows from [4, 5, 35] that (2.1) admits a Bogdanov-Takens bifurcation.

In the following, we will find the versal unfolding in terms of the original parameters in (2.1). In this way, we will know the approximate saddle-node, Hopf and homoclinic bifurcation curves. We choose r and ν as bifurcation parameters. Fix $B = B_0, d = d_0, \lambda = \lambda_0, \beta = \beta_0$ and $\alpha = \alpha_0$. Let $r = r_0 + \theta_1$ and $\nu = \nu_0 + \theta_2$, where θ_1 and θ_2 are parameters which vary in a small neighborhood of the origin.

Suppose that $B = B_0, d = d_0, \lambda = \lambda_0, \nu = \nu_0, r = r_0, \alpha = \alpha_0$ and $\beta = \beta_0$ satisfy (H_1) and (H_2). Consider the following system

$$\begin{cases}
\frac{dS}{dt} = B_0 - d_0 S - \frac{\lambda_0 \delta_0 S I}{B} + (\nu_0 + \theta_2)(B_0/d_0 - S - I), \\
\frac{dI}{dt} = \frac{\lambda_0 \delta_0 S I}{B_0} - (d_0 + r_0 + \theta_1) I - \frac{\delta_0 I}{1 + \alpha_0 I} + \frac{\lambda_0 \delta_0 S}{B_0}.
\end{cases}$$

(5.12)
By the transformations of $x = I - I^*$ and $y = S - S^*$, system (5.12) becomes

\[
\begin{aligned}
\frac{dx}{dt} &= -\theta_1 I^* + \hat{c}_1 x + \hat{c}_2 y + c_{11} x^2 + c_{12} xy + w_1(x), \\
\frac{dy}{dt} &= (\frac{\partial}{\partial t} \theta_2 - \theta_2 S^* - \theta_2 I^*) + \hat{c}_3 x + \hat{c}_4 y - c_{12} xy,
\end{aligned}
\]

(5.13)

where $\theta = (\theta_1, \theta_2)$, $w_1(x)$ is a smooth function of x at least of the third order and

\[
\begin{aligned}
\hat{c}_1 &= \frac{d_0}{B_0} \lambda_0 S^* - d_0 - r_0 - \theta_1 - \frac{\beta_0}{(1 + \alpha_0 I^*)^2}, \\
\hat{c}_2 &= \frac{d_0}{B_0} \lambda_0 I^*, \\
\hat{c}_3 &= -\frac{d_0}{B_0} \lambda_0 S^* - (\nu_0 + \theta_2), \\
\hat{c}_4 &= -d_0 - \frac{d_0}{B_0} \lambda_0 I^* - (\nu_0 + \theta_2), \\
c_{11} &= \frac{\alpha_0 \beta_0}{(1 + \alpha_0 I^*)^2}, \\
c_{12} &= \frac{d_0}{B_0} \lambda_0.
\end{aligned}
\]

(5.14)

Using the change of variables $X = x$, $Y = -\theta_1 I^* + \hat{c}_1 x + \hat{c}_2 y + c_{11} x^2 + c_{12} xy + w_1(x)$ and rewriting X, Y as x and y, respectively, we have

\[
\begin{aligned}
\frac{dx}{dt} &= y, \\
\frac{dy}{dt} &= e_0 + e_1 x + e_2 y + e_{11} x^2 + e_{12} xy + e_{22} y^2 + w_2(x, y, \theta),
\end{aligned}
\]

(5.15)

where $\theta = (\theta_1, \theta_2)$, $w_2(x, y, \theta)$ is a smooth function of x, y, θ_1 and θ_2 at least of the third order and

\[
\begin{aligned}
e_0 &= \hat{c}_2 \left(\frac{B_0}{d_0} \theta_2 - \theta_2 S^* - \theta_2 I^* \right) + \theta_1 \hat{c}_4 I^*, \\
e_1 &= c_{12} \left(\frac{B_0}{d_0} \theta_2 - \theta_2 S^* - \theta_2 I^* \right) + \hat{c}_2 \hat{c}_3 - \hat{c}_1 \hat{c}_4 - c_{12} \theta_1 I^*, \\
e_2 &= \hat{c}_1 + \hat{c}_4 + \frac{c_{12} \theta_1}{\hat{c}_2} I^*, \\
e_{11} &= c_{12} \hat{c}_3 - \hat{c}_4 c_{11} + \hat{c}_1 c_{12}, \\
e_{12} &= -c_{12} + 2 c_{11} - \frac{c_{12} \hat{c}_1}{\hat{c}_2} + \frac{c_{12}^2 \theta_1}{\hat{c}_2^2} I^* - \frac{c_{12}^2 \theta_1}{\hat{c}_2^2} I^*, \\
e_{22} &= \frac{c_{12}^2}{\hat{c}_2^2}.
\end{aligned}
\]

