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Abstract In this paper, we investigate the superconvergence property of
mixed finite element methods for a linear elliptic control problem with an
integral constraint. The state and co-state are approximated by the order
k = 1 Raviart-Thomas mixed finite element spaces and the control variable
is approximated by piecewise constant functions. A superconvergent approx-
imation of the control variable u will be constructed by a projection of the
discrete adjoint state. It is proved that this approximation have convergence
order h2 in L∞-norm. Finally, a numerical example is given to demonstrate
the theoretical results.
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1. Introduction

As far as we know, the finite element approximation plays an important role in the
numerical treatment of optimal control problems. There have been extensive studies
in convergence and superconvergence of finite element approximations for optimal
control problems, see, for example, [1,6,11–16,19–21]. A systematic introduction of
finite element methods for PDEs and optimal control problems can be found in, for
example, [9, 18]. Note that all the above papers aim at the standard finite element
methods for optimal controls.

In the recent years, convergence and superconvergence properties of mixed finite
elements for optimal control problems have been done in [3–5]. In [4], the author
used the postprocessing projection operator, which was defined by Meyer and Rösch
(see [19]) to prove a quadratic superconvergence of the control by mixed finite
element methods. Recently, the authors derived convergence and superconvergence
of mixed methods for convex optimal control problems in [5]. Since the analysis

was restricted by the low regularity of the control, the convergence order is h
3
2 .
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The goal of this paper is to derive the superconvergence property of mixed
finite element approximation for a linear elliptic control problem with an integral
constraint. Firstly, we derive the superconvergence property between average L2

projection and the approximation of the control variable, the convergence order
is h2. Then, after solving a fully discretized optimal control problem, a control
û is calculated by the projection of the adjoint state zh in a postprocessing step.
Although the approximation of the discretized solution is only of order h in L∞-
norm, we will show that this postprocessing step improves the convergence order to
h2. Finally, we present a numerical experiment to demonstrate the practical side of
the theoretical results about superconvergence.

We consider the following linear optimal control problems for the state variable
y, and the control u with an integral constraint:

min
u∈Uad

{
1

2
‖y − yd‖2 +

ν

2
‖u‖2

}
(1.1)

subject to the state equation

− div(A(x)grady) + a0y = u, x ∈ Ω, (1.2)

which can be written in the form of the first order system

divppp+ a0y = u, ppp = −A(x)grady, x ∈ Ω, (1.3)

and the boundary condition
y = 0, x ∈ ∂Ω, (1.4)

where Ω is a bounded domain in R2. Uad denotes the admissible set of the control
variable, defined by

Uad =

{
u ∈ L∞(Ω) :

∫
Ω

udx ≥ 0

}
. (1.5)

We assume that yd ∈ H1(Ω) and 0 ≤ a0 ∈ W 2,∞(Ω). ν is a fixed positive number.
The coefficient A(x) = (aij(x))2×2 is a symmetric matrix function with aij(x) ∈
W 2,∞(Ω), which satisfies the ellipticity condition

c∗|ξ|2 ≤
2∑

i,j=1

aij(x)ξiξj , ∀ (ξ, x) ∈ R2 × Ω̄, c∗ > 0.

The plan of this paper is as follows. In Section 2, we construct the mixed finite
element approximation scheme for the optimal control problem (1.1)–(1.4) and give
its equivalent optimality conditions. The main results of this paper are stated
in Section 3. In Section 3, we derive the superconvergence properties between the
average L2 projection and the approximation, as well as between the postprocessing
solution and the exact control solution. In Section 4, we present a numerical example
to demonstrate our theoretical results.

In this paper, we adopt the standard notation Wm,p(Ω) for Sobolev spaces on
Ω with a norm ‖ · ‖m,p given by ‖v‖pm,p =

∑
|α|≤m

‖Dαv‖pLp(Ω), a semi-norm | · |m,p

given by |v|pm,p =
∑
|α|=m

‖Dαv‖pLp(Ω). We set Wm,p
0 (Ω) = {v ∈Wm,p(Ω) : v|∂Ω = 0}.

