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Abstract In this paper, we mainly discuss the measurable functional spaces
based on strict pseudo-additions. Particularly, we obtained the some impor-
tant theorems for the measurable functional spaces based on a strict pseudo-
addition. Furthermore, we got that the some properties of the sequence of
a.e. convergence and convergence in ⊕-measure, and the relationship between
a.e. convergence and convergence in ⊕-measure on the measurable functional
spaces based on a strict pseudo-addition.
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1. Introduction

Originally functional analysis could be understood as a unifying abstract treatment
of important aspects of linear mathematical models for problems in science, but the
latter receded more and more into the background during the intensive theoretical
investigations. Numerous questions in physics, chemistry, biology, and economics
lead to nonlinear problems. Thus nonlinear functional analysis is an important
branch of modern mathematics.

The classical measure theory is one of the most important theories in mathe-
matics and based on countable additive measures [7, 26]. Although the additive
measures are widely used, they do not allow modeling many phenomena involv-
ing interaction between criteria. For this reason, the fuzzy measure proposed by
Sugeno as an extension of classical measure in which the additivity is replaced by
a weaker condition, i.e., monotonicity [26]. So far, there have been many different
fuzzy measures, such as the decomposable measure, the λ-additive measure, the be-
lief measure,the possibility measure and the plausibility measure, etc. Among the
fuzzy measure mentioned before, the decomposable measure was independently in-
troduced by Dubois and Prade [5] and Weber [27], because of the close relation with
the classical measure theory. Further developments of decomposable measures and
related integrals have been extensive [4,19–21,23]. Decomposable measures include
several well-known fuzzy measures such as the λ-additive measure and probability
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and possibility measures, and they are a natural setting for relaxing probabilistic
assumptions regarding the modeling of uncertainty [6,22]. Decomposable measures
and the corresponding integrals are very useful in decision theory and the theory of
nonlinear differential and integral equations [12,25].

Based on the above these, they also play an important role in theories of non-
additive measures [6, 26] and the notions of σ-⊕-decomposable measure (pseudo-
additive measure) and corresponding integral (pseudo-integral) based on this mea-
sure were introduced [13,24]. The families of the pseudo-operations based on gener-
ated g turn out to be solutions of well-known nonlinear functional equations [25]. In
many problems with uncertainty as in the theory of probabilistic metric spaces [22],
multi-valued logics, general measures [7,26] often we work with many operations dif-
ferent from the usual addition and multiplication of reals. Some of them are triangu-
lar norms, triangular conorms, pseudo-additions, pseudo-multiplications, etc. [12].

In this paper, we will discuss the measurable functional spaces based on strict
pseudo-additions. Particularly, we will generalize the classical some theorems to the
measurable functional space based on a strict pseudo-addition. Furthermore, we will
obtain that the some properties of the sequence of a.e. convergence and convergence
in ⊕-measure, and the relationship between a.e. convergence and convergence in
⊕-measure on the measurable functional spaces based on a strict pseudo-addition.

2. Preliminaries

Let [a, b] be a closed subinterval of R (in some cases we will also take semiclosed
subintervals). The total order on [a, b] will be denoted by �. This can be the usual
order of the real line, but it can also be another order. We shall denote by M is
maximum element on [a, b] (usually M is either a or b) with respect to this total
order.

Definition 2.1 ( [19]). Let {xn}n≥1 be a sequence from [a, b].
(1) If xm � xn whenever n > m, then we say that the sequence {xn}n≥1 is an

increasing sequence;
(2) If xm ≺ xn whenever n > m, then we say that the sequence {xn}n≥1 is a

strict increasing sequence;
(3) If xn � xm whenever n > m, then we say that the sequence {xn}n≥1 is a

decreasing sequence;
(4) If xn ≺ xm whenever n > m, then we say that the sequence {xn}n≥1 is a

strict decreasing sequence.

Let X be a non-empty set, we shall denote by S , A and BX are algebra,
σ-algebra and Borel σ-algebra of subsets of a set X, respectively.

Denote by F (X) is the set of all functionals from X to [a, b]. For each λ ∈ [a, b]
the constant functional in F (X) with value λ will also be denoted by λ. It will be
clear from the context which usage is intended. A functional f ∈ F (X) is said to
be pseudo-finite if f(x) ≺ M for all x ∈ X. The functional f ∈ F (X) is said to
be elementary if the set of values f(X) of f is a finite subset of [a, b] and the set of
such elementary functionals will be denoted by E (X).

Let f and h be two functions defined on X and with values in [a, b] and ∗ be
arbitrary binary operation on [a, b]. Then, we define for any x ∈ X

(f ∗ h)(x) = f(x) ∗ h(x),
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and for any λ ∈ [a, b], (λ ∗ f)(x) = λ ∗ f(x). Let A be a subset of F (X). If
f ∗ h ∈ A for all f, h ∈ A, then A is ∗-closed. The total order � on [a, b] induces a
partial order � on F (X) defined pointwise by stipulating that f � h if and only if
f(x) � h(x) for all x ∈ X. Thus (F (X),�) is a poset, and whenever we consider
F (X) as a poset then it will always be with respect to this partial order. Let
S[λ ≺ f ] = {x| x ∈ X, λ ≺ f(x), f ∈ F (X)}.

Definition 2.2 ( [11]). A binary operation ⊕ : [a, b] × [a, b] → [a, b] is called a
pseudo-addition, if it satisfies the following conditions, for all x, y, z, w ∈ [a, b]:

(1) 0⊕ x = x, where 0 is a zero element (usually 0 is either a or b);(boundary
condition)

(2) x⊕ z � y⊕w whenever x � y and z � w; (monotonicity)
(3) x⊕ y = y⊕ x; (commutativity)
(4) (x⊕ y)⊕ z = x⊕ (y⊕ z). (associativity)

A pseudo-addition ⊕ is said to be continuous if it is a continuous function in
[a, b]2. The following are examples of pseudo-additions: x ∨⊕ y = y if and only if
x � y; x⊕ y = g−1(g(x) + g(y)), where g : [a, b]→ [0,∞] is a strictly monotone and
continuous generator surjective function and x � y if and only if g(x) ≤ g(y), this
pseudo-addition also called strict pseudo-addition. It is obvious that M ⊕ x = M
for all x ∈ [a, b].

In order to ensure that g(0) = 0 for pseudo-addition. In this paper, we will
consider that for all x ∈ [a, b], it satisfies 0 � x.

Definition 2.3 ( [11]). A binary operation � : [a, b] × [a, b] → [a, b] is called a
pseudo-multiplication, if it satisfies the following conditions, for all x, y, z, w ∈ [a, b]:

(1) 1�x = x, where 1 ∈ [a, b] is an unit element; (boundary condition)
(2) x�z � y�w whenever x � y and z � w; (monotonicity)
(3) x� y = y� x; (commutativity)
(4) (x� y)� z = x� (y� z). (associativity)

A pseudo-multiplication � is said to be continuous if it is a continuous function
in [a, b]2. The following are examples of pseudo-multiplications: x ∧� y = x if and
only if x � y; x�y = g−1(g(x)·g(y)), where g : [a, b]→ [0,∞] is a strictly monotone
and continuous generator surjective function and x � y if and only if g(x) ≤ g(y).
It is obvious that g(0) = 0.

We assume also 0 � x = 0 and that � is a distributive pseudo-multiplication
with respect to ⊕, i.e.,

x� (y ⊕ z) = (x� y)⊕ (x� z).

The structure ([a, b],⊕,�) is called a real semiring.
Because of the associative property of the pseudo-addition ⊕, it can be extended

by induction to n-ary operation by setting

n
⊕
i=1

xi =

(
n−1
⊕
i=1

xi

)
⊕ xn.

Due to monotonicity, for each sequence {xi}i∈N of elements of [a, b], the following
limit can be considered: ∞

⊕
i=1

xi = lim
n→∞

n
⊕
i=1

xi.
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Definition 2.4 ( [18]). Let A be a non-empty set and ⊕ a pseudo-addition. A
binary operation d⊕ : A × A → [a, b] is called a pseudo-metric on A, if it satisfies
the following conditions, for all x, y, z ∈ A:

(1) d⊕(x, y) = 0 if and only if x = y;
(2) d⊕(x, y) = d⊕(y, x);
(3) there exists λ ∈ [a, b] such that

d⊕(x, y) � λ� (d⊕(x, z)⊕ d⊕(z, y)),

where � is a distributive pseudo-multiplication with respect to ⊕.

Let {xn}n≥1 be a sequence from [a, b]. The sequence {xn}n≥1 is said to be
convergent, if for any 0 ≺ ε, there exists positive integer N(ε), such that d⊕(xn, x) ≺
ε for all n ≥ N(ε), denote by x = lim

n→∞
xn, and x is said to be the limit of the

sequence {xn}n≥1.

lim
n→∞

xn =
∞
∨⊕
n=1

(∧�
k≥n

xk)

is said to be the lower-limit of the sequence {xn}n≥1;

lim
n→∞

xn =
∞
∧�
n=1

(∨⊕
k≥n

xk)

is said to be the upper-limit of the sequence {xn}n≥1. It is obvious that lim
n→∞

xn �

lim
n→∞

xn. Let {fn}n≥1 be a sequence from F (X).

(1) The sequence {fn}n≥1 is said to be convergent, if for any 0 ≺ ε, and for each
point x0 ∈ X, there exists positive integer N(ε, x0), such that d⊕(fn(x0), f(x0)) ≺ ε
for all n ≥ N(ε, x0);

(2) The sequence {fn}n≥1 is said to be uniform convergent, if for any 0 ≺ ε,
there exists positive integer N(ε), such that sup

x∈X
d⊕(fn(x), f(x)) ≺ ε for all n ≥

N(ε);
Let A be a subset of F (X). The poset A is said to be upper-complete if

lim
n→∞

fn ∈ A for each increasing sequence {fn}n≥1 from A; the poset A is said to

be lower-complete if lim
n→∞

fn ∈ A for each decreasing sequence {fn}n≥1 from A;

the poset A is said to be complete if lim
n→∞

fn ∈ A for each sequence {fn}n≥1 from

A, where the limit of the functional sequence {fn}n≥1 is given by ( lim
n→∞

fn)(x) =

lim
n→∞

fn(x) for all x ∈ X.

For any continuous pseudo-addition ⊕ and x, y ∈ [a, b] with x � y, there exists
at least one point z ∈ [a, b] such that y = x⊕ z. If pseudo-addition ⊕ is strict, then
there exists only one point z ∈ [a, b] such that y = x ⊕ z for all x, y ∈ [a, b] with
x ≺M . Thus we have the following concepts.

Definition 2.5 ( [19]). For any continuous pseudo-addition ⊕ and x, y ∈ [a, b] with
x � y, the pseudo-subtraction set y−⊕ x is a nonempty set of all points z such that
y = x⊕ z. For any x, y ∈ [a, b], define pseudo-absolute value set as

|y −⊕ x| =

 y−⊕x, if x � y,

x−⊕y, if y ≺ x.
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Example 2.1. Let total order � on [0, 1] be the usual reverse order of the real
line and pseudo-addition ⊕ be the usual multiplication of the real numbers. It is
obvious that zero element is 1. If x = 0, then y = 0 and y −⊕ x = [0, 1]. If x 6= 0,
then for any 0 ≤ y < x, we have y −⊕ x = {y/x} ⊆ [0, 1].

Definition 2.6. For any continuous pseudo-addition ⊕, if f, h ∈ F (X), then define
the pseudo-absolute value functional set |f − ⊕h| as the set of all those functionals
ϕ such that

ϕ(x) ∈ |f(x)−⊕h(x)|

for all x ∈ X.

Example 2.2. Let total order � on [0, 1] be the usual reverse order of the real
line and pseudo-addition ⊕ be the usual multiplication of the real numbers. It is
obvious that zero element is 1. Let X = R =

⋃4
i=1Ai, where

A1 = {x ∈ R|f(x) = 0 and h(x) = 0};A2 = {x ∈ R|f(x) = 0 and h(x) 6= 0};
A3 = {x ∈ R|f(x) 6= 0 and h(x) = 0};A4 = {x ∈ R|f(x) 6= 0 and h(x) 6= 0}.

For any x ∈ R, define

ϕ1(x) =

1, x /∈ A1,

c, x ∈ A1,
ϕ2(x) =

 1, x /∈ A2 ∪A3,

0, x ∈ A2 ∪A3,

ϕ3(x) =

1, x /∈ A4,

min{f(x)/h(x), h(x)/f(x)}, x ∈ A4,

where c ∈ [0, 1] is arbitrary number. Then

|f − ⊕h| = {ϕ|ϕ(x) = {min{ϕ1(x), ϕ2(x), ϕ3(x)}} ⊆ F (R).

Definition 2.7 ( [19]). For strict pseudo-addition ⊕ and x, y ∈ [a, b] with x � y,
the pseudo-subtraction y − ′⊕x is defined as

y − ′⊕x =

 g−1(g(y)− g(x))), if x ≺M,

0, if x = M.

For any x, y ∈ [a, b], define pseudo-absolute value as

|y − ′⊕x| =

 y − ′⊕x, if x � y,

x− ′⊕y, if y ≺ x.

Definition 2.8. For strict pseudo-addition ⊕, if f, h ∈ F (X), then define the
pseudo-absolute value functional |f − ′⊕h| pointwise as

|f − ′⊕h|(x) = |f(x)− ′⊕h(x)|

for all x ∈ X.



On measurable functional spaces 1027

Definition 2.9 ( [19]). For any pseudo-addition ⊕, a non-empty subset K of F (X)
is said to be a functional space with respect to ⊕, denoted by (K,⊕), if (λ � f) ⊕
(µ � h) ∈ K for all f, h ∈ K and λ, µ ∈ [a, b], where � is a distributive pseudo-
multiplication with respect to ⊕.

It is clear that (F (X),⊕) is the greatest functional space with respect to any
pseudo-addition ⊕. Thus the functional space (K,⊕) with K ⊆ F (X) is also called
a subspace of (F (X),⊕). If (K,⊕) is a functional space with respect to ⊕, then we
just write K instead of (K,⊕) whenever ⊕ can be determined from the context.

Definition 2.10 ( [19]). For each subset A of F (X) the upper-closure of A, de-
noted by Â, is the set of all elements of F (X) having the form lim

n→∞
fn for some

increasing sequence {fn}n≥1 from A.

It follows from Definition 2.10 that A ⊆ Â and A = Â if and only if A is
upper-complete.

Definition 2.11. For any continuous pseudo-addition ⊕, a subspace (K,⊕) will be
called para-complemented if |f−⊕h| ⊆ K for all f, h ∈ K; For strict pseudo-addition
⊕, a subspace (K,⊕) will be called complemented if |f − ′⊕h| ∈ K for all f, h ∈ K.

Definition 2.12. For any continuous pseudo-addition ⊕, a para-complemented
subspace (K,⊕) is regular if it contains 1 and is closed under ∨⊕; For strict pseudo-
addition ⊕, a complemented subspace (K,⊕) is normal if it contains 1 and is closed
under ∨⊕.

Note that (f ∨⊕ h) ⊕ (f ∧� h) = f ⊕ h for all f, h ∈ F (X) and thus a para-
complemented subspace of F (X) is ∧�-closed if and only if it is ∨⊕-closed. It is
obvious that regular and normal are closed under ∧�.

Definition 2.13 ( [2]). The pseudo-characteristic function of a set E ⊆ X is defined
with:

IE(x) =

0, x /∈ E,

1, x ∈ E,

where 0 is zero element for ⊕ and 1 is unit element for �. It is obvious that
IE ∈ E (X), for all E ⊆ X.

Definition 2.14 ( [12]). A set function m : A → [a, b] (or semiclosed interval) is
called a σ-⊕-decomposable measure if it satisfies the following conditions:

(1) m(∅) = 0;

(2) m(E ∪ F ) = m(E)⊕m(F ) for all E,F ∈ A and E ∩ F = ∅;

(3) m(
∞⋃
i=1

Ei) =
∞
⊕
i=1

m(Ei) for any sequence {Ei}i≥1 of pairwise disjoint sets

from A .

A pair (X,A ) consisting of a non-empty set X and a σ-algebra of subsets of X
is called a measurable space. A functional f : X → [a, b] is said to be a measurable
functional if f−1(B[a,b]) ⊆ A . Let M(A ) be the set of all measurable mappings
from (X,A ) to ([a, b],B[a,b]), i.e.,

M(A ) = {f ∈ F (X)| f−1(B[a,b]) ⊆ A }.
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Then E (S ) will denote the set of those elements f ∈ E (X) for which f−1(λ) =
{x ∈ X|f(x) = λ} ∈ S for each λ ∈ f(X). In particular, this means that E (A ) =
M(A ) ∩ E (X).

Definition 2.15. Let⊕ be a pseudo-addition andm : A → [a, b] a σ-⊕-decomposable
measure. Let {fn}n≥1 be a sequence of measurable functionals of a.e. pseudo-finite
on X. If there exists a measurable functional f of a.e. pseudo-finite on X, such
that

lim
n→∞

mS[σ � d⊕(fn, f)] = 0

for arbitrary 0 ≺ σ ≺ M , then the functionals sequence {fn}n≥1 is said to be
convergent to f with respect to ⊕-measure, denote by fn ⇒ f . If the functionals
sequence {fn}n≥1 does not converge to f with respect to ⊕-measure, denote by
fn ; f .

Definition 2.16 ( [20]). A set function m : A → [a, b] (or semiclosed interval) is
monotone if

m(E) � m(F )

whenever E,F ∈ A and E ⊂ F .

3. Main results

In this section we will give some of important properties for the measurable func-
tional space based on a strict pseudo-addition.

Theorem 3.1 ( [3]). The σ-⊕-decomposable measure m : A → [a, b] is monotone.

Lemma 3.1. Let ⊕ be a strict pseudo-addition. The function d⊕ : [a, b]2 → [a, b]
given by

d⊕(x, y) = |x− ′⊕y|

Then d⊕ is a pseudo-metric on [a, b] and λ = 1.

Proof. It is obvious that the function d⊕ satisfies the conditions (1), (2) and (3)
of the Definition 2.4, that is d⊕ is a pseudo-metric on [a, b]. We easy to get

d⊕(x, y) � d⊕(x, z)⊕ d⊕(z, y) = 1� (d⊕(x, z)⊕ d⊕(z, y)).

Theorem 3.2. Let ⊕ be a strict pseudo-addition and {xn}n≥1 a sequence from
[a, b]. Then lim

n→∞
xn = lim

n→∞
xn if and only if the sequence {xn}n≥1 is convergence.

Proof. Let

y = lim
n→∞

xn =
∞
∨⊕
n=1

(∧�
k≥n

xk) and z = lim
n→∞

xn =
∞
∧�
n=1

(∨⊕
k≥n

xk).

Put yn = ∧�k≥nxk, then {yn} is an increasing sequence and y = ∨⊕∞n=1yn. Thus
for 0 ≺ ε = λi, where · · · ≺ λi ≺ · · · ≺ λ2 ≺ λ1 ≺ y and lim

i→∞
λi = 0, there exists ni

such that y− ′⊕ε ≺ yni
and there exists ki > ni such that xki ≺ yni

⊕ε � y⊕ε. Since
yni
� xki , we have y − ′⊕ε ≺ xki . Thus we have |y − ′⊕xki | ≺ ε which implies that
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the subsequence {xki} converges to y. Similarly, we can obtain that there exists
{xkj} converges to z.

Suppose lim
n→∞

xn = x. For any 0 ≺ ε, there exists positive integer N(ε), such

that |xn − ′⊕x| ≺ ε for all n ≥ N(ε). For any subsequence {xnk
} of {xn}, if

nk ≥ n ≥ N(ε), then |xnk
− ′⊕x| ≺ ε. Thus the subsequence {xnk

} converges to x
which implies that x = y = z.

Suppose y = z. Put zn = ∨⊕k≥nxk, then {zn} is a decreasing sequence and
z = ∧�∞n=1zn. Thus for any 0 ≺ ε, there exists positive integer N , such that

y ≺ yN ⊕ ε � yn ⊕ ε = ∧�k≥nxk ⊕ ε � xn ⊕ ε

and

xn � ∨⊕k≥nxk = zn � zN ≺ z ⊕ ε = y ⊕ ε,

for all n ≥ N . Hence, |y − ′⊕xn| ≺ ε, which implies that y = lim
n→∞

xn.

Theorem 3.3. Let ⊕ be a strict pseudo-addition and {En}n≥1 ⊂ A (X) a decreas-
ing sequence. If there exists at least one l ∈ N such that m(El) ≺M , then

m
(

lim
n→∞

En

)
= lim
n→∞

m (En) .

Proof. Suppose m(El) ≺M for some l ∈ N. If {En}n≥1 is a decreasing sequence,
then {El − En}n≥1 is a increasing sequence. By Theorem 3.2 in [20], we have

m
(
El − lim

n→∞
En

)
= m

(
lim
n→∞

(El − En)
)

= lim
n→∞

m(El − En).

But

m(El) = m(El − En)⊕m(En)

and

m(El) = m
(
El − lim

n→∞
En

)
⊕m

(
lim
n→∞

En

)
.

Thus, we have

m(El) = lim
n→∞

(m(El − En)⊕m(En))

= lim
n→∞

m(El − En)⊕ lim
n→∞

m(En)

= m
(
El − lim

n→∞
En

)
⊕ lim
n→∞

m(En).

Hence, we obtain that m
(

lim
n→∞

En

)
= lim
n→∞

m (En), because m(El) ≺M .

Lemma 3.2 ( [19]). Let ⊕ be a strict pseudo-addition. Then (M(A ),⊕) are both
upper-complete and lower-complete.

Lemma 3.3 ( [19]). Let ⊕ be a strict pseudo-addition. Then (M(A ),⊕) is an
upper-complete normal subspace of (F (X),⊕).

Theorem 3.4. Let ⊕ be a strict pseudo-addition and {fn}n≥1 a sequence from

(M(A ),⊕). Then ϕ, ψ ∈M(A ), where ϕ(x) =
∞
∧�
n=1

fn(x) and ψ(x) =
∞
∨⊕
n=1

fn(x).
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Proof. Let
ϕn = f1 ∧� f2 ∧� · · · ∧� fn

and
ψn = f1 ∨⊕ f2 ∨⊕ · · · ∨⊕ fn.

Then {ϕn}n≥1 with lim
n→∞

ϕn = ϕ and {ψn}n≥1 with lim
n→∞

ψn = ψ are decreasing

sequence and increasing sequence fromM(A ). By Lemma 3.3, we haveM(A ) are
both ∨⊕-closed and ∧�-closed. Hence, from Lemma 3.2, we have ϕ, ψ ∈ M(A ).

Theorem 3.5. Let ⊕ be a strict pseudo-addition and {fn}n≥1 a sequence from
(M(A ),⊕). Then ϕ, ψ ∈ M(A ), where ϕ = lim

n→∞
fn and ψ = lim

n→∞
fn. In

particular, if there exists f = lim
n→∞

fn, then f ∈M(A ).

Proof. Since

lim
n→∞

fn =
∞
∨⊕
n=1

( ∧�
m≥n

fm) and lim
n→∞

fn =
∞
∧�
n=1

( ∨⊕
m≥n

(fm)),

by Theorem 3.4, we have ϕ, ψ ∈ M(A ). If there exists f = lim
n→∞

fn, then by

Theorem 3.2, we have f = ϕ = ψ, i.e., f ∈M(A ).

Corollary 3.1. Let ⊕ be a strict pseudo-addition. Then (M(A ),⊕) is an complete
normal subspace of (F (X),⊕).

Proof. By Lemma 3.3, we have (M(A ),⊕) is a normal subspace of (F (X),⊕).
Consequently, by Theorem 3.5, we have (M(A ),⊕) is an complete.

Theorem 3.6. Let ⊕ be a strict pseudo-addition and {fn}n≥1 a sequence of mea-
surable functionals of a.e. pseudo-finite on X. If m(X) ≺M , lim

n→∞
fn = f a.e. and

f ≺M a.e. on X, then for any positive integer n and 0 ≺ ε ≺M ,

lim
n→∞

m(X − S[n, ε]) = 0,

where S[n, ε] = S[|fk − ′⊕f | ≺ ε, k ≥ n].

Proof. If {fn}n≥1 ⊆M(A ), then by Theorem 3.5, we have that f is a measurable
functional, i.e., f ∈ M(A ), and therefore by Lemma 3.3, we have |fk − ′⊕f | ∈
M(A ), i.e., S[|fk − ′⊕f | ≺ ε] ∈ A for all k ≥ n. Thus, we have S[n, ε] ∈ A ,
because

S[n, ε] =

∞⋂
k=n

S[|fk − ′⊕f | ≺ ε].

By the definitions of fn and f , we have m(X − S[fn → pseudo− finite f ]) = 0.
But

S[fn → pseudo− finite f ] ⊂ lim
n→∞

S[|fn − ′⊕f | ≺ ε]

=

∞⋃
n=1

∞⋂
k=n

S[|fn − ′⊕f | ≺ ε]

=

∞⋃
n=1

S[n, ε] = lim
n→∞

S[n, ε],
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and {X −S[n, ε]} is a decreasing sequence with respect to n, because {S[n, ε]} is a
increasing sequence with respect to n. Hence, by theorem 3.1, we have

m(S[fn → pseudo− finite f ]) � m
(

lim
n→∞

S[n, ε]
)
.

By Theorem 3.3, we get that

m
(
X − lim

n→∞
S[n, ε]

)
= m

(
lim
n→∞

(X − S[n, ε])
)

= lim
n→∞

m(X − S[n, ε]).

Thus we have

m(X) = m
(
X − lim

n→∞
S[n, ε]

)
⊕m

(
lim
n→∞

S[n, ε]
)

= lim
n→∞

m(X − S[n, ε])⊕m
(

lim
n→∞

S[n, ε]
)
.

But

m(X) = m(X − S[fn → pseudo− finite f ])⊕m(S[fn → pseudo− finite f ]).

Hence, we obtain that

lim
n→∞

m(X − S[n, ε]) � m(X − S[fn → pseudo− finite f ]) = 0,

because m(X) ≺M .

Corollary 3.2. Let ⊕ be a strict pseudo-addition and {fn}n≥1 a sequence of mea-
surable functionals on X. If m(X) ≺ M , lim

n→∞
fn = f a.e. and f ≺ M a.e. on X,

then for any 0 ≺ ε ≺M ,

lim
n→∞

m(X − S[|fn − ′⊕f | ≺ ε]) = 0.

Proof. Since S[n, ε] ⊂ S[|fn − ′⊕f | ≺ ε], where S[n, ε] is the same as in Theorem
3.6, we have X−S[|fn− ′⊕f | ≺ ε] ⊂ X−S[n, ε]. By Theorem 3.1 and 3.6, we obtain
that

lim
n→∞

m(X − S[|fn − ′⊕f | ≺ ε]) � lim
n→∞

m(X − S[n, ε]) = 0,

which implies that lim
n→∞

m(X − S[|fn − ′⊕f | ≺ ε]) = 0.

Theorem 3.7. Let ⊕ be a strict pseudo-addition and {fn}n≥1 a sequence of mea-
surable functionals on X. If m(X) ≺ M , lim

n→∞
fn = f a.e. and f ≺ M a.e. on

X, then for any 0 ≺ δ ≺ M , there exists Eδ ⊂ X, such that {fn}n≥1 is uniform
convergence on Eδ and

m(X − Eδ) ≺ δ.
Proof. For a sequence {ni}i≥1, where ni is a positive integer for all i ∈ N, let

S[{ni}i≥1] =

∞⋂
i=1

S[ni, λi],

where S[ni, λi] is the same as in Theorem 3.6, · · ·λj ≺ · · · ≺ λ2 ≺ λ1 = 1 and
lim
j→∞

λj = 0. Then {fn}n≥1 is uniform convergence to f on S[{ni}i≥1]. In fact, For

any given 0 ≺ ε ≺M , there exists i0 such that λi0 ≺ ε. Then if n ≥ ni0 , we have

(|fn − ′⊕f |)(x) ≺ λi0 ≺ ε,
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for all x ∈ S[{ni}i≥1] ⊂ S[ni0 , λi0 ]. Thus, for any given 0 ≺ δ ≺ M , if there exists
a sequence {ni}i≥1 such that

m(X − S[{ni}i≥1]) ≺ δ,

then let Eδ = S[{ni}i≥1] ⊂ X.
By Theorem 3.6, for each εi = λi, i = 1, 2, · · · , where · · ·λn ≺ · · · ≺ λ2 ≺ λ1 = 1

and lim
n→∞

λn = 0, there exists a sufficiently large ni, respectively, such that

m(X − S[ni, λi]) ≺ µ2i � δ,

where 0 ≺ µ2i ⊕ µ2i = µ2i−1 , i = 1, 2, · · · , µ1 = 1 and lim
n→∞

µ2n = 0. Hence, the

sequence {ni}i≥1 consisting of these ni, i = 1, 2, · · · satisfies

m(X − S[{ni}i≥1]) = m

(
X −

∞⋂
i=1

S[ni, λi]

)
= m

( ∞⋃
i=1

X − S[ni, λi]

)
�
∞
⊕
i=1

m(X − S[ni, λi]) ≺
∞
⊕
i=1

(µ2i � δ)

= δ �
(
∞
⊕
i=1

µ2i

)
= δ � 1 = δ,

which implies that m(X − Eδ) ≺ δ.

Theorem 3.8. Let ⊕ be a strict pseudo-addition and the sequence {fn}n≥1 con-
verges to f with respect to ⊕-measure. Then there exists a subsequence {fni}i≥1 of
{fn}n≥1 is a.e. converges to f on X.

Proof. For any positive integer s, put δ = ε = λ2s , where 0 ≺ λ2i ⊕ λ2i =
λ2i−1 , i = 1, 2, · · · , λ1 = 1 and lim

n→∞
λ2n = 0. Since fn ⇒ f , there exists positive

integer ns, such that
mEs ≺ λ2s , s = 1, 2, · · · ,

where Es = S[λ2s � |fns
− ′⊕f |]. Assume n1 ≤ n2 ≤ · · · , let

Fk =

∞⋂
s=k

(X − Es),

which implies that
Fk = S[|fns

− ′⊕f | ≺ λ2s , s ≥ k],

because X −Es = S[|fns
− ′⊕f | ≺ λ2s ]. It is obvious that the subsequence {fns

}s≥1
converges to f on Fk. Let F =

∞⋃
k=1

Fk. Then the subsequence {fns
}s≥1 converges

to f on F .

Now we show that m(X − F ) = 0. Since
n
⊕
s=1

λ2s ⊕ λ2n = λ2 ⊕ λ2 = λ1 = 1, we

have
1 = lim

n→∞

n
⊕
s=1

λ2s ⊕ lim
n→∞

λ2n =
∞
⊕
s=1

λ2s ⊕ 0 =
∞
⊕
s=1

λ2s .

Thus we get that
∞
⊕
s=1

mEs ≺
∞
⊕
s=1

λ2s = 1.
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Since

X − F = X − (

∞⋃
k=1

Fk) =

∞⋂
k=1

(X − Fk) =

∞⋂
k=1

∞⋃
s=k

Es = lim
s→∞

Es,

by the definition of upper-limit, for any positive integer k, we have

lim
s→∞

Es ⊂
∞⋃
s=k

Es.

Hence, by Theorem 3.1, we have

m( lim
s→∞

Es) � m(

∞⋃
s=k

Es) �
∞
⊕
s=k

mEs �
∞
⊕
s=k

λ2s � λ2k−1 ,

which implies that
m(X − F ) = m( lim

s→∞
Es) = 0.

Example 3.1. Let X = (0, 1] and A be a generated σ-algebra by all open subin-
terval of X. We define functions:

fn,k(x) =


1, x ∈ (

k − 1

2n
,
k

2n
],

0, x /∈ (
k − 1

2n
,
k

2n
],

n = 1, 2, · · · ; k = 1, 2, · · · , 2n.

The order of the functional sequence {fn,k} as follows:

f1,1, f1,2, f2,1, f2,2, f2,3, f2,4, · · · , fn,1, fn,2, · · · , fn,2n , · · · ,

where fn,k is the Nth (N = 2n + k − 2) function. The σ-⊕-decomposable measure
m satisfies:

m((
k − 1

2n
,
k

2n
]) = λ2n ,

where 0 ≺ λ2n ⊕ λ2n = λ2n−1 , n = 1, 2, · · · , λ1 = 1 and lim
n→∞

λ2n = 0. Now we

show that {fn,k} is convergence in ⊕-measure in 0 on X. For any 0 ≺ σ, we have

S[σ ≺ |fn,k − ′⊕0|] =

∅, 1 ≺ σ,

(
k − 1

2n
,
k

2n
], 0 ≺ σ � 1,

which implies that
m(S[σ ≺ |fn,k − ′⊕0|]) � λ2n .