(5.16)

Next, we introduce a new time variable τ by $dt = (1 - \frac{c_{12}}{\hat{c}_2} x) d\tau$. Rewriting τ as t, we obtain

\[
\begin{aligned}
\frac{dx}{dt} &= y(1 - \frac{c_{12}}{\hat{c}_2} x), \\
\frac{dy}{dt} &= (1 - \frac{c_{12}}{\hat{c}_2} x) (e_0 + e_1 x + e_2 y + e_{11} x^2 + e_{12} xy + e_{22} y^2 + w_2(x, y, \theta)).
\end{aligned}
\]

(5.17)

Let $X = x$, $Y = y(1 - \frac{c_{12}}{\hat{c}_2} x)$ and rename X and Y as x and y, we have

\[
\begin{aligned}
\frac{dx}{dt} &= y, \\
\frac{dy}{dt} &= e_0 + f_1 x + e_2 y + f_{11} x^2 + f_{12} xy + w_3(x, y, \theta),
\end{aligned}
\]

(5.18)
where \(\theta = (\theta_1, \theta_2) \), \(w_4(x, y, \theta) \) is a smooth function of \(x, y, \theta_1 \) and \(\theta_2 \) at least of the third order and

\[
\begin{align*}
f_1 &= -2e_0 \frac{c_{12}}{c_2} + e_1, \\
f_{11} &= e_{11} - 2 \frac{e_1 c_{12}}{c_2} + \frac{e_0 c_{12}}{c_2}, \\
f_{12} &= e_{12} - \frac{e_2 c_{12}}{c_2}.
\end{align*}
\tag{5.19}
\]

Now, we assume that \(f_{11} \neq 0 \) and \(f_{12} \neq 0 \) when \(\theta_i \) are small. Set \(x = X - \frac{c_2}{f_{12}} \) and rewrite \(X \) as \(x \), we can get

\[
\begin{cases}
\frac{dx}{dt} = y, \\
\frac{dy}{dt} = g_0 + g_1 x + f_{11} x^2 + f_{12} x y + w_4(x, y, \theta),
\end{cases}
\tag{5.20}
\]

where \(\theta = (\theta_1, \theta_2) \), \(w_4(x, y, \theta) \) is a smooth function of \(x, y, \theta_1 \) and \(\theta_2 \) at least of the third order and

\[
\begin{align*}
g_0 &= e_0 - f_{11} c_{12} \frac{f_{12}}{f_{11}} + \frac{f_{11} c_2^2}{f_{12}}, \\
g_1 &= f_1 - \frac{2 f_{11} c_2}{f_{12}},
\end{align*}
\tag{5.21}
\]

Note that \(f_{11} \neq 0 \) and \(f_{12} \neq 0 \) when \(\theta_i \) are small. Making the final change of variables by \(X = \frac{f_{11} x}{f_{12}}, Y = \frac{f_{12} y}{f_{11}} \) and \(t = \frac{f_{11}}{f_{12}}, \) then denoting them again by \(x, y \) and \(t \), respectively, we obtain

\[
\begin{cases}
\frac{dx}{dt} = y, \\
\frac{dy}{dt} = \tau_1(\theta_1, \theta_2) + \tau_2(\theta_1, \theta_2) x + x^2 + xy + w_5(x, y, \theta),
\end{cases}
\tag{5.22}
\]

where \(\tau_1 = \frac{g_0 f_{12}}{f_{11}} \), \(\tau_2 = \frac{g_1 f_{11}}{f_{12}} \), \(\theta = (\theta_1, \theta_2) \), \(w_5(x, y, \theta) \) is a smooth function of \(x, y, \theta_1 \) and \(\theta_2 \) at least of the third order.