For p = 2, we denote Hm(Ω) = Wm,2(Ω), Hm
0 (Ω) = Wm,2

0 (Ω), and ‖ · ‖m =
‖·‖m,2, ‖·‖ = ‖·‖0,2. In addition C denotes a general positive constant independent
of h, where h is the spatial mesh-size for the control and state discretization.
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2. Mixed methods for optimal control problems

In this section we shall construct mixed finite element approximation scheme of the
control problem (1.1)–(1.4). For sake of simplicity, we assume that the domain Ω
is a convex polygon. Now, we introduce the co-state elliptic equation

− div(A(x)gradz) + a0z = y − yd, x ∈ Ω, (2.1)

which can be written in the form of the first order system

divqqq + a0z = y − yd, qqq = −A(x)gradz, x ∈ Ω, (2.2)

and the boundary condition

z = 0, x ∈ ∂Ω. (2.3)

The domain Ω is said to be Hs+2-regular if the Dirichlet problem

−div(gradφ) + a0φ = ψ in Ω, φ|∂Ω = 0 (2.4)

is uniquely solvable for ψ ∈ L2(Ω) and if

‖φ‖s+2 ≤ C‖ψ‖s, (2.5)

for all ψ ∈ Hs(Ω).
Let

VVV = H(div; Ω) =
{
vvv ∈ (L2(Ω))2,divvvv ∈ L2(Ω)

}
, W = L2(Ω). (2.6)

We recast (1.1)–(1.4) as the following weak form: find (ppp, y, u) ∈ VVV ×W × Uad
such that

min
u∈Uad

{
1

2
‖y − yd‖2 +

ν

2
‖u‖2

}
(2.7)

(A−1ppp,vvv)− (y,divvvv) = 0, ∀ vvv ∈ VVV , (2.8)

(divppp, w) + (a0y, w) = (u,w), ∀ w ∈W. (2.9)

It follows from [18] that the optimal control problem (2.7)–(2.9) has a unique
solution (ppp, y, u), and that a triplet (ppp, y, u) is the solution of (2.7)–(2.9) if and only
if there is a co-state (qqq, z) ∈ VVV ×W such that (ppp, y, qqq, z, u) satisfies the following
optimality conditions:

(A−1ppp,vvv)− (y,divvvv) = 0, ∀ vvv ∈ VVV , (2.10)

(divppp, w) + (a0y, w) = (u,w), ∀ w ∈W, (2.11)

(A−1qqq,vvv)− (z,divvvv) = 0, ∀ vvv ∈ VVV , (2.12)

(divqqq, w) + (a0z, w) = (y − yd, w), ∀ w ∈W, (2.13)

(νu+ z, ũ− u) ≥ 0, ∀ ũ ∈ Uad, (2.14)

where (·, ·) is the inner product of L2(Ω).
In [8], the expression of the control variable is given. Here, we adopt the same

method to derive the following operator.

u = (max{0, z̄} − z)/ν, (2.15)
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where z̄ =
∫

Ω
z/
∫

Ω
1 denotes the integral average on Ω of the function z.

Let Th denote a regular triangulation of the polygonal domain Ω, hT denotes
the diameter of T and h = max

T∈Th
{hT }. Let VVV h ×Wh ⊂ VVV ×W denotes the order

k = 1 Raviart-Thomas mixed finite element space [10,22], namely,

∀ T ∈ Th, VVV (T ) = PPP 1(T )⊕ span(xP1(T )), W (T ) = P1(T ),

where P1(T ) denote polynomials of total degree at most 1, PPP 1(T ) = (P1(T ))2,
x = (x1, x2), which is treated as a vector, and

VVV h := {vvvh ∈ VVV : ∀ T ∈ Th, vvvh|T ∈ VVV (T )}, (2.16)

Wh := {wh ∈W : ∀ T ∈ Th, wh|T ∈W (T )}. (2.17)

The approximated space of control is given by

Uh := {ũh ∈ Uad : ∀ T ∈ Th, ũh|T = constant}. (2.18)

Before the mixed finite element scheme is given, we introduce two operators.
Firstly, we define the standard L2(Ω)-projection [10] Ph : W →Wh, which satisfies:
for any φ ∈W

(Phφ− φ,wh) = 0, ∀ wh ∈Wh, (2.19)

‖φ− Phφ‖0,ρ ≤ Chr‖φ‖r,ρ, 1 ≤ ρ ≤ ∞, ∀ φ ∈W r,ρ(Ω), r = 1, 2, (2.20)

‖φ− Phφ‖−1 ≤ Ch3|φ|2, ∀ φ ∈ H2(Ω). (2.21)

Next, recall the Fortin projection (see [2] and [10]) Πh : VVV → VVV h, which satisfies:
for any qqq ∈ VVV

(div(Πhqqq − qqq), wh) = 0, ∀ wh ∈Wh, (2.22)

‖qqq −Πhqqq‖ ≤ Chr‖qqq‖r, ∀ qqq ∈ (Hr(Ω))2, r = 1, 2, (2.23)

‖div(qqq −Πhqqq)‖ ≤ Chr‖divqqq‖r, ∀ divqqq ∈ Hr(Ω), r = 1, 2. (2.24)

We have the commuting diagram property

div ◦Πh = Ph ◦ div : VVV →Wh and div(I −Πh)VVV ⊥Wh, (2.25)

where and after, I denote the identity operator.
Furthermore, we also define the standard L2-orthogonal projection Qh : Uad →

Uh, which satisfies: for any u ∈ Uad

(u−Qhu, uh) = 0, ∀ uh ∈ Uh. (2.26)

We have the approximation property:

‖u−Qhu‖−s,r ≤ Ch1+s|φ|1,r, s = 0, 1, ∀ u ∈W 1,r(Ω). (2.27)

Then the mixed finite element discretization of (2.7)–(2.9) is as follows: find
(ppph, yh, uh) ∈ VVV h ×Wh × Uh such that

min
uh∈Uh

{
1

2
‖yh − yd‖2 +

ν

2
‖uh‖2

}
(2.28)

(A−1ppph, vvvh)− (yh,divvvvh) = 0, ∀ vvvh ∈ VVV h, (2.29)

(divppph, wh) + (a0yh, wh) = (uh, wh), ∀ wh ∈Wh. (2.30)



Mixed methods for optimal control problems 1041

The optimal control problem (2.28)–(2.30) again has a unique solution (ppph, yh, uh),
and that a triplet (ppph, yh, uh) is the solution of (2.28)–(2.30) if and only if there
is a co-state (qqqh, zh) ∈ VVV h ×Wh such that (ppph, yh, qqqh, zh, uh) satisfies the following
optimality conditions:

(A−1ppph, vvvh)− (yh,divvvvh) = 0, ∀ vvvh ∈ VVV h, (2.31)

(divppph, wh) + (a0yh, wh) = (uh, wh), ∀ wh ∈Wh, (2.32)

(A−1qqqh, vvvh)− (zh,divvvvh) = 0, ∀ vvvh ∈ VVV h, (2.33)

(divqqqh, wh) + (a0zh, wh) = (yh − yd, wh), ∀ wh ∈Wh, (2.34)

(νuh + zh, ũh − uh) ≥ 0, ∀ ũh ∈ Uh. (2.35)

As in [7], for the variational inequality (2.35) we have

uh = Qh

(
−zh
ν

+ max

{
0,
zh
ν

})
, zh =

∫
Ω
zh∫

Ω
1
. (2.36)

In the rest of the paper, we shall use some intermediate variables. For any control
function ũ ∈ Uad, we first define the state solution (ppp(ũ), y(ũ), qqq(ũ), z(ũ))∈ (VVV ×W )2

associated with ũ that satisfies

(A−1ppp(ũ), vvv)− (y(ũ),divvvv) = 0, ∀ vvv ∈ VVV , (2.37)

(divppp(ũ), w) + (a0y(ũ), w) = (ũ, w), ∀ w ∈W, (2.38)

(A−1qqq(ũ), vvv)− (z(ũ),divvvv) = 0, ∀ vvv ∈ VVV , (2.39)

(divqqq(ũ), w) + (a0z(ũ), w) = (y(ũ)− yd, w), ∀ w ∈W. (2.40)

Then, we define the discrete state solution (ppph(ũ), yh(ũ), qqqh(ũ), zh(ũ))∈ (VVV h ×
Wh)2 associated with ũ that satisfies

(A−1ppph(ũ), vvvh)− (yh(ũ),divvvvh) = 0, ∀ vvvh ∈ VVV h, (2.41)

(divppph(ũ), wh) + (a0yh(ũ), wh) = (ũ, wh), ∀ wh ∈Wh, (2.42)

(A−1qqqh(ũ), vvvh)− (zh(ũ),divvvvh) = 0, ∀ vvvh ∈ VVV h, (2.43)

(divqqqh(ũ), wh) + (a0zh(ũ), wh) = (yh(ũ)− yd, wh), ∀wh ∈Wh. (2.44)

Thus, as we defined before, the exact solution and its approximation can be
written in the following way:

(ppp, y, qqq, z) = (ppp(u), y(u), qqq(u), z(u)),

(ppph, yh, qqqh, zh) = (ppph(uh), yh(uh), qqqh(uh), zh(uh)).

