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SINGULAR PERIODIC WAVES OF AN
INTEGRABLE EQUATION FROM SHORT
CAPILLARY-GRAVITY WAVES*

Chunhai Li', Shengqgiang Tang!f, Wentao Huang?
and Feng Zhao!

Abstract The effects of parabola singular curves in the integrable nonlinear
wave equation are studied by using the bifurcation theory of dynamical system.
We find new singular periodic waves for a nonlinear wave equation from short
capillary-gravity waves. The new periodic waves possess weaker singularity
than the periodic peakon. It is shown that the second derivatives of the new
singular periodic wave solutions do not exist in countable number of points but
the first derivatives exist. We show that there exist close connection between
the new singular periodic waves and parabola singular curve in phase plane of
traveling wave system for the first time.
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1. Introduction

Mathematical modeling of dynamical processes in a great variety of natural phenom-
ena leads in general to nonlinear partial differential equations. There is a particular
class of solutions for these nonlinear equations that are of considerable interest.
They are the traveling wave solutions. Such a wave is a special solution of the
governing equations, that may be localized or periodic, which does not change its
shape and which propagates at constant speed.

Directly seeking for exact traveling wave solutions of nonlinear partial differen-
tial equations to describe many important phenomena in physics, biology, chemistry,
etc., has become a central theme of perpetual interest in recent decades. Many pow-
erful methods have been presented for finding the solutions, such as the Backlund
transformation [6], tanh-coth method [21], Riccati equation method [8], bilinear
method [14], symbolic computation method [7], Lie group analysis method [12],
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and so on. Furthermore, a great amount of activity has been concentrated on the
various extensions and applications of the methods to simplify the routine of calcu-
lation. The basic idea of the above-mentioned approaches is that, by introducing
different types of Ansatz, the original partial differential equations can be trans-
formed into a set of algebraic equations through balancing the same order of the
Ansatz, which yields explicit expressions for the waves. However, only part of the
special form of the waves can be derived by using most of these methods. In order
to obtain all possible forms of the waves and analyze qualitative behaviors of so-
lutions, recently bifurcation theory has been introduced to study the evolution of
wave patterns with variation of the parameters [5,9-11, 19,22, 25, 26, 28].
To study the traveling wave solutions of a nonlinear equation

q)(u)ut7ua:;ua:m7ua:t7utt;"') :Oa (11)

let £ = & — ct,u(z,t) = p(§), where ¢ is the wave speed. Substituting them into
(1.1), we have

D1(p, 0, -+)=0. (1.2)

Here, we consider the case that (1.2) can be reduced to the following planar dy-
namical system:
de _ dy _
e =Y, de =
by integrals and let ¢’ = y, that is to say, (1.3) is the corresponding traveling wave
system of the nonlinear equation (1.1). That means that to study the traveling wave
solutions of the nonlinear equation (1.1) we only need to study the corresponding
traveling wave system (1.3).
We start with the well-known Camassa-Holm equation. The Camassa-Holm
equation

F(p,y), (1.3)

Up — Upgey + BUU; = 2UzpUpy + Ulgga (1.4)

arises as a model for nonlinear waves in cylindrical axially symmetric hyperelastic
rods, with u(z,t) representing the radial stretch relative to a prestressed state [2].
Camassa and Holm showed that Eq. (1.4) has peakon of the form u(z,t) = ce~l#=¢!l,
Among the nonanalytic entities, the peakon, a soliton with a finite discontinuity in
gradient at its crest, is perhaps the weakest nonanalyticity observable by the eye [18].
The Camassa-Holm equation has also periodic peakon [23]. The first derivatives of
the peakons and periodic peakons do not exist in a finite or countable number of
points.

The Camassa-Holm equation and almost all integrable nonlinear dispersion e-
quations have the same class of traveling wave systems with vertical straight line. It
has been pointed out that traveling waves sometimes lose their smoothness during
the propagation due to the existence of singular curves within the solution surfaces
of the wave equation. The relationships between the traveling waves of the non-
linear equations with a singular straight line and the orbits of the corresponding
traveling wave systems are well known [13,17,20,24,27,28]. But till now there have
been few works on the integrable nonlinear equations with other types of singular
curves.

In [3,16], the authors studied the existence of the “W/M”-shape solitary waves
of several nonlinear wave equations. For these equations, it is not difficult to find
that the corresponding traveling wave system (1.3) posses hyperbola singular curves
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in the phase plane. Obviously, there exist close connection between the “W/M”-
shape solitary waves and hyperbola singular curves in phase plane of traveling wave
system.

For some nonlinear wave equations, one found that the corresponding travel-
ing wave system (1.3) posses also elliptic singular curves in the phase plane. For
example, Bi [1] obtained some new types of solitary waves with peaks by consid-
ering the effects of elliptic singular curves. Recently, Chen and Wen [4] found the
Olver-Rosenau compactons are induced by a singular elliptic rather than a singular
straight line.

What kinds of traveling wave solution will appear with the appearance of the
parabola singular curves for a given nonlinear wave equation still needs a further
study.

In 2003, Manna and Neveu [15] derived a new integrable model equation from
asymptotic dynamics of a short capillary-gravity wave, namely

3g(1 — 360 1 1

Ugt =

Here u(z,t) is the fluid velocity on the surface, x and ¢ are space and time variables.
For the Eq. (1.5), we find that the corresponding traveling wave system (1.3) posses
parabola singular curves in the phase plane. In this paper, some new singular
periodic waves are obtained. To the best of our knowledge, this is the first time
that this type of results have been obtained.

The paper is organized as follows. In Section 2, we introduce periodic peakon of
the Camassa-Holm equation. In Section 3, we obtain new singular periodic waves
of the Eq.(1.5). A short conclusion is given in Section 4.

2. Singular straight line and periodic peakon

The existence of periodic peakons is of interest for the nonlinear integrable equations
since they are relatively new periodic waves (for most models the periodic waves
are quite smooth). The first derivatives of the periodic peakons do not exist in
countable number of points. The periodic peakons are called also periodic cusp
waves [16]. To compare the difference between the effects of singular straight lines
and effects of parabola singular curves in the integrable nonlinear wave equations,
we recall the occurrence of the periodic peakons by using phase space analytical
technique(see for more details [16]).

Let u(z,t) = p(§) with £ = & — ¢t be the solution of Eq. (1.4), then it follows
that

_C@/+CQO///+3Q0@/:2S0/§0//+S0s0,”. (21)
Integration yields
1 3 2 11 1 N2
—eptep’ + o9t = et + 5 (@) + g, (2.2)

where ¢ is integral constant. Clearly, Eq. (2.2) is equivalent to the two-dimensional
system

dﬁ:y@:%¢2_c‘p—g_%y2 (2.3)
d¢ T d€ p—c ’ '
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which has the first integral

1 1 2 —2g
Hew) = (o0 (37~ 3lo- P —clo-0-“32). @
Let d¢ = (¢ — ¢)d(, then system (2.3) become
d dy 3 1
d%i(@*@)y,dfcziﬁfcw*g*ﬂz- (2.5)

Ifec>0and0<g< %, there are a family of periodic orbits enclosing the center

point (%(c ++/c? +69),0), and the family of periodic orbits are surrounded by two
boundary curves consisting of a segment of ¢ = ¢ and a arch curve connecting the
saddle points (¢, /c? — 2g) and (0, —y/c? — 2g)(see Fig. 1 (1-1)). The heteroclinic
orbit defined by H(p,y) = 0 has two intersection points with the singular line ¢ = c.
We have the algebraic equation of this orbit

y* = —2g. (2.6)
Thus we obtain the parametric representations of the periodic peakon
p(€) = v/2gcosh(§ —2nT), (2n—1)T << (2n+ 1)T, (2.7)

where T = cosh_l(%). Obviously, the first derivatives of the peakon solution
p(§) do not exist if £ = (2n+ 1)T,n = 0,£1,42,---. The profiles of periodic
peakon waves are shown in Fig. 1 (1-2).

. 2
(()1-1) The phase portrait for 0 < g < % ,¢ > (1-2) The profile of periodic peakon.

Figure 1. The phase portrait of system (2.5) and the profile of periodic peakon.

3. Parabola singular curve and singular periodic wave

As mentioned in the last section, most of works are concentrated on the class of
nonlinear wave equations with a vertical singular straight line. But till now there
have not been works on the integrable nonlinear equations with parabola singular
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curves. For the Eq. (1.5), the corresponding traveling wave system (1.3) posses
parabola singular curves in the phase plane.

To investigated the traveling wave solutions of Eq. (1.5), substituting u =
u(z — ct) = (&) into Eq. (1.5), we obtain

1 3h? 2 "o__ 39(1 _39) L, 2
(2@—0—41/(@))@ _T@_Z(@)' (3.1)

We rewrite (3.1) as a two-dimensional system

do
dif =Y,

_ 3.2
@ - 3g(21Vh39)¢_ iy2 (3.2)

€ Je—c— Yoyt

The system (3.2) has a parabola singular curves ¢ = %f + 2¢c. system (3.2) can
be reduced to the following Hamilton system

H
do _ y(2vp — dve — 3h2y?) = —8—,
d¢ dy (3.3)
dy _690-30) ., OH |
- n T T %,
with Hamiltonian

3g(1— 36 3h?