By the theorems in Bogdanov [4,5] and Takens [35] or Kuznetsov [22], we obtain the following local representations of the bifurcation curves in a small neighborhood of the origin.

Theorem 5.2. Suppose that \((B, d, \lambda, \beta, r, \nu, \alpha) = (B_0, d_0, \lambda_0, \beta_0, r_0, \nu_0, \alpha_0) \) satisfy \((H_1), (H_2), f_{11} \neq 0 \) and \(f_{12} \neq 0 \) when \(\theta_i \) are small. Then (2.1) admits the following bifurcation behavior.

1. There is a saddle-node bifurcation curve \(SN = \{ (\theta_1, \theta_2) : 4g_0 f_{11} = g_1^2 + o(|(\theta_1, \theta_2)|^2), g_1 \neq 0 \} \).
2. There is a Hopf bifurcation curve \(H = \{ (\theta_1, \theta_2) : g_0 + o(|(\theta_1, \theta_2)|^2) = 0, g_1 < 0 \} \).
3. There is a homoclinic bifurcation curve \(HL = \{ (\theta_1, \theta_2) : 25f_{11} g_0 + 6g_1^2 = o(|(\theta_1, \theta_2)|^2), g_1 < 0 \} \).
6. Numerical Simulations

In this section, using the software package MATLAB [50], the relationship between the proportion of infectious individuals and the basic reproduction number \(R_0 \) is illustrated in Figure 1. This figure shows that the model has a unique endemic equilibrium for \(R_0 = R_0^* \), then the model has two endemic equilibria for \(R_0^* < R_0 < 1 \) and a unique endemic equilibrium for \(R_0 \geq 1 \). Furthermore, using PPLANE8 [31], some numerical simulations of system (2.1) are depicted in Figure 2–Figure 5. A disease free equilibrium exists for all parameters and is locally asymptotically stable when \(R_0 < 1 \) (see Figure 2) and unstable when \(R_0 > 1 \) (see Figure 3). From Theorem 2.1 (C), it follows that when \(R_0^* \leq R_0 < 1 \), the two endemic equilibria \(E_1 \) and \(E_2 \) will exist, and the stable manifolds of the saddle \(E_1 \) split \(R^2_+ \) into two regions. The disease is persistent in the upper region and dies out in the lower region (see Figure 4). By Theorem 3.7, when \(R_0 > 1 \) and the effect of the infected being delayed for treatment (i.e., \(0 \leq \alpha < \frac{d\lambda}{B^2} \)) is controlled to some degree, system (2.1) has no periodic solutions, and all orbits approach to the unique endemic equilibrium \(E^* \) as time goes to infinity. Then the disease persists (see Figure 5).

![Figure 1](image1.png)

Figure 1. The bifurcation from the disease free equilibrium at \(R_0 = 1 \) is backward when \(d = 0.1, r = 0.1, \lambda = 0.5, \alpha = 1, \nu = 0.2, B = 1, \beta = 0.1 \), where \(b = -0.065 \).

![Figure 2](image2.png)

Figure 2. The disease-free equilibrium \(E_0 \) is locally asymptotically stable when \(R_0 < 1 \), with the parameter values \(B = 2, d = 0.02, \lambda = 0.01, r = 0.04, \nu = 0.1, \beta = 0.08, \alpha = 2 \).

![Figure 3](image3.png)

Figure 3. The disease-free equilibrium is unstable when \(R_0 > 1 \), with the parameter values \(B = 2, d = 0.02, \lambda = 0.3, r = 0.04, \nu = 0.1, \beta = 0.08, \alpha = 2 \).

7. Discussion

In this paper, by combining qualitative and bifurcation analysis we have studied the global behavior of an SIRS epidemic model with standard incidence rate and saturated treatment function. Previous studies of analogous models with the treatment
Bifurcation analysis of an SIRS model

Figure 4. One region of disease persistence and the other region of disease extinction when $B = 2, \, d = 0.1, \, \lambda = 0.1, \, \beta = 0.08, \, \nu = 0.1, \, \alpha = 2, \, r = 0.04$.

Figure 5. The unique endemic equilibrium E^* is globally asymptotically stable when $B = 2, \, d = 0.02, \, \lambda = 0.4, \, \beta = 0.08, \, \nu = 0.1, \, \alpha = 0.01, \, r = 0.04$.