3. Superconvergence and postprocessing

In this section, we will give a detailed superconvergence analysis.
Now, we are in the position of deriving the estimates for ‖Phy(uh)− yh‖−1 and

‖Phz(uh)− zh‖.
Let (ppp(uh), y(uh), qqq(uh), z(uh)) ∈ (VVV ×W )2 and (ppph, yh, qqqh, zh) ∈ (VVV h×Wh)2 be

the solutions of (2.37)–(2.40) and (2.41)–(2.44) with ũ = uh respectively. We can
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easily obtain the following error equations

(A−1(ppp(uh)− ppph), vvvh)− (y(uh)− yh,divvvvh) = 0, (3.1)

(div(ppp(uh)− ppph), wh) + (a0(y(uh)− yh), wh) = 0, (3.2)

(A−1(qqq(uh)− qqqh), vvvh)− (z(uh)− zh,divvvvh) = 0, (3.3)

(div(qqq(uh)− qqqh), wh) + (a0(z(uh)− zh), wh) = (y(uh)− yh, wh), (3.4)

for any vvvh ∈ VVV h and wh ∈Wh.
As a result of (2.19), we can rewrite (3.1)–(3.4) as

(A−1(ppp(uh)− ppph), vvvh)− (Phy(uh)− yh,divvvvh) = 0, (3.5)

(div(ppp(uh)− ppph), wh) + (a0(y(uh)− yh), wh) = 0, (3.6)

(A−1(qqq(uh)− qqqh), vvvh)− (Phz(uh)− zh,divvvvh) = 0, (3.7)

(div(qqq(uh)− qqqh), wh) + (a0(z(uh)− zh), wh) = (Phy(uh)− yh, wh), (3.8)

for any vvvh ∈ VVV h and wh ∈Wh.
For sake of simplicity, we now denote

τ = Phy(uh)− yh, e = Phz(uh)− zh. (3.9)

Lemma 3.1. Let (ppp(uh), y(uh), qqq(uh), z(uh)) ∈ (VVV × W )2 and (ppph, yh, qqqh, zh) ∈
(VVV h ×Wh)2 be the solutions of (2.37)-(2.40) and (2.41)-(2.44) with ũ = uh respec-
tively. Assume that the domain Ω is Hs+2-regular (0 ≤ s ≤ 1), then we have

‖Phy(uh)− yh‖−1 + h‖Phy(uh)− yh‖ ≤ Ch3(‖u‖+ ‖Qhu− uh‖). (3.10)

Proof. As we can see,

‖τ‖−1 = sup
ψ∈H1(Ω),ψ 6=0

(τ, ψ)

‖ψ‖1
, (3.11)

we then need to bound (τ, ψ) for ψ ∈ H1(Ω). Let φ ∈ H3(Ω) ∩ H1
0 (Ω) be the

solution of (2.4). We can see from (2.22) and (3.5)

(τ, ψ) = (τ,−div(A∇φ)) + (τ, a0φ)

= −(τ,div(Πh(A∇φ))) + (τ, a0φ)

= −(A−1(ppp(uh)− ppph),Πh(A∇φ)) + (τ, a0φ). (3.12)

Note that

(div(ppp(uh)− ppph), φ) + (A−1(ppp(uh)− ppph), A∇φ) = 0. (3.13)

Thus, from (3.6), (3.12) and (3.13), we derive

(τ, ψ) =(A−1(ppp(uh)− ppph), A∇φ−Πh(A∇φ))

+ (div(ppp(uh)− ppph), φ− Phφ) + (a0τ, φ− Phφ)

+ (a0(y(uh)− Ph(y(uh))), φ− Phφ)− (a0(y(uh)− Ph(y(uh))), φ). (3.14)

From (2.23), we have

(A−1(ppp(uh)− ppph), A∇φ−Πh(A∇φ)) ≤ Ch2‖A‖2,∞‖ppp(uh)− ppph‖ · ‖φ‖3. (3.15)
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Let ũ = uh and w = divppp(uh) + a0y(uh)− uh in (2.38), we can find that

divppp(uh) + a0y(uh)− uh = 0. (3.16)

Similarly, by (2.19) and (2.32), it is easy to see that

divppph = uh − Ph(a0yh). (3.17)

By (3.16)–(3.17) and (2.19)–(2.20), we have

(div(ppp(uh)− ppph), φ− Phφ) = (Ph(a0yh)− a0y(uh), φ− Phφ)

= (Ph(a0y(uh))− a0y(uh), φ− Phφ)

≤ C‖Ph(a0y(uh))− a0y(uh)‖ · ‖φ− Phφ‖
≤ Ch3‖a0‖1,∞‖y(uh)‖1‖φ‖2. (3.18)