If N →∞ (N = 2n + k − 2, k = 1, 2, · · · , 2n), then n→∞. Thus, we have

lim
N→∞

m(S[σ ≺ |fn,k − ′⊕0|]) = 0,

i.e., fn,k ⇒ 0. But functional sequence {fn,k} is not convergence for all x ∈ X. In
fact, for any x0 ∈ X, no matter how large n, there exists 1 ≥ k ≥ 2n, such that

x0 ∈ (
k − 1

2n
,
k

2n
], i.e., fn,k(x0) = 1. Hence, we have fn,k+1(x0) = 0 or fn,k−1(x0) =

0. In other words, for any x0 ∈ X, there exists two subsequence of {fn,k(x0)}, the
function value of one subsequence is 1 in x0 ∈ X, and the other is 0 in x0 ∈ X.
Hence, the functional sequence {fn,k} is not convergence for all x ∈ X.
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Theorem 3.9. Let ⊕ be a strict pseudo-addition and {fn}n≥1 a sequence of mea-
surable functionals of a.e. pseudo-finite on X. If m(X) ≺ M , lim

n→∞
fn(x) = f(x)

a.e. and f(x) ≺M a.e., then fn ⇒ f.

Proof. By Corollary 3.2, we have that for any 0 ≺ ε ≺M ,

lim
n→∞

m(X − S[|fn − ′⊕f | ≺ ε]) = 0,

which implies that
lim
n→∞

mS[ε � |fn − ′⊕f |] = 0.

Example 3.2. Let X = (0,+∞) and A be a generated σ-algebra by all open
subinterval of X. The σ-⊕-decomposable measure m : A → [a, b] satisfies:

m((0, n]) = λn and m((n,+∞)) = M, n = 1, 2, · · · ,

where 0 ≺ λ1 ≺ λ2 ≺ · · · ≺ λn ≺ · · · and lim
n→∞

λn = M . We define the function
sequence as

fn(x) =

1, x ∈ (0, n],

0, x ∈ (n,+∞),

n = 1, 2, · · · .

It is obvious that fn → 1 (n→ +∞) on X. But for any 0 ≺ σ ≺ 1,

mS[σ � |fn − ′⊕1|] = m((n,+∞)) = M,

which implies that the sequence {fn}n≥1 does not converge to 1 with respect to
⊕-measure, i.e., fn ; 1.

Theorem 3.10. Let ⊕ be a strict pseudo-addition and {fn}n≥1 a measurable func-
tional sequence on X. If fn ⇒ f and fn ⇒ h, then f = h a.e. on X.

Proof. By Lemma 3.1, we have

|f − ′⊕h| � |f − ′⊕fk| ⊕ |fk − ′⊕h|.

Then for any positive integer n,

S[λn � |f − ′⊕h|] ⊆ S[λ2n � |f − ′⊕fk|] ∪ S[λ2n � |fk − ′⊕h|],

where 0 ≺ · · · ≺ λn ≺ · · · ≺ λ2 ≺ λ1 = 1, λ2n ⊕ λ2n = λn and lim
n→∞

λn = 0. Thus,

we get that

mS[λn � |f − ′⊕h|] � mS[λ2n � |f − ′⊕fk|]⊕mS[λ2n � |fk − ′⊕h|],

which implies that

mS[λn � |f − ′⊕h|] � lim
k→∞

mS[λ2n � |f − ′⊕fk|]⊕ lim
k→∞

mS[λ2n � |fk − ′⊕h|] = 0,

i.e. mS[λn � |f − ′⊕h|] = 0. Hence, we obtain that mS[f 6= g] = 0, because

S[f 6= g] =
∞⋃
n=1
S[λn � |f − ′⊕h|].
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4. Conclusions

In [18], E. Pap, M. Štrboja and I. Rudas gave a generalization of the classical Lp

space in the frame work of pseudo-analysis as Lp⊕ space. They introduced three
types of convergence and the relationships among these convergence concepts have
been investigated for two important cases of the semiring (Case I and Case II)
from an integral point of view. Comparing with the results in [18], we proved
some algebraic properties of the measurable functional space (M(A ),⊕) based on
a strict pseudo-addition, which show (M(A ),⊕) is an complete normal subspace
of (F (X),⊕). Furthermore, by introducing the pseudo-subtraction, we obtained
that the some properties of the sequence of a.e. convergence and convergence in
⊕-measure, and the relationship between a.e. convergence and convergence in ⊕-
measure on the measurable functional spaces (M(A ),⊕). Because the concepts
of pseudo-addition-decomposable measures and pseudo-addition-decomposable in-
tegrals [1, 2, 11, 13, 17, 18, 24] are very useful in the theory of nonlinear differential
and integral equations [10,14–16,25], the relationships between nonlinear functional
spaces based on pseudo-additions and those concepts will also be explored in our
future research.
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