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1. Introduction

We consider the existence and multiplicity of nontrivial solutions for nonlinear
higher-order singular fractional differential equations with fractional nonlocal bound-
ary conditions: 

Dα
t x(t) + h(t)f(t, x(t)) = 0, t ∈ (0, 1),

x(i)(0) = 0, 0 ≤ i ≤ n− 2,

Dβ
t x(1) =

∞∑
j=1

ajD
γ
t x(ξj),

(1.1)

where Dα
t , D

β
t , D

γ
t are the standard Riemann-Liouville fractional derivative opera-

tor, α ∈ (n− 1, n], β ∈ [1, n− 2], γ ∈ [1, n− 3] for n ≥ 4 and n ∈ N+ = {1, 2, 3, · · · },
γ ≤ β, f ∈ C([0, 1] × R,R),R = (−∞,+∞), h ∈ C((0, 1),R+) and h(t) may be
singular at t = 0 and/or t = 1, aj ∈ (0, 1),

∑∞
j=1 ajξ

α−γ−1
j < 1 and

0 < ξ1 < ξ2 < · · · < ξj < · · · < ξm < · · · < 1.

In view of fractional differential equations modeling capabilities in engineering,
science, economy and other fields, in the last few decades, the theory of fractional
differential equation has a rapid development, see the books [13, 15, 19]. This may
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explain the reason why the last few decades have witnessed an overgrowing interest
in the research of such problems, with many papers in this direction published. We
refer the interested reader to [10,11,16,17,29,34] and the references therein.

Recently, