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1. Introduction

The Caginalp phase-field system,

∂u

∂t
−∆u+ f(u) = T, (1.1)

∂T

∂t
−∆T = −∂u

∂t
, (1.2)

was proposed in [7] to model phase transition phenomena, such as melting-solidification
phenomena. Here, u is the order parameter, T is the relative temperature and
f is the derivative of a double-well potential F (a typical choice of potential is
F (s) = 1

4 (s2 − 1)2, hence the usual cubic nonlinear term f(s) = s3 − s). Further-
more, here and below, we set all physical parameters equal to one. This system has
been much studied; we refer the reader to, e.g., [2–4].

These equations can be derived as follows: One introduces the (total Ginzburg-
Landau) free energy

ΨGL =

∫
Ω

(
1

2
|∇u|2 + F (u)− uT − 1

2
T 2

)
dx, (1.3)

where Ω is the domain occupied by the system (we assume here that it is a bounded
and regular domain of R3, with boundary Γ), and the enthalpy

H = u+ T. (1.4)

As far as the evolution for the order parameter is concerned, one postulates the
relaxation dynamics (with relaxation parameter set equal to one)

∂u

∂u
= −DΨGL

Du
, (1.5)
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where
D

Du
denotes a variational derivative with respect to u, which yields (1.1).

Then, we have the energy equation

∂H

∂t
= −divq, (1.6)

where q is the heat flux. Assuming finally the usual Fourier law for heat conduction,

q = −∇T, (1.7)

we obtain (1.2)
In (1.3), the term |∇u|2 models short-ranged interactions. It is, however, in-

teresting to note that such a term is obtained by truncation of higher-order ones
(see [9]); it can also be seen as a first- order approximation of a nonlocal term
accounting for long-ranged interactions (see [14]).

Now, one essential drawback of the Fourier law is that it predicts that thermal
signals propagate at an infinite speed, which violates causality (the so-called para-
dox of heat conduction). To overcome this drawback, or at least to account for
more realistic features, several alternatives to the Fourier law, based, e.g., on the
Maxwell-Cattaneo law or recent laws from thermomechanics, have been proposed
and studied, in the context of the Caginalp phase-field system, in [20].

In the late 1960’s, several authors proposed a heat conduction theory based on
two temperatures (see [10, 23]). More precisely, one now considers the conductive
temperature T and the thermodynamic temperature θ. In particular, for simple
materials, these two temperatures are shown to coincide. However, for non-simple
materials, they differ and are related as follows:

θ = T −∆T. (1.8)

The Caginalp system, based on this two temperatures theory and the usual
Fourier law, was studied in [4].

Our aim in this paper is to study a variant of the Caginalp phase-field sys-
tem based on the type III thermomechanics theory with two temperatures recently
proposed in [20].

In that case, the free energy reads, in terms of the (relative) thermodynamic
temperature θ,

ΨGL =

∫
Ω

(
1

2
|∇u|2 + F (u)− uθ − 1

2
θ2

)
dx (1.9)

and (1.5) yields, in view of (1.8), the following evolution equation for the order
parameter:

∂u

∂t
−∆u+ f(u) = T −∆T. (1.10)

Furthermore, the enthalpy now reads

H = u+ θ = u+ T −∆T, (1.11)

which yields, owing to (1.6), the energy equation

∂T

∂t
−∆

∂T

∂t
+ divq = −∂u

∂t
. (1.12)
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Finally, the heat flux is given, in the type III theory with two temperatures, by
(see [15,20])

q = −∇α−∇T, (1.13)

where

α(t, x) =

∫ t

0

T (τ, x)dτ + α0(x) (1.14)

is the conductive thermal displacement. Noting that T =
∂α

∂t
, we finally deduce

from (1.10) and (1.12)–(1.13) the following variant of the Caginalp phase-field sys-
tem (see [20]):

∂u

∂t
−∆u+ f(u) =

∂α

∂t
−∆

∂α

∂t
, (1.15)

∂2α

∂t2
−∆

∂2α

∂t2
−∆

∂α

∂t
−∆α = −∂u

∂t
. (1.16)

Caginalp and Esenturk recently proposed in [8] (see also [5, 21]) higher-order
phase-field models in order to account for anisotropic interfaces (see also [6, 17] for
other approaches which, however, do not provide an explicit way to compute the
anisotropy). More precisely, these authors proposed the following modified (total)
free energy

ΨHOGL =

∫
Ω

1

2

k∑
i=1

∑
|β|=i

aβ |Dβu|2 + F (u)− uθ − 1

2
θ2

 dx, (1.17)

where, for β = (k1, k2, k3) ∈ (N ∪ {0})3,

|β| = k1 + k2 + k3

and, for β 6= (0, 0, 0),

Dβ =
∂|β|

∂xk11 ∂x
k2
2 ∂x

k3
3

(we agree that D(0,0,0)v = v). This then yields the following evolution equation for
the order parameter u:

∂u

∂t
+

k∑
i=1

(−1)i
∑
|β|=i

aβD2βu+ f(u) =
∂α

∂t
−∆

∂α

∂t
. (1.18)

Our aim in this paper was to study the model consisting of the higher-order anisotrop-
ic equation (1.18) and the temperature equation (1.16). In particular, we obtain the
existence and uniqueness of solutions, as well as the existence of the global attractor
and exponential attractors.
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2. Setting of the problem

We consider the following initial and boundary value problem, for k ∈ N:

∂u

∂t
+

k∑
i=1

(−1)i
∑
|β|=i

aβD2βu+ f(u) =
∂α

∂t
−∆

∂α

∂t
, (2.1)

∂2α

∂t2
−∆

∂2α

∂t2
−∆

∂α

∂t
−∆α = −∂u

∂t
, (2.2)

Dβu = α = 0 on Γ, |β| 6 k − 1, (2.3)

u|t=0 = u0, α|t=0 = α0,
∂α

∂t
|t=0 = α1. (2.4)

We assume that
aβ > 0, |β| = k, (2.5)

and we introduce the elliptic operator Ak defined by

〈Akv, w〉H−k(Ω),Hk
0 (Ω) =

∑
|β|=k

aβ
((
Dβv,Dβw

))
, (2.6)

where H−k(Ω) is the topological dual of Hk
0 (Ω). Furthermore, ((.,.)) denotes the

usual L2-scalar product, with associated norm ‖.‖; more generally, we denote by
‖.‖X the norm on the Banach space X. We can note that

(v, w) ∈ Hk
0 (Ω)2 7→

∑
|β|=k

aβ
((
Dβv,Dβw

))
is bilinear, symmetric, continuous and coercive, so that

Ak : Hk
0 (Ω)→ H−k(Ω)

is indeed well defined. It then follows from elliptic regularity results for linear
elliptic operators of order 2k (see [1]) that Ak is a strictly positive, self-adjoint and
unbounded linear operator with compact inverse, with domain

D(Ak) = H2k(Ω) ∩Hk
0 (Ω),

where, for v ∈ D(Ak),

Akv = (−1)k
∑
|β|=k

aβD2βv.

We further note that D(A
1
2

k ) = Hk
0 (Ω) and, for (v, w) ∈ D(A

1
2

k )2,((
A

1
2

k v,A
1
2

kw
))

=
∑
|β|=k

aβ
((
Dβv,Dβw

))
.

We finally note that (see, e.g., [24]) ‖Ak.‖ (resp., ‖A
1
2

k .‖) is equivalent to the usual

H2k-norm (resp., Hk-norm) on D(Ak) (resp., D(A
1
2

k )).
Having this, we rewrite (2.1) as

∂u

∂t
+Aku+Bku+ f(u) =

∂α

∂t
−∆

∂α

∂t
, (2.7)
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where B1 = 0 and, for k > 2,

Bkv =

k−1∑
i=1

(−1)i
∑
|β|=i

aβD2βv.

As far as the nonlinear term f is concerned, we assume that

f ∈ C1(R), f(0) = 0, (2.8)

f ′ > −c0, c0 > 0, (2.9)

f(s)s > c1F (s)− c2 > −c3, c1 > 0, c2, c3 > 0, s ∈ R, (2.10)

F (s) > c4s
4 − c5, c4 > 0, c5 > 0, s ∈ R, (2.11)

where F (s) =
∫ s

0
f(τ)dτ . In particular, the usual cubic nonlinear term f(s) = s3−s

satisfies these assumptions.

Throughout the paper, the same letters c, c′ and c′′ denote (generally positive)
constants which may vary from line to line. Similary, the same letter Q denotes
(positive) monotone increasing (with respect to each argument) and continuous
functions which may vary from line to line.

3. A Priori Estimates

We multiply (2.7) by
∂u

∂t
and have, integrating over Ω and by parts

d

dt

(
‖A

1
2

k u‖
2 +B

1
2

k [u] + 2

∫
Ω

F (u)dx

)
+2‖∂u

∂t
‖2 = 2

((
∂u

∂t
,
∂α

∂t
−∆

∂α

∂t

))
. (3.1)

We then multiply (2.2) by
∂α

∂t
−∆

∂α

∂t
and obtain

d

dt

(
‖∇α‖2 + ‖∆α‖2 + ‖∂α

∂t
−∆

∂α

∂t
‖2
)

+ 2‖∇∂α
∂t
‖2 + 2‖∆∂α

∂t
‖2

=− 2

((
∂u

∂t
,
∂α

∂t
−∆

∂α

∂t

))
.

(3.2)

Summing (3.1) and (3.2), we find the differential equality

d

dt

(
‖A

1
2

k u‖
2 +B

1
2

k [u] + 2

∫
Ω

F (u)dx+ ‖∇α‖2 + ‖∆α‖2 + ‖∂α
∂t
−∆

∂α

∂t
‖2
)

+ 2‖∂u
∂t
‖2 + 2‖∇∂α

∂t
‖2 + 2‖∆∂α

∂t
‖2 = 0,

(3.3)

where B
1
2
1 [u] = 0 and, for k > 2,

B
1
2

k [u] =

k−1∑
i=1

∑
|β|=i

aβ‖Dβu‖2 (3.4)
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(note that B
1
2

k [u] is not necessarily nonnegative). We can note that, owing to the
interpolation inequality

‖(−∆)
i
2 v‖ 6 c(i)‖(−∆)

m
2 v‖ i

m ‖v‖1− i
m , (3.5)

v ∈ Hm(Ω), i ∈ {1, ...,m− 1}, m ∈ N, m > 2,

there holds

|B
1
2

k [u] | 6 1

2
‖A

1
2

k u‖
2 + c‖u‖2. (3.6)

This yields, employing (2.11)

‖A
1
2

k u‖
2 +B

1
2

k [u] + 2

∫
Ω

F (u)dx >
1

2
‖A

1
2

k u‖
2 +

∫
Ω

F (u)dx+ c‖u‖4L4(Ω)− c
′‖u‖2− c′′,

whence

‖A
1
2

k u‖
2 +B

1
2

k [u] + 2

∫
Ω

F (u)dx > c

(
‖u‖2Hk(Ω) +

∫
Ω

F (u)dx

)
− c′, c > 0, (3.7)

nothing that, owing to Young’s inequality,

‖u‖2 6 ε‖u‖4L4(Ω) + c(ε), ∀ε > 0. (3.8)

We then multiply (2.7) by u and have, owing to (2.10) and the interpolation
inequality (3.5),

d

dt
‖u‖2 + c

(
‖u‖2Hk(Ω) +

∫
Ω

F (u)dx

)
6 c′

(
‖u‖2 + ‖∂α

∂t
‖2 + ‖∆∂α

∂t
‖2
)

+ c′′;

hence, proceeding as above and employing, in particular, (2.11),

d

dt
‖u‖2+c

(
‖u‖2Hk(Ω) +

∫
Ω

F (u)dx

)
6 c′

(
‖∂α
∂t
‖2 + ‖∆∂α

∂t
‖2
)

+c′′, c > 0. (3.9)

Summing (3.3) and δ1 times (3.9), where δ1 > 0 is small enough, we obtain a
differential inequality of the form

d

dt
E1 + c

(
‖u‖2Hk(Ω) +

∫
Ω

F (u)dx+ ‖∂u
∂t
‖2 + ‖∇∂α

∂t
‖2 + ‖∆∂α

∂t
‖2
)

6 c′, (3.10)

where

E1 = ‖A
1
2

k u‖
2 +B

1
2

k [u] + 2

∫
Ω

F (u)dx+ ‖∇α‖2 + ‖∆α‖2 + ‖∂α
∂t
−∆

∂α

∂t
‖2 + δ1‖u‖2

satisfies, owing to (3.7)

E1 > c

(
‖u‖2Hk(Ω) +

∫
Ω

F (u)dx+ ‖α‖2H2(Ω) + ‖∂α
∂t
‖2H2(Ω)

)
− c′, c > 0. (3.11)

Multiplying (2.2) by −∆α, we then obtain

d

dt

(
‖∆α‖2 − 2

((
∂α

∂t
,∆α

))
+ 2

((
∆
∂α

∂t
,∆α

)))
+ ‖∆α‖2

6‖∂u
∂t
‖2 + 2‖∇∂α

∂t
‖2 + 2‖∆∂α

∂t
‖2.