For the third and the fourth terms on the right side of (3.14), using (2.20), we
get

(a0τ, φ− Phφ) ≤ Ch2‖a0‖0,∞‖τ‖ · ‖φ‖2, (3.19)

(a0(y(uh)− Ph(y(uh))), φ− Phφ) ≤ Ch3‖a0‖0,∞‖y(uh)‖1‖φ‖2. (3.20)

Moreover, by (2.21), we find that

(a0(y(uh)− Ph(y(uh))), φ) =(y(uh)− Ph(y(uh)), a0φ)

≤C‖y(uh)− Ph(y(uh))‖−1‖a0φ‖1
≤Ch3‖a0‖1,∞‖y(uh)‖2‖φ‖1. (3.21)

By (3.11), (3.14)–(3.15) and (3.18)–(3.21), we derive

‖Phy(uh)− yh‖−1 ≤ Ch2(‖ppp(uh)− ppph‖+ ‖τ‖) + Ch3‖y(uh)‖2. (3.22)

Choosing vvvh = Πhppp(uh)− ppph in (3.5) and wh = Phy(uh)− yh in (3.6), respectively.
Then adding the two equations to get

(A−1(Πhppp(uh)− ppph),Πhppp(uh)− ppph) + (a0(Phy(uh)− yh), Phy(uh)− yh)

=− (A−1(ppp(uh)−Πhppp(uh)),Πhppp(uh)− ppph)− (a0(y(uh)− Phy(uh)), Phy(uh)− yh).
(3.23)

Using (3.23), (2.20), (2.23) and the assumptions on A and a0, we find that

‖Πhppp(uh)− ppph‖+ ‖τ‖ ≤ Ch(‖ppp(uh)‖1 + ‖y(uh)‖1). (3.24)

Substituting (3.24) into (3.22), using (2.23), for sufficiently small h, we have

‖Phy(uh)− yh‖−1 ≤ Ch3(‖ppp(uh)‖1 + ‖y(uh)‖2). (3.25)

Since the domain Ω is H2-regular, we have

‖ppp(uh)‖1 + ‖y(uh)‖2 ≤ C‖y(uh)‖2 ≤ C‖uh‖ ≤ C(‖u‖+ ‖Qhu− uh‖). (3.26)

From (3.25)–(3.26), we derive the first part of (3.10).
Similarly, we can derive

‖τ‖ ≤ Ch2(‖u‖+ ‖Qhu− uh‖). (3.27)

Thus, we complete the proof.
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Lemma 3.2. Let (ppp(uh), y(uh), qqq(uh), z(uh)) ∈ (VVV × W )2 and (ppph, yh, qqqh, zh) ∈
(VVV h ×Wh)2 be the solutions of (2.37)-(2.40) and (2.41)-(2.44) with ũ = uh respec-
tively. Assume that the domain Ω is Hs+2-regular (0 ≤ s ≤ 1), then we have

‖Phz(uh)− zh‖ ≤ Ch3(‖yd‖1 + ‖u‖+ ‖Qhu− uh‖). (3.28)

Proof. Since

‖e‖ = sup
ψ∈L2(Ω),ψ 6=0

(e, ψ)

‖ψ‖
, (3.29)

we then need to bound (e, ψ) for ψ ∈ L2(Ω). From (2.4), (2.22) and (3.7), we can
see that

(e, ψ) =(e,−div(A∇φ)) + (e, a0φ)

=− (e, div(Πh(A∇φ))) + (e, a0φ)

=− (A−1(qqq(uh)− qqqh),Πh(A∇φ)) + (e, a0φ)− (ppp(uh)− ppph,Πh(A∇φ)).
(3.30)

Note that

(div(qqq(uh)− qqqh), φ) + (A−1(qqq(uh)− qqqh), A∇φ) = 0. (3.31)

Thus, from (3.8), (3.30) and (3.31), we derive

(e, ψ) =(A−1(qqq(uh)− qqqh), A∇φ−Πh(A∇φ)) + (div(qqq(uh)− qqqh), φ− Phφ)

+ (a0e, φ− Phφ) + (a0(z(uh)− Ph(z(uh))), φ− Phφ)

− (a0(z(uh)− Ph(z(uh))), φ)− (τ, Phφ) =:

6∑
i=1

Ii. (3.32)

Let ũ = uh and w = divqqq(uh) + a0z(uh)− y(uh) + yd in (2.40), we can find that

divqqq(uh) + a0z(uh) = y(uh)− yd. (3.33)