The aggressive control measures and policies, such as isolation, mask screening and improving medical level, etc., helped in reducing the infection rate and increasing the removal rate. Moreover, our results also suggest that the effect of the infected being delayed for treatment (α) to some degree can lead to a backward bifurcation (see Corollary 2.1). Therefore, in order to remove the backward bifurcation and control the disease, we should reduce the parameter α in a low range, that is to say, we should give the patients timely treatment such as improving medical facilities and quality of medical care and adding more medical professionals, etc.

We also study the Hopf bifurcation and obtain the criteria to judge its stability. Under some suitable conditions, when a stable limit cycle surrounds the endemic equilibrium, it means that the number of the infective tends to a periodic function and the disease will exhibit frequently regular oscillation. Hence, the disease become periodic outbreak as time evolves.

Finally, by Theorem 5.2, we present approximate expressions for saddle-node, Hopf and homoclinic bifurcation sets near the Bogdanov-Takens bifurcation points.

Acknowledgments

The authors are very grateful to the referee for the suggestions which helped to improve the presentation of the paper.
Appendix A

For the reader’s convenience, in this section, we give the detailed calculations in the proof of Theorem 3.3.

Proof. Since \(I_1 = \frac{b-\sqrt{b^2-4ac}}{2a} \) and \(\triangle = b^2 - 4ac \), we have \(I_1 = \frac{b-\sqrt{\triangle}}{2a} \). Thus

\[
\det(M_1) = \frac{I_1}{B(1+\alpha I_1)^2} [d\lambda(d+r+\nu)(1+\alpha I_1)^2 + d\lambda \beta - Ba\beta(d+\nu)]
\]

\[
\triangle = \frac{I_1}{B(1+\alpha I_1)^2} \times \psi(I_1).
\]

From the existence of \(E_1 \), we conclude that \(b < 0 \) and \(R_0 < 1 \), and obtain

\[
\psi(0) = d\lambda(d+r+\nu) + d\lambda \beta - Ba\beta(d+\nu)
\]

\[
= d\lambda(d+r+\nu + \beta) - Ba\beta(d+\nu)
\]

\[
< Ba(d+\nu)(\lambda - d - r - \beta)
\]

\[
= Ba(d+\nu)(\lambda - d + \nu + \beta)(R_0 - 1)
\]

\[
< 0.
\]

Again, \(\psi'(I_1) = 2ad\lambda(d+r+\nu)(1 + \alpha I_1) > 0 \), so \(\psi(I_1) \) is a monotone increasing function. It follows that there is a unique \(I^* > 0 \) such that

\[
\psi(I_1) = 0, \text{ when } I_1 = I^*,
\]

\[
\psi(I_1) < 0, \text{ when } 0 < I_1 < I^*,
\]

\[
\psi(I_1) > 0, \text{ when } I_1 > I^*,
\]

where

\[
I^* = \frac{1}{\alpha} \sqrt{\frac{Ba\beta(d+\nu) - d\lambda \beta}{d\lambda(d+r+\nu)}} - \frac{1}{\alpha}.
\]

Moreover,

\[
I_1 = -\frac{b}{2a} - \frac{\sqrt{\triangle}}{2a}
\]

\[
= \frac{(d+\nu)Ba(\lambda - d - r) - d\lambda(d+r+\nu + \beta)}{2d\lambda \alpha(d+r+\nu)} - \frac{\sqrt{\triangle}}{2d\lambda \alpha(d+r+\nu)}
\]

\[
= \frac{1}{\alpha} \sqrt{\frac{Ba\beta(d+\nu) - d\lambda \beta}{d\lambda(d+r+\nu)}} - \frac{1}{\alpha} + \frac{1}{\alpha} \sqrt{\frac{Ba\beta(d+\nu) - d\lambda \beta}{d\lambda(d+r+\nu)}}
\]

\[
+ \frac{(d+\nu)Ba(\lambda - d - r) - d\lambda(d+r+\nu + \beta)}{2d\lambda \alpha(d+r+\nu)} - \frac{\sqrt{\triangle}}{2d\lambda \alpha(d+r+\nu)}
\]

\[
= I^* + \frac{P - \sqrt{\triangle}}{2ad\lambda(d+r+\nu)},
\]

where

\[
P = d\lambda(d+r+\nu - \beta) - 2\sqrt{Ba\beta(d+\nu) - \lambda \beta d\lambda(d+r+\nu)}
\]

\[
+ Ba(d+\nu)(\lambda - d - r),
\]