(3.12)
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Summing (3.10) and δ2 times (3.12), where δ2 > 0 is small enough, we obtain a
differential inequality of the form

dE2

dt
+ c

(
E2 + ‖∂u

∂t
‖2
)

6 c′, c > 0, (3.13)

where

E2 = E1 + δ2

(
‖∆α‖2 − 2

((
∂α

∂t
,∆α

))
+ 2

((
∆
∂α

∂t
,∆α

)))
satisfies

E2 > c

(
‖u‖2Hk(Ω) +

∫
Ω

F (u)dx+ ‖α‖2H2(Ω) + ‖∂α
∂t
‖2H2(Ω)

)
− c′, c > 0. (3.14)

It particular, if follows from (3.13)− (3.14) and Gronwall’s lemma that

‖u(t)‖2Hk(Ω) + ‖α(t)‖2H2(Ω) + ‖∂α
∂t

(t)‖2H2(Ω)

6ce−c
′t

(
‖u0‖2Hk(Ω) +

∫
Ω

F (u0)dx+ ‖α0‖2H2(Ω) + ‖α1‖2H2(Ω)

)
+ c′′, c′ > 0, t > 0,

(3.15)

and∫ t+r

t

‖∂u
∂t
‖2ds 6ce−c

′t

(
‖u0‖2Hk(Ω) +

∫
Ω

F (u0)dx

+ ‖α0‖2H2(Ω) + ‖α1‖2H2(Ω)

)
+ c′′(r), c′ > 0, t > 0, (3.16)

r > 0, given.
Our aim is now to obtain higher-order estimates. To do so, we will distinguish

between the cases k = 1 and k > 2.

First case: k=1

Setting A = A1 = −
∑3
i=1 ai

∂2

∂x2
i

, ai > 0, i = 1, 2 and 3, we then consider the initial

and boundary value problem

∂u

∂t
+Au+ f(u) =

∂α

∂t
−∆

∂α

∂t
, (3.17)

∂2α

∂t2
−∆

∂2α

∂t2
−∆

∂α

∂t
−∆α = −∂u

∂t
, (3.18)

u = α = 0 on Γ, (3.19)

u|t=0 = u0, α|t=0 = α0,
∂α

∂t
|t=0 = α1. (3.20)

Multipying (3.17) by Au, we have

d

dt
‖A 1

2u‖2 + 2‖Au‖2 + 2

3∑
i=1

ai

∫
Ω

f ′(u)
∣∣∣ ∂u
∂xi

∣∣∣2dx = 2

((
∂α

∂t
−∆

∂α

∂t
,Au

))
,
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which yields, owing to (2.9),

d

dt
‖A 1

2u‖2 + c‖u‖2H2(Ω) 6 c′
(
‖u‖2H1(Ω) + ‖∂α

∂t
‖2 + ‖∆∂α

∂t
‖2
)
, c > 0. (3.21)

Summing (3.13) (for k = 1) and δ3 times (3.21), where δ3 > 0 is small enough,
we obtain a differential inequality of the form

dE3

dt
+ c

(
E3 + ‖u‖2H2(Ω) + ‖∂u

∂t
‖2
)

6 c′, c > 0, (3.22)

where
E3 = E2 + δ3‖A

1
2u‖2

satisfies

E3 > c

(
‖u‖2H1(Ω) +

∫
Ω

F (u)dx+ ‖α‖2H2(Ω) + ‖∂α
∂t
‖2H2(Ω)

)
− c′, c > 0. (3.23)

We then differentiate (3.17) with respect to time and to find, owing to (2.2),

∂

∂t

∂u

∂t
+A

∂u

∂t
+ f ′(u)

∂u

∂t
= ∆

∂α

∂t
+ ∆α− ∂u

∂t
, (3.24)

∂u

∂t
= 0 on Γ, (3.25)

∂u

∂t
|t=0 = −Au0 − f(u0) + α1 −∆α1. (3.26)

In particular, if u0 ∈ H2(Ω)∩H1
0 (Ω) and α1 ∈ H2(Ω)∩H1

0 (Ω), then
∂u

∂t
(0) ∈ L2(Ω)

and

‖∂u
∂t

(0)‖ 6 Q(‖u0‖H2(Ω), ‖α1‖H2(Ω)). (3.27)

Indeed, if follows from the continuity of f and the continuous embedding H2(Ω) ⊂
C(Ω̄) that

‖f(u0)‖ 6 Q(‖u0‖H2(Ω)). (3.28)

Multiplying (3.24) by
∂u

∂t
, we have, owing to (2.9)

d

dt
‖∂u
∂t
‖2 + c‖∂u

∂t
‖2H1(Ω) 6 c′

(
‖∂u
∂t
‖2 + ‖α‖2H2(Ω) + ‖∂α

∂t
‖2H2(Ω)

)
, c > 0, (3.29)

whence, owing to Gronwall’s lemma and employing (3.15) and (3.16),

‖∂u
∂t

(t)‖ 6 ectQ
(
‖u0‖H2(Ω), ‖α0‖H2(Ω), ‖α1‖H2(Ω)

)
, t > 0. (3.30)

We can also note that it then follows from (3.15), (3.29) (both for k = 1) and the
uniform Gronwall’s lemma (say, for r = 1; see, e.g., [24]) that

‖∂u
∂t

(t)‖2

6ce−c
′tQ

(
‖u0‖2H1(Ω) +

∫
Ω

F (u0)dx+ ‖α0‖2H2(Ω) + ‖α1‖2H2(Ω)

)
+ c′′, c′ > 0, t > 1.

(3.31)
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Coming back to (3.31), we can note that if follows from the continuity of F and
the continuous embedding H2(Ω) ⊂ C(Ω̄) again that

‖∂u
∂t

(t)‖ 6 e−ctQ(‖u0‖H2(Ω), ‖α0‖H2(Ω), ‖α1‖H2(Ω)) + c′, c > 0, t > 1. (3.32)

So that, employing (3.30) for t ∈ [0, 1],

‖∂u
∂t

(t)‖ 6 e−ctQ(‖u0‖H2(Ω), ‖α0‖H2(Ω), ‖α1‖H2(Ω)) + c′, c > 0, t > 0. (3.33)

We finally rewrite (3.17) as an elliptic equation, for t > 0 fixed,

Au+ f(u) = −∂u
∂t

+
∂α

∂t
−∆

∂α

∂t
, u = 0 on Γ. (3.34)

Multiplying (3.34) by Au, we have

‖Au‖2 + 2

3∑
i=1

ai

∫
Ω

f ′(u)
∣∣∣ ∂u
∂xi

∣∣∣2dx 6 c

(
‖∂u
∂t
‖2 + ‖∂α

∂t
‖2 + ‖∂α

∂t
‖2H2(Ω)

)
,

which yields, owing to (2.9)

‖u‖2H2(Ω) 6 c

(
‖u‖2H1(Ω) + ‖∂u

∂t
‖2 + ‖∂α

∂t
‖2 + ‖∂α

∂t
‖2H2(Ω)

)
. (3.35)

We finally deduce from (3.15) (for k = 1), (3.31), (3.33) and (3.35) that

‖u(t)‖2H2(Ω)

6ce−c
′t

(
‖u0‖2H1(Ω) +

∫
Ω

F (u0)dx+ ‖α0‖2H2(Ω) + ‖α1‖2H2(Ω)

)
+ c′′, c′ > 0, t > 1

(3.36)

and

‖u(t)‖2H2(Ω) 6 e−ctQ(‖u0‖H2(Ω), ‖α0‖H2(Ω), ‖α1‖H2(Ω)) + c′, c > 0, t > 0.
(3.37)

Second case: k > 2
We multiply (2.7) by Aku and obtain, owing to the the interpolation inequality

(3.5)

d

dt
‖A

1
2

k u‖
2 + c‖u‖2H2k(Ω)+ 6

(
‖u‖2 + ‖f(u)‖2 + ‖∂α

∂t
‖2 + ‖∂α

∂t
‖2H2(Ω)

)
. (3.38)

It follows from the continuity of f and F , the continuous embedding Hk(Ω) ⊂ C(Ω̄)
(recall that k > 2) and (3.15) that

‖u‖2 + ‖f(u)‖2 + ‖∂α
∂t
‖2 + ‖∆∂α

∂t
‖2,

6Q(‖u0‖Hk(Ω)) + ‖∂α
∂t
‖2 + ‖∂α

∂t
‖2H2(Ω)

6e−ctQ(‖u0‖Hk(Ω), ‖α0‖H2(Ω), ‖α1‖H2(Ω)) + c′, c > 0, t > 0, (3.39)
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so that

d

dt
‖A

1
2

k u‖
2 + c‖u‖2H2k(Ω)

6e−c
′tQ(‖u0‖Hk(Ω), ‖α0‖H2(Ω), ‖α1‖H2(Ω)) + c′′, c, c′ > 0, t > 0. (3.40)

Summing (3.13) and (3.40), we find a differential inequality of the form

dE4

dt
+ c

(
E4 + ‖u‖2H2k(Ω) + ‖∂u

∂t
‖2
)

6ec
′tQ(‖u0‖Hk(Ω), ‖α0‖H2(Ω), ‖α1‖H2(Ω)) + c′′, c, c′ > 0, t > 0, (3.41)

where
E4 = E2 + ‖A

1
2

k u‖
2

satisfies

E4 > c

(
‖u‖2Hk(Ω) +

∫
Ω

F (u)dx+ ‖α‖2H2(Ω) + ‖∂α
∂t
‖2H2(Ω)

)
− c′, c > 0. (3.42)

We then rewrite (2.7) as an elliptic equation, for t > 0 fixed,

Aku = −∂u
∂t
−Bku− f(u) +

∂α

∂t
−∆

∂α

∂t
, Dβu = 0 on Γ, |β| 6 k− 1. (3.43)

Multiplying (3.43) by Aku, we have, owing to the interpolation inequality (3.5),

‖Aku‖2 6 c

(
‖u‖2 + ‖f(u)‖2 + ‖∂u

∂t
‖2 + ‖∂α

∂t
‖2 + ‖∂α

∂t
‖2H2(Ω)

)
, (3.44)

hence, owing to (3.39),

‖u(t)‖2H2k(Ω)

6c

(
e−c

′tQ(‖u0‖Hk(Ω), ‖α0‖H2(Ω), ‖α1‖H2(Ω)) + ‖∂u
∂t
‖2
)

+ c′′, c′ > 0. (3.45)

Next, we differentiate (2.7) with respect to time and obtain

∂

∂t

∂u

∂t
+Ak

∂u

∂t
+Bk

∂u

∂t
+ f ′(u)

∂u

∂t
= ∆

∂α

∂t
+ ∆α− ∂u

∂t
, (3.46)

Dβ ∂u
∂t

= 0 on Γ, |β| 6 k − 1, (3.47)

∂u

∂t
|t=0 = −Aku0 −Bku0 − f(u0) + α1 −∆α1. (3.48)

We can note that, if u0 ∈ H2k(Ω)∩Hk
0 (Ω) and α1 ∈ H2(Ω)∩H1

0 (Ω), then
∂u

∂t
(0) ∈

L2(Ω) and

‖∂u
∂t

(0)‖ 6 Q(‖u0‖H2k(Ω), ‖α1‖H2(Ω)). (3.49)

We multiply (3.46) by
∂u

∂t
and find, owing to (2.9) and the interpolation inequal-

ity (3.3),

d

dt
‖∂u
∂t
‖2 + c‖∂u

∂t
‖2Hk(Ω) 6 c′

(
‖∂u
∂t
‖2 + ‖α‖2H2(Ω) + ‖∂α

∂t
‖2H2(Ω)

)
, c > 0. (3.50)
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It follows from (3.15) (both for r = 1), (3.50) and the uniform Gronwall’s lemma
that

‖∂u
∂t

(t)‖2 6 e−ctQ(‖u0‖Hk(Ω), ‖α0‖H2(Ω), ‖α1‖H2(Ω)) + c′, c > 0, t > 1, (3.51)

an from (3.41), (3.42), (3.50) and Gronwall’s lemma that

‖∂u
∂t

(t)‖2 6 ectQ(‖u0‖H2k(Ω), ‖α0‖H2(Ω), ‖α1‖H2(Ω)), t > 0. (3.52)

We finally deduce from (3.45), (3.51) and (3.52) that

‖u(t)‖H2k(Ω) 6 e−ctQ(‖u0‖Hk(Ω), ‖α0‖H2(Ω), ‖α1‖H2(Ω)) + c′, c > 0, t > 1,
(3.53)

and

‖u(t)‖H2k(Ω) 6 e−ctQ(‖u0‖H2k(Ω), ‖α0‖H2(Ω), ‖α1‖H2(Ω)) + c′, c > 0, t > 0.
(3.54)

4. The dissipative semigroup

We first have the following theorem.