H(p,y) = %gpz — vpy? + 2uey® + Ty4 =F. (3.4)

If (1—36) > 0, then origin is a center of the system (3.3). In addition, from Eq.
(3.4), we have
12gc%(1 — 30
Eo = H(0,0)=0, E.=H(2c,0)= %. (3.5)
Assuming all parameters of Eq. (3.1) are positive and 6 < %, the periodic orbit
defined by H(p,y) = E(E € (0, E.)) has not intersection point with the parabola
Y= %yQ + 2c¢(see Fig. 2). Thus, Eq. (1.5) has a family of smooth periodic wave
solutions. We have the algebraic equations of periodic orbits

1
Y= 352 <2V<p —dve+2y/ (v — 2vc)? — 3h(3g(1 — 30) 92 — hE)) . (3.6)

The signs before the term 2+/(v¢ — 2vc)2 — 3h(3g(1 — 30)p2 — hE)) are dependent
on the interval of ¢. Under the condition o > 0,v > 0,¢ > 0,9 > 0,0 < %, for
© € (—2¢,2¢), we need to take positive before the term. Therefore, the periodic
orbits surrounding the center O(0,0) can be expressed as

y = i\/gflﬂ(QWJ —dve +2v/(vyp — 2ve)? — 3h(3g(1 — 30)¢? — hE)), (3.7

which intersect the p—axis at two points with the p—coordinates +¢,,, respectively.
From (3.7) and the first equation of (3.2), we obtain the parametric representation
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for the corresponding periodic orbits as

d 1
/ d = e
m \/21/<p —dve +2y/(vp — 2ve)? — 3h(3g(1 — 30)¢? — hE) 3h

(3.8)
where |£ — 2nTy| < T3 and

o hd
T = / V3hdg . (3.9)
©m \/21/<p —dve +24/(vp — 2ve)? — 3h(3g(1 — 30)¢? — hE)

If £ = E., the periodic orbit is tangent to the parabola ¢ = %gf + 2c¢ at point
(2¢,0). The corresponding periodic wave solution satisfies

(d<'0> = l(u(gp —2¢)+ \/VZ(go —2¢)%2 —9gh(1 —30) (v +2¢)(p — 2¢)) (3.10)

dg 3h?
and
(%)
dg?
_4u2(W@ — G}LQ \/1/2 —2¢)2 — 9gh(1 — 30)(p + 2¢) (v — 2¢)))?

V2((p 20) —9gh(1 —30) (v + 2¢)(p — 2¢)
(3.11)
Consequently, along this orbit when ¢ — 2c, ‘Zl—‘g — 0, i3 f — 4o0o. Thus when
FE — E., the smooth periodic wave evolves into a smgular periodic wave. The
process just is simulated by Maple and is shown in Figs. 3 (3-1)—(3-3).
The singular periodic wave can be expressed as

dy 1
= \/‘ |§ - 2nT2|7
—2c \/2u(<p —2¢) 4+ 24/12(p — 2¢)2 — 9gh(1 — 30)(p% — 4c?) 3h
(3.12)
where | — 2nTy| < T3 and
3hd
V3hdy (3.13)

T, = /
2\ 2o — 26) +2/v2(p — 207 — 9gh(l — 30)(? — 42

Specially, when 12 = 9gh(1 — 30), setting 1% = ¢(2c — ), we have y? = 3%(4m/1 —
224)2). By the first equation of system (3.2), we have
v pdy V2
2¢ \/’(/)(20—’(/J) th

Therefore we obtain the following exact parametric representations of singular pe-
riodic wave solutions of Eq. (1.5)

1€ — 2nTy). (3.14)

P(§) =2c— @ (3.15)
and
V¥ (2¢ — ) + arctan( ¢y _ Vo |€ — 2nT5| — o, (3.16)

1/1(20—1/1) T 2v3h
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Remark 3.1. Let &, = (2n + 1)T, then the periodic peakon ¢(&) defined by (2.7)
for the Camassa-Holm equation satisfies

(&) =c, Clgfn we(§) = /2 = 2g, sli?i pe(§) = —v/c? —2g.

Therefore the first derivatives of the periodic peakons do not exist in countable
number of points. In comparison with the periodic peakon of the Camassa-Holm
equation, the singular periodic wave (&) defined by (3.12) has the following prop-
erties:

@(En) =2, 905(&7,) =0, lim @EE(&) = —o0, lim @ff(f) = +00,
§1¢n &dén

where &, = (2n + 1)Ts. Thus the second derivatives of the new singular periodic

wave solutions do not exist in countable number of points but the first derivatives

exist. In fact, the singular traveling wave solutions that has continuous

first-order derivative but discontinuous second-order derivative at some

points also are given in [24].

Figure 2. The phase portrait of the system (3.3) for 0 < 6 <

W=

(3-1) E=0.1875 (3-2) E=0.75 (3-3) E=3

Figure 3. As F from 0 tends to E., the smooth periodic waves evolve into a singular periodic wave.

4. Conclusion

In this paper, we investigated the nonlinear wave equation from short capillary-
gravity waves (1.5) by using the bifurcation theory of dynamical system. We find
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new singular periodic waves. The new periodic waves possess weaker singularity
than the periodic peakon. It is shown that the second derivatives of the new sin-
gular periodic wave solutions do not exist in countable number of points but the
first derivatives exist. We show that there exist close connection between the new
singular periodic waves and parabola singular curve in phase plane of traveling wave
system for the first time.
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