Similarly, by (2.19) and (2.34), it is easy to see that

divqqqh = yh − Phyd − Ph(a0zh). (3.34)

By (2.19)–(2.20) and (3.33)–(3.34), we have

I2 =(Ph(a0zh)− a0z(uh), φ− Phφ) + (Phyd − yd, φ− Phφ)

+ (y(uh)− Phy(uh), φ− Phφ) + (Phy(uh)− yh, φ− Phφ)

=(Ph(a0z(uh))− a0z(uh), φ− Phφ) + (Phyd − yd, φ− Phφ)

+ (y(uh)− Phy(uh), φ− Phφ)

≤Ch3(‖a0‖1,∞‖z(uh)‖1 + ‖yd‖1 + ‖y(uh)‖1)‖φ‖2. (3.35)

Similar to the estimates (3.15) and (3.18)–(3.21), we estimate I1, I3, I4 and I5
as follows

I1 ≤ Ch‖qqq(uh)− qqqh‖ · ‖φ‖2, (3.36)

I3 ≤ Ch‖e‖ · ‖φ‖1, (3.37)

I4 ≤ Ch3‖z(uh)‖1‖φ‖2, (3.38)

I5 ≤ Ch3‖a0‖1,∞‖z(uh)‖2‖φ‖1. (3.39)
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For I6, by using of (2.19) and (3.10), we get

I6 = −(τ, φ) ≤ C‖τ‖−1‖φ‖1 ≤ Ch3(‖u‖+ ‖Qhu− uh‖)‖φ‖1. (3.40)

Substituting the estimates I1-I6 in (3.32), for sufficiently small h, by (3.29), we
derive

‖Phz(uh)− zh‖ ≤Ch3(‖z(uh)‖2 + ‖y(uh)‖1 + ‖yd‖1 + ‖u‖+ ‖Qhu− uh‖)
+ Ch‖qqq(uh)− qqqh‖. (3.41)

Next, using (2.22), we rewrite (3.7)–(3.8) as

(A−1(Πhqqq(uh)− qqqh), vvvh)− (Phz(uh)− zh,divvvvh)

=− (A−1(qqq(uh)−Πhqqq(uh)), vvvh), ∀ vvvh ∈ VVV h, (3.42)

(div(Πhqqq(uh)− qqqh), wh) + (a0(Phz(uh)− zh), wh)

=− (a0(z(uh)− Phz(uh)), wh) + (Phy(uh)− yh, wh), ∀ wh ∈Wh. (3.43)

Similar to (3.24), we can get

‖Πhqqq(uh)− qqqh‖+ ‖e‖ ≤ Ch2(‖qqq(uh)‖2 + ‖z(uh)‖1) + C‖τ‖. (3.44)

Substituting (3.44) into (3.41), using (2.23) and (3.27), for sufficiently small h, we
have

‖Phz(uh)− zh‖
≤Ch3(‖qqq(uh)‖2 + ‖z(uh)‖2 + ‖y(uh)‖1 + ‖yd‖1 + ‖u‖+ ‖Qhu− uh‖). (3.45)

Since the domain Ω is H3-regular, we have

‖qqq(uh)‖2 + ‖z(uh)‖2 ≤ C‖z(uh)‖3 ≤ C(‖y(uh)‖1 + ‖yd‖1). (3.46)

Thus, using (3.26) and (3.45)–(3.46), we complete the proof.

Lemma 3.3. Let (ppp(Qhu), y(Qhu), qqq(Qhu), z(Qhu)) and (ppp(u), y(u), qqq(u), z(u)) be
the solutions of (2.37)–(2.40) with ũ = Qhu and ũ = u, respectively. Assume that
u ∈ H1(Ω) and the domain Ω is H2-regular, then we have

‖z(u)− z(Qhu)‖0,∞ ≤ Ch2. (3.47)

Proof. First, we choose ũ = Qhu and ũ = u in (2.37)–(2.40) respectively, then we
obtain the following error equations

(A−1(ppp(Qhu)− ppp(u)), vvv)− (y(Qhu)− y(u),divvvv) = 0, (3.48)

(div(ppp(Qhu)− ppp(u)), w) + (a0(y(Qhu)− y(u)), w) = (Qhu− u,w), (3.49)

for any vvv ∈ VVV and w ∈W .
Setting vvv = ppp(Qhu)− ppp(u) and w = y(Qhu)− y(u) in (3.48) and (3.49) respec-

tively and adding the two equations to get

(A−1(ppp(Qhu)− ppp(u)), ppp(Qhu)− ppp(u)) + (a0(y(Qhu)− y(u)), y(Qhu)− y(u))