Theorem 4.1. (i) We assume that (u0, α0, α1) ∈ Hk
0 (Ω) × (H2(Ω) ∩H1

0 (Ω)) ×
(H2(Ω) ∩ H1

0 (Ω)), with
∫

Ω
F (u0)dx < +∞ when k = 1. Then, (2.1)–(2.4)

possesses a unique solution (u, α,
∂α

∂t
) such that, ∀T > 0,

u(0) = u0, α(0) = α0,
∂α

∂t
(0) = α1,

u ∈ L∞(R+;Hk
0 (Ω)) ∩ L2(0, T ;H2k(Ω) ∩Hk

0 (Ω)),

∂u

∂t
∈ L2(0, T ;L2(Ω)),

α ∈ L∞(R+;H2(Ω) ∩H1
0 (Ω)),

∂α

∂t
∈ L∞(R+;H2(Ω) ∩H1

0 (Ω))

and

d

dt
((u, v)) +

((
A

1
2u,A

1
2 v
))

+B
1
2

k [u, v] + ((f(u), v))

=
d

dt
(((α, v)) + ((∇α,∇v))) ,∀v ∈ C∞c (Ω),

d

dt

(((
∂α

∂t
, w

))
+

((
∇∂α
∂t
,∇w

))
+ ((∇α,∇w))

)
+ ((∇α,∇w))

=− d

dt
((u,w)) ,∀w ∈ C∞c (Ω),

where B
1
2
1 [u, v] = 0 and, for k > 2,

B
1
2

k [u, v] =

k−1∑
i=1

∑
|β|=i

aβ
((
Dβu,Dβv

))
.



On higher-order anisotropic Caginal phase-field systems 1003

(ii) If we further assume that (u0, α0, α1) ∈ (H2k(Ω)∩Hk
0 (Ω))×(H2(Ω)∩H1

0 (Ω))×
(H2(Ω) ∩H1

0 (Ω)), then

u ∈ L∞(R+;H2k(Ω) ∩Hk
0 (Ω)),

∂u

∂t
∈ L2

(
0, T ;L2(Ω)

)
,

α ∈ L∞(R+;H2(Ω) ∩H1
0 (Ω))

and
∂α

∂t
∈ L∞(R+;H2(Ω) ∩H1

0 (Ω)).

(iii) If we further assume that

|f ′(s)| 6 c6|s|2 + c7, c6, c7 > 0, s ∈ R, (4.1)

when k = 1, then we have the continuous dependence with respect to the initial
data in the Hk ×H2 ×H2-norm.

Proof.
a) Existence :

The proofs of existence and regulararity in (i) and (ii) follow from the a priori
estimates derived in the previous section and, e.g., a standard Galerkin scheme.
b) Uniqueness :

Let now

(
u(1), α(1),

∂α(1)

∂t

)
and

(
u(2), α(2),

∂α(2)

∂t

)
be two solutions to (2.1)–

(2.3) with initial data
(
u

(1)
0 , α

(1)
0 , α

(1)
1

)
and

(
u

(2)
0 , α

(2)
0 , α

(2)
1

)
, respectively. We set(

u, α,
∂α

∂t

)
=

(
u(1), α(1),

∂α(1)

∂t

)
−
(
u(2), α(2),

∂α(2)

∂t

)
and

(u0, α0, α1) =
(
u

(1)
0 , α

(1)
0 , α

(1)
1

)
−
(
u

(2)
0 , α

(2)
0 , α

(2)
1

)
.

Then, (u, α) satisfies

∂u

∂t
+Aku+Bku+ f(u(1))− f(u(2)) =

∂α

∂t
−∆

∂α

∂t
, (4.2)

∂2α

∂t2
−∆

∂2α

∂t2
−∆

∂α

∂t
−∆α = −∂u

∂t
, (4.3)

Dβu = α = 0 on Γ, |β| 6 k − 1, (4.4)

u|t=0 = u0, α|t=0 = α0,
∂α

∂t
|t=0 = α1. (4.5)

We multiply (4.2) by u, we obtain, owing to (2.9) and the interpolation inequality
(3.5),

d

dt
‖u‖2 + c‖u‖2Hk(Ω 6 c′

(
‖u‖2 + ‖∂α

∂t
−∆

∂α

∂t
‖2
)
, c > 0. (4.6)

Next, multiplying (4.3) by u+
∂α

∂t
−∆

∂α

∂t
, we find

d

dt

(
‖∇α‖2 + ‖∆α‖2 + ‖u+

∂α

∂t
−∆

∂α

∂t
‖2
)

+ c

(
‖∂α
∂t
‖2H1(Ω) + ‖∂α

∂t
‖2H2(Ω)

)
6c′(‖u‖2H1(Ω + ‖α‖2H1(Ω). (4.7)
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Summing then (4.6) and δ4 times (4.7), where δ4 > 0 is small enough, we have
a differential inequality of the form (note that k > 1)

d

dt
E5 6 E5, (4.8)

where

E5 = ‖u‖2 + δ4

(
‖∇α‖2 + ‖∆α‖2 + ‖u+

∂α

∂t
−∆

∂α

∂t
‖2
)

satisfies

E5 > c

(
‖u‖2 + ‖α‖2H2(Ω + ‖∂α

∂t
‖2H2(Ω

)
, c > 0. (4.9)

It follows from (4.8), (4.9) and Gronwall’s lemma that

‖u(t)‖2 + ‖α(t)‖2H2(Ω) + ‖∂α
∂t

(t)‖2H2(Ω)

6cec
′t
(
‖u0‖2 + ‖α0‖2H2(Ω) + ‖α1‖2H2(Ω)

)
, t > 0, (4.10)

hence the uniqueness, as well as the continuity (with respect to the L2(Ω)×H2(Ω)2-
norm) with respect to the initial data.

We finally turn to the proof of (iii).

We multiply (4.2) by
∂u

∂t
and obtain

d

dt

(
‖A

1
2

k u‖
2 +B

1
2

k [u]
)

+ 2‖∂u
∂t
‖2

=2

((
∂u

∂t
,
∂α

∂t
−∆

∂α

∂t

))
−
((

f(u(1))− f(u(2)),
∂u

∂t

))
. (4.11)

We first assume that k = 1. We then find, owing to (4.1) and employing Hlder’s
inequality,∣∣∣∣((f(u(1))− f(u(2)),

∂u

∂t

))∣∣∣∣ 6 c

∫
Ω

(|u(1)|2 + |u(2)|2 + 1)|u|
∣∣∣∂u
∂t

∣∣∣dx
6 c(‖u(1)‖2L6(Ω) + ‖u(2)‖2L6(Ω) + 1)‖u‖L6(Ω)‖

∂u

∂t
‖

hence, owing to the continuous embedding H1(Ω) ⊂ L6(Ω) and (3.15) (for k = 1),∣∣∣∣((f(u(1))− f(u(2)),
∂u

∂t

))∣∣∣∣
6Q(‖u(1)

0 ‖H1(Ω), ‖u
(2)
0 ‖H1(Ω), ‖α

(1)
0 ‖H2(Ω), ‖α

(2)
0 ‖H2(Ω), ‖α

(1)
1 ‖H2(Ω), ‖α

(2)
1 ‖H2(Ω))

× ‖u‖H1(Ω)‖
∂u

∂t
‖. (4.12)

Note indeed that (4.1) implies that

|F (s)| 6 cs4 + c′, c, c′ ∈ R.
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We now assume that k > 2. It then follows from the continuity of f ′, the continuous
embeddind Hk ⊂ C(Ω̄) and (3.15) again that∣∣∣∣ ((f(u(1))− f(u(2)),

∂u

∂t

)) ∣∣∣∣
6Q(‖u(1)

0 ‖H1(Ω), ‖u
(2)
0 ‖H1(Ω), ‖α

(1)
0 ‖H2(Ω), ‖α

(2)
0 ‖H2(Ω), ‖α

(1)
1 ‖H2(Ω), ‖α

(2)
1 ‖H2(Ω))

× ‖u‖Hk(Ω)‖
∂u

∂t
‖. (4.13)

It thus from (4.11) to (4.13) that, in both cases,

d

dt

(
‖A

1
2

k u‖
2 +B

1
2

k [u]
)

+ ‖∂u
∂t
‖2

6Q(‖u(1)
0 ‖H1(Ω), ‖u

(2)
0 ‖H1(Ω), ‖α

(1)
0 ‖H2(Ω), ‖α

(2)
0 ‖H2(Ω), ‖α

(1)
1 ‖H2(Ω),

‖α(2)
1 ‖H2(Ω)(‖u‖2Hk(Ω) + ‖∂α

∂t
−∆

∂α

∂t
‖2). (4.14)

Next, we multiply (4.3) by
∂α

∂t
−∆

∂α

∂t
and have

d

dt

(
‖∇α‖2 + ‖∆α‖2 + ‖∂α

∂t
−∆

∂α

∂t
‖2
)

+ c

(
‖∇∂α

∂t
‖2 + ‖∆∂α

∂t
‖2
)

6 ‖∂u
∂t
‖2.

(4.15)
Summing (4.14) and δ5 times (4.15), where δ5 > 0 is small enough, we obtain a

differential inequality of the form

d

dt
E6 + c

(
‖∂u
∂t
‖2 + ‖∇∂α

∂t
‖2 + ‖∆∂α

∂t
‖2
)

6 QE6, c > 0, (4.16)

where

E6 = ‖A
1
2

k u‖
2 + δ5

(
‖∇α‖2 + ‖∆α‖2 + ‖∂α

∂t
−∆

∂α

∂t
‖2
)

satisfies, owing to the interpolation inequality (3.5),

E6 > c

(
‖u‖2Hk(Ω) + ‖α‖2H2(Ω) + ‖∂α

∂t
‖2H2(Ω)

)
− c′‖u‖2, c > 0, c′ > 0. (4.17)

Summing finally (4.16) and c′ times (4.6), where c′ is the same constant as in
(4.16), we find a differential inequality of the form

d

dt
E7 6 QE7, (4.18)

where
E7 = E6 + c′‖u‖2

satisfies

E7 > c

(
‖u‖2Hk(Ω) + ‖α‖2H2(Ω) + ‖∂α

∂t
‖2H2(Ω)

)
, c > 0. (4.19)

If thus follows from (4.18), (4.19) and Gronwall’s lemma that

‖u(t)‖2Hk(Ω) + ‖α(t)‖2H2(Ω) + ‖∂α
∂t

(t)‖2H2(Ω)

6ceQt(‖u0‖2Hk(Ω) + ‖α0‖2H2(Ω) + ‖α1‖2H2(Ω)), t > 0, (4.20)
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hence the continuous dependence with respect to the initial data in the Hk(Ω) ×
H2(Ω)2-norm.

Remark 4.1. We can note that (4.1) is satisfied by the usual cubic nonlinear term
f(s) = s3 − s.

We assume that (4.1) holds when k = 1. It follows from Theorem 4.1 that we can

define the continuous semigroup S(t) : Φ → Φ, (u0, α0, α1) 7→ (u(t), α(t),
∂α

∂t
(t)),

t > 0 (i.e., S(0) = I, S(t+τ) = S(t)◦S(τ), t, τ > 0), where Φ = Hk
0 (Ω)× (H2(Ω)∩

H1
0 (Ω))2. Furthermore, S(t) is dissipative in Φ, owing to (3.15), in the sens that it

possesses a bounded absording set B0 ⊂ Φ (i.e., ∀B ⊂ Φ bounded, ∃t0 = t0(B) > 0
such that t > t0 =⇒ S(t)B ⊂ B0).

Remark 4.2. We can also prove the continuous depence with respect to the initial
data in the H2k(Ω) × H2(Ω)2-norm, without any growth restriction on f ′ when
k = 1, and it then follows from (3.37), (3.51) and (3.55) that S(t) is defined,
continuous and dissipative in H2k

0 (Ω)× (H2(Ω) ∩H1
0 (Ω))2.

Actually, it follows from (3.36) and (3.53) that S(t) possesses a bounded absorb-
ing set B1 such that B1 is bounded in Φ and compact in H2k(Ω)×H2(Ω)2. It thus
follows from classical results (see, e.g., [19, 22,24]) that we have the

Theorem 4.2. The semigroup S(t) possesses the global attractor A which is com-
pact in Φ and bounded in H2k(Ω)×H2(Ω)×H2(Ω).

Remark 4.3. It follows from (4.10) that we can extend S(t) (by continuity and
in a unique way) to L2(Ω) ×H2(Ω) ×H2(Ω). Therefore, Theorem 4.1 also holds,
without any growth restriction on f ′ when k = 1, except that the attraction of
the trajectories to the global attractor holds in the L2(Ω)×H2(Ω)×H2(Ω)-norm,
instead of the Hk(Ω)×H2(Ω)×H2(Ω)-one.

Remark 4.4. (i) We recall that the global attroctor A is the smallest (for the
inclusion) compact set of the phase space which is invariant by the flow (i.e.,
S(t)A = A, ∀t > 0) and attracts all bounded sets of initial data as times goes
to infinity; it thus appears as a suitable object in view of the study of the
asymptotic behavior of the system. We refer the reader to, e.g., [19,22,24] for
more details and discussion on this.

(ii) We can also prove, based on standard arguments (see, e.g., [19,22,24]) that A
has finite dimension, in the sense of covering dimensions such as the Hausdorff
and the fractal dimensions. The finite-dimensionality means, very roughly
speaking, that, even thought the initial phase space has infinite dimension,
the reduced dynamics can be described by a finite number of parameters (we
refer the interested reader to, e.g., [19, 22,24] for discussion on this subject).

5. Existence of exponential attractors

First case: k = 1

We first derive a smoothing property on the difference of two solutions which is
one of the key tools to construct exponential attractors (see [11–13,18]).
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Proposition 5.1. Let

(
u(1), α(1),

∂α(1)

∂t

)
and

(
u(2), α(2),

∂α(2)

∂t

)
be two solutions

to (2.1)–(2.3) with initial data
(
u

(1)
0 , α

(1)
0 , α

(1)
1

)
and

(
u

(2)
0 , α

(2)
0 , α

(2)
1

)
, respectively,

belonging to the bounded and positively invariant aborbing set B0 constructed in the
previous section, then

‖(u(1)(t)− u(2)(t)‖2H2k(Ω) + ‖α(1)(t)− α(2)(t)‖2H3(Ω)

+ ‖∂α
(1)

∂t
(t)− ∂α(2)

∂t
(t)‖2H3(Ω)

6cec
′t
(
‖(u(1)

0 − u
(2)
0 ‖2Hk(Ω) + ‖α(1)

0 − α
(2)
0 ‖2H2(Ω) + ‖α(1)

1 − α
(2)
1 ‖2H2(Ω)

)
, (5.1)

where the constant c and c′ only depend on B0.

Proof. We consider the following initial and boundary value problem:

∂u

∂t
+Aku+Bku+ f(u(1))− f(u(2)) =

∂α

∂t
−∆

∂α

∂t
, (5.2)

∂2α

∂t2
−∆

∂2α

∂t2
−∆

∂α

∂t
−∆α = −∂u

∂t
, (5.3)

Dβu = α = 0 on Γ, |β| 6 k − 1, (5.4)

u|t=0 = u0, α|t=0 = α0,
∂α

∂t
|t=0 = α1. (5.5)

We first deduce from (4.16) that

‖u(t)‖2Hk(Ω) + ‖α(t)‖2H2(Ω) + ‖∂α
∂t

(t)‖2H2(Ω)

6cec
′t
(
‖u0‖2Hk(Ω) + ‖α0‖2H2(Ω) + ‖α1‖2H2(Ω)

)
, t > 0, (5.6)

where the constants only depend on B0.
It also follows from (4.16) that∫ t

0

(
‖∂u
∂t
‖2 + ‖∇∂α

∂t
‖2 + ‖∆∂α

∂t
‖2
)

dτ

6cec
′t
(
‖u0‖2Hk(Ω) + ‖α0‖2H2(Ω) + ‖α1‖2H2(Ω)

)
, t > 0, (5.7)

where the constants only depend on B0.
We now differentiate (5.2) with respect to time and have, owing to (5.3),

∂

∂t

∂u

∂t
+Ak

∂u

∂t
+Bk

∂u

∂t
+f ′(u(1))

∂u

∂t
+(f ′(u(1))−f ′(u(2)))

∂u(2)

∂t
= ∆

∂α

∂t
+∆α− ∂u

∂t
.

(5.8)

We multiply (5.8) by t
∂u

∂t
, and obtain, owing to (2.9)

d

dt

(
t‖∂u
∂t
‖2
)

+ 2t‖A
1
2

k

∂u

∂t
‖2 + 2tB

1
2

k

[
∂u

∂t

]
6ct‖∂u

∂t
‖2 + ‖∂u

∂t
‖2 − 2t

((
∇α,∇∂u

∂t

))
− 2t

((
∇∂α
∂t
,∇∂u

∂t

))
+ 2t

∫
Ω

|f ′(u(1))− f ′(u(2))|
∣∣∣∂u
∂t

∣∣∣∣∣∣∂u(2)

∂t

∣∣∣dx.
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Noting that∫
Ω

|f ′(u(1))− f ′(u(2))|
∣∣∣∂u
∂t

∣∣∣∣∣∣∂u(2)

∂t

∣∣∣dx 6 c

∫
Ω

|u|
∣∣∣∂u
∂t

∣∣∣∣∣∣∂u(2)

∂t

∣∣∣dx
6 c‖∇u‖‖∇∂u

∂t
‖‖∂u

(2)

∂t
‖,

we obtain, owing to a proper interpolation ineguality,

d

dt

(
t‖∂u
∂t
‖2
)

+ t‖A
1
2

k

∂u

∂t
‖2

6ct

(
‖∂u
∂t
‖2 + ‖∇α‖2 + ‖∇∂α

∂t
‖2
)

+ c′‖∇u‖‖∇∂u
∂t
‖‖∂u

(2)

∂t
‖+ ‖∂u

∂t
‖2. (5.9)

We also multiply (5.3) by t∆2 ∂α

∂t
and obtain

d

dt

(
t

(
‖∇∆α‖2 + ‖∆∂α

∂t
‖2 + ‖∇∆

∂α

∂t
‖2
))

+ t‖∇∆
∂α

∂t
‖2

6ct‖∇∂u
∂t
‖2 + ‖∇∆α‖2 + ‖∆∂α

∂t
‖2 + ‖∇∆

∂α

∂t
‖2. (5.10)

Therefore, noting that it follows from (3.22), (3.29) and (3.30) (for

(
u, α,

∂α

∂t

)
=(

u(2), α(2),
∂α(2)