(7.1)
In the following, we will show that

\[
\Delta = [(d + \nu)B\alpha(d + r - \lambda) + d\lambda(d + r + \nu + \beta)]^2 - 4d\lambda\alpha(d + r + \nu)B(d + \nu)(d + r + \beta - \lambda),
\]
(7.5)

and

\[
P^2 = d^2 \lambda^2(d + r + \nu - \beta)^2 + [B\alpha(d + \nu)(\lambda - d - r)]^2 + 4[B\beta(d + \nu)d\lambda(d + r + \nu - \beta) + 2B\alpha d\lambda(d + \nu)(d + r + \nu - \beta)(\lambda - d - r)]
\]
\[
- 4d\lambda(d + r + \nu - \beta)\sqrt{B\alpha\beta(d + \nu) - d\lambda\beta d\lambda(d + r + \nu)}
\]
\[
- 4B\alpha(d + \nu)(\lambda - d - r)\sqrt{[B\alpha\beta(d + \nu) - d\lambda\beta d\lambda(d + r + \nu)]}
\]
(7.6)

So

\[
\Delta - P^2 = 4\sqrt{B\alpha\beta(d + \nu) - d\lambda\beta d\lambda(d + r + \nu - \beta) + B\alpha(d + \nu)(\lambda - d - r)]
\]
\[
- 8[B\alpha\beta(d + \nu) - d\lambda\beta d\lambda(d + r + \nu)]
\]
(7.7)

In the following, we will show that

\[
4\sqrt{B\alpha\beta(d + \nu) - d\lambda\beta d\lambda(d + r + \nu - \beta) + B\alpha(d + \nu)(\lambda - d - r)]
\]
\[
> 8[B\alpha\beta(d + \nu) - d\lambda\beta d\lambda(d + r + \nu)],
\]
i.e.,

\[
[d\lambda(d + r + \nu - \beta) + B\alpha(d + \nu)(\lambda - d - r)]^2
\]
\[
> 4[B\alpha\beta(d + \nu) - d\lambda\beta d\lambda(d + r + \nu)].
\]
(7.9)

Since \(R^*_e < R_0 \), it yields that \(b^2 > 4ac \), i.e., \([B\alpha(d + \nu)(d + r - \lambda) + d\lambda(d + r + \nu - \beta)]^2 > 4d\alpha B\alpha(d + \nu)(d + r + \beta - \lambda)(d + r + \nu)\), so it follows that

\[
[d\lambda(d + r + \nu - \beta) + B\alpha(d + \nu)(\lambda - d - r)]^2
\]
\[
= [B\alpha(d + \nu)(d + r - \lambda) + d\lambda(d + r + \nu - \beta)]^2 + 4B\alpha(d + \nu)d\lambda(d + r + \nu - \beta)(\lambda - d - r)
\]
\[
> 4B\alpha d\lambda(d + \nu)(d + r + \nu)(d + r + \beta - \lambda) + 4B\alpha d\lambda(d + \nu)(d + r + \nu - \beta)(\lambda - d - r)
\]
\[
= 4B\alpha d\lambda\beta(d + \nu)(2d + 2r + \nu - \lambda)
\]
\[
= 4B\alpha d\lambda\beta(d + \nu)(d + r + \nu) + 4B\alpha d\lambda\beta(d + r - \lambda).
\]
(7.10)

Then

\[
4B\alpha d\lambda\beta(d + \nu)(d + r + \nu) + 4B\alpha d\lambda\beta(d + r - \lambda) - 4[B\alpha\beta(d + \nu) - d\lambda\beta d\lambda(d + r + \nu)]
\]
\[
= 4d\lambda\beta[B\alpha(d + \nu)(d + r - \lambda) + d\lambda(d + r + \nu)] > 0.
\]
(7.11)

From (7.3), we know that \(I_1 < I^* \). So we get \(\text{det}(M_1) < 0 \). Hence the endemic equilibria \(E_1 \) is a saddle. The proof is complete. \(\square \)

References

Bifurcation analysis of an SIRS model