=(Qhu− u, y(Qhu)− y(u)). (3.50)
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Then, we estimate the right side of (3.50). Note that ppp(Qhu)−ppp(u) = −A∇(y(Qhu)−
y(u)), by (2.27) and Poincaré’s inequality, we have

(Qhu− u, y(Qhu)− y(u)) ≤ C‖Qhu− u‖−1‖y(Qhu)− y(u))‖1
≤ Ch2‖u‖1‖ppp(Qhu)− ppp(u)‖. (3.51)

It follows from the assumptions on A and a0, (3.50) and (3.51) that

‖ppp(Qhu)− ppp(u)‖ ≤ Ch2. (3.52)

By the Poincaré’s inequality again, we have

‖y(Qhu)− y(u)‖ ≤ C‖ppp(Qhu)− ppp(u)‖ ≤ Ch2. (3.53)

From (2.1), we obtain the following equation

−div(Agrad(z(Qhu)− z(u))) + a0(z(Qhu)− z(u)) = y(Qhu)− y(u). (3.54)

Using (2.5), (3.53) and the classical imbedding theorem, we can see that

‖z(Qhu)− z(u)‖0,∞ ≤C‖z(Qhu)− z(u)‖2
≤C‖y(Qhu)− y(u)‖
≤Ch2. (3.55)

Thus, we complete the proof.

Lemma 3.4. Let u be the solution of (2.10)–(2.14) and uh be the solution of (2.31)–
(2.35), respectively. Assume that u ∈ H1(Ω) and all the assumptions in previous
Lemmas 3.1–3.3 hold. Then, we have

‖Qhu− uh‖ ≤ Ch2. (3.56)

Proof. We choose ũ = uh in (2.14) and ũh = Qhu in (2.35) to get the following
two inequalities:

(νu+ z, uh − u) ≥ 0 (3.57)

and

(νuh + zh, Qhu− uh) ≥ 0. (3.58)

Note that uh−u = uh−Qhu+Qhu−u. Adding the two inequalities (3.57) and
(3.58), we have

(νuh + zh − νu− z,Qhu− uh) + (νu+ z,Qhu− u) ≥ 0. (3.59)

Thus, by (3.59), we find that

ν‖Qhu− uh‖2 =ν(Qhu− uh, Qhu− uh)

=ν(Qhu− u,Qhu− uh) + ν(u− uh, Qhu− uh)

≤(zh − z,Qhu− uh) + (νu+ z,Qhu− u). (3.60)
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Observe that

(zh − z,Qhu− uh) =(zh − z(uh), Qhu− uh) + (z(uh)− z(Qhu), Qhu− uh)

+ (z(Qhu)− z(u), Qhu− uh). (3.61)

By (2.19), Lemma 3.2 and Lemma 3.3, we arrive at

(zh − z(uh), Qhu− uh) =(zh − Phz(uh), Qhu− uh)

≤Ch6 +
ν

4
‖Qhu− uh‖2 + Ch3‖Qhu− uh‖2 (3.62)

and

(z(Qhu)− z(u), Qhu− uh) ≤ Ch4 +
ν

4
‖Qhu− uh‖2. (3.63)

Moreover, we can prove that

(z(uh)− z(Qhu), Qhu− uh) = −‖y(Qhu)− y(uh)‖2 ≤ 0. (3.64)

From (2.15), we know that

νu+ z = max{0, z̄} = constant. (3.65)

Thus, we have

(νu+ z,Qhu− u) = (νu+ z)

∫
Ω

(Qhu− u) = 0. (3.66)

Combining (3.60)–(3.64) with (3.66), for sufficiently small h, we derive (3.56).

Let (ppp(uh), y(uh), qqq(uh), z(uh)) and (ppp(Qhu), y(Qhu), qqq(Qhu), z(Qhu)) be the so-
lutions of (2.37)-(2.40) with ũ = uh and ũ = Qhu, respectively. Then we have the
following error equations

(A−1(ppp(Qhu)− ppp(uh)), vvv)− (y(Qhu)− y(uh),divvvv) = 0, (3.67)

(div(ppp(Qhu)− ppp(uh)), w) + (a0(y(Qhu)− y(uh)), w) = (Qhu− uh, w), (3.68)

(A−1(qqq(Qhu)− qqq(uh)), vvv)− (z(Qhu)− z(uh),divvvv) = 0, (3.69)

(div(qqq(Qhu)− qqq(uh)), w) + (a0(z(Qhu)− z(uh)), w) = (y(Qhu)− y(uh), w), (3.70)

for any vvv ∈ VVV and w ∈W .