∂t

)
) that

∫ t

0

‖∂u
(2)

∂t
‖2dτ 6 cec

′t, t > 0,

where the constants only depend on B0, we find, combining (5.9) and (5.10) and
owing to (5.6), (5.7) and Gronwall’s lemma (applied over (0, t)),

‖∂u
∂t
‖2 + ‖α(t)‖2H3(Ω) + ‖∂α

∂t
(t)‖2H3(Ω)

6cec
′t
(
‖u0‖2Hk(Ω) + ‖α0‖2H2(Ω) + ‖α1‖2H2(Ω)

)
, t > 0, (5.11)

where the constants only depend on B0.
We rewrite (5.2) in the form

Aku = hu(t), Dβu = 0 on Γ, |β| 6 k − 1, (5.12)

where

hu(t) = −∂u
∂t
−Bku− (f(u(1) − f(u(2))) +

∂α

∂t
−∆

∂α

∂t
, (5.13)

satisfies, owing to (5.6) and (5.11),

‖hu(t)‖ 6 cec
′t
(
‖u0‖2Hk(Ω) + ‖α0‖2H2(Ω) + ‖α1‖2H2(Ω)

)
, t > 0, (5.14)

where the constants only depend on B0.
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Multiplying (5.12) by Aku, we have

‖Aku‖ 6 ‖hu(t)‖, t > 0,

hence

‖u(t)‖2H2k(Ω) 6 cec
′t
(
‖u0‖2Hk(Ω) + ‖α0‖2H2(Ω) + ‖α1‖2H2(Ω)

)
, t > 0, (5.15)

where the constants only depend on B0.
We finally deduce from (5.11) and (5.15) that

‖u(t)‖2H2k(Ω) + ‖α(t)‖2H3(Ω) + ‖∂α
∂t

(t)‖2H3(Ω)

6cec
′t
(
‖u0‖2Hk(Ω) + ‖α0‖2H2(Ω) + ‖α1‖2H2(Ω)

)
, t > 0, (5.16)

where the constants only depend on B0.

We then have

Proposition 5.2. There holds, for any solution to (2.1)–(2.4) with initial datum
belonging to B0 and for any T > 0,

‖S(t1)(u0, α0, α1)− S(t2)(u0, α0, α1)‖Φ 6 c|t1 − t2|
1
2 , t1, t2 ∈ [0, T ] .

Proof. In view of the estimate (3.13), we have

‖S(t1)(u0, α0, α1)− S(t2)(u0, α0, α1)‖Φ

=‖u(t1)− u(t2), α(t1)− α(t2),
∂α

∂t
(t1)− ∂α

∂t
(t2)‖Φ

6‖u(t1)− u(t2)‖Hk(Ω) + ‖α(t1)− α(t2)‖H2(Ω) + ‖∂α
∂t

(t1)− ∂α

∂t
(t2)‖H2(Ω)

=‖
∫ t1

t2

∂u

∂t
dτ‖Hk(Ω) + ‖

∫ t1

t2

∂α

∂t
dτ‖H2(Ω) + ‖

∫ t1

t2

∂2α

∂t2
dτ‖H2(Ω)

6
∫ t1

t2

‖∂u
∂t
‖Hk(Ω)dτ +

∫ t1

t2

‖∂α
∂t
‖H2(Ω)dτ +

∫ t1

t2

‖∂
2α

∂t2
‖H2(Ω)dτ

6c|t1 − t2|
1
2 +

(∫ t1

t2

‖∂
2α

∂t2
‖H2(Ω)dτ

) 1
2

|t1 − t2|
1
2 .

Then, multiplying (5.3) by −∆
∂2α

∂t2
, we obtain, proceeding as above,

d

dt

(
‖∆∂α

∂t
‖2 + 2

((
∆α,∆

∂α

∂t

)))
+ 2‖∇∂

2α

∂t2
‖2 + ‖∆∂2α

∂t2
‖2

6c

(
‖∂u
∂t
‖2 + ‖∆∂α

∂t
‖2
)
, (5.17)

where the constants c depends only on B0. Therefore, owing to (3.13),∣∣∣ ∫ t1

t2

‖∂
2α

∂t2
‖H2(Ω)dτ

∣∣∣ 6 c, (5.18)



1010 A.J. Ntsokongo

where the constants c depends only on B0 and T > 0 such that t1, t2 ∈ [0, T ], so
that

‖S(t1)(u0, α0, α1)− S(t2)(u0, α0, α1)‖Φ 6 c|t1 − t2|
1
2 , (5.19)

where the constants c depends only on B0 and T > 0 such that t1, t2 ∈ [0, T ].
We finally deduce the following result.

Theorem 5.1. The semigroup S(t) possesses an exponential attractor M ⊂ B0,
i.e.,

(i) M is compact in L2(Ω)×H2(Ω)×H2(Ω);

(ii) M is positively invariant, S(t)M⊂M,∀t > 0;

(iii) M has a finite fractal dimension in L2(Ω)×H2(Ω)×H2(Ω) ;

(iv) M attracts exponentially fast the bounded subset of Φ,
∀B ⊂ Φ bounded, distHk(Ω)×H2(Ω)×H2(Ω)(S(t)B,M) 6 Q(‖B‖Φ)e−ct, c > 0,
t > 0,

where the constant c is independent of B and distL2(Ω)×H2(Ω)×H2(Ω) denotes the
Hausdorff semidistance between sets defined by

distL2(Ω)×H2(Ω)×H2(Ω)(A,B) = sup
a∈A

inf
b∈B
‖a− b‖L2(Ω)×H2(Ω)×H2(Ω).

Remark 5.1. Setting M̃ = S(1)M, we cane prove that M̃ is exponential attractor
for S(t), but now in the topology of Φ.

Since M (or M̃) is a compact attracting set, we deduce from Theorem 5.1 and
standard results the

Corollary 5.1. The global attractor A (see theorem 4.2) is finite-dimensional.

Remark 5.2. If k > 2, then we prove the same way the existence of an exponential
attractor M′ ⊂ B1 .

Remark 5.3. Compared to the global attractor, an exponential attractor is ex-
pected to be more robust under perturbations. Indeed, the rate of attraction of
trajectories to the global attractor may be slow and it is very difficult, if not impos-
sible, to estimate this rate of attraction with respect to the physical parameters of
the problem in general. As a consequence, global attractors may change drastically
under small perturbations.
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