Similar to Lemma 3.3, using Lemma 3.4, we can prove the following estimate.

Lemma 3.5. Assume that all the assumptions in Lemma 3.4 are hold. Then we
have

‖z(Qhu)− z(uh)‖0,∞ ≤ Ch2. (3.71)

Lemma 3.6. Assume that all the assumptions in Lemma 3.4 hold and u ∈W 1,∞(Ω).
Let u and uh be the solutions of (2.10)–(2.14) and (2.31)–(2.35), respectively. Then
we have

‖u− uh‖0,∞ ≤ Ch. (3.72)
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Proof. By (2.27) and the inverse inequality, we arrive at

‖u− uh‖0,∞ ≤ C(‖u−Qhu‖0,∞ + ‖Qhu− uh‖0,∞)

≤ C(h‖u‖1,∞ + h−1‖Qhu− uh‖). (3.73)

Gathering (3.73) and Lemma 3.4, we derive (3.72).
Moreover, in order to improve the accuracy of the control approximation on a

global scale, similar to the case in [19], we construct the following a postprocessing
projection operator of the discrete co-state to the admissible set

û = (max{0, zh} − zh)/ν. (3.74)

Now, we can prove the following global superconvergence result.

Theorem 3.1. Assume that all the assumptions in previous Lemmas hold. Let u
be the solution of (2.10)–(2.14) and û be the function constructed in (3.74). Then
we have

‖u− û‖0,∞ ≤ Ch2. (3.75)

Proof. By use of (2.20), Lemma 3.2, Lemma 3.3, Lemma 3.5 and the inverse
estimate, we find that

‖z − zh‖0,∞ ≤‖z − z(Qhu)‖0,∞ + ‖z(Qhu)− z(uh)‖0,∞
+ ‖z(uh)− Phz(uh)‖0,∞ + ‖Phz(uh)− zh‖0,∞
≤Ch2. (3.76)

From (2.15) and (3.74), we arrive at

|u− û| ≤ C|z − zh|+ C|z̄ − zh|. (3.77)

By (3.76) and (3.77), we have

‖u− û‖0,∞ ≤ C‖z − zh‖0,∞ ≤ Ch2, (3.78)

which yields to (3.75).

4. Numerical experiments

In this section, we present below an example to illustrate the theoretical results. The
optimization problems were solved numerically by projected gradient methods, with
codes developed based on AFEPack [17]. The discretization was already described
in previous sections: the control function u was discretized by piecewise constant
functions, whereas the state (y,ppp) and the co-state (z,qqq) were approximated by
the order k = 1 Raviart-Thomas mixed finite element functions. In the following
example, we choose the domain Ω = [0, 1] × [0, 1], a0 = 0, ν = 1 and A is a unit
matrix.

Example 4.1. We consider the following two-dimensional elliptic control problem

min
u∈Uad

{
1

2
‖y − yd‖2 +

1

2
‖u‖2

}
(4.1)
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subject to the state equation

divppp = f + u, ppp = −grady, (4.2)

where
y = sin(πx1) sin(πx2), z = sin(2πx1) sin(2πx2),

u = max(0, z̄)− z, f = 2π2y − u, yd = y − 8π2z.
(4.3)

In the numerical implementation, we choose the solution u which satisfies
∫

Ω
udx =

0. In Table 1, the errors ‖u − uh‖0,∞, ‖Qhu − uh‖ and ‖u − û‖0,∞ obtained on
a sequence of uniformly refined meshes are shown. In Figure 1, the profile of the
numerical solution of u on the 64× 64 mesh grid is plotted. Moreover, in Figure 2,
we show the convergence orders by slopes. In the Figure 2, we denote û by uproj .
The theoretical results can be observed clearly from the data.

Table 1. The errors of Example on a sequential uniform refined meshes.

h ‖u− uh‖0,∞ ‖Qhu− uh‖ ‖u− û‖0,∞
1/16 9.4173e-02 1.2837e-04 3.5792e-02
1/32 4.7042e-02 2.5802e-05 8.9386e-03
1/64 2.3767e-02 6.3516e-06 2.2261e-03
1/128 1.1893e-02 1.5769e-06 5.5875e-04
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Figure 1. The The profile of the numeri-
cal solution of Example on 64×64 triangle
mesh.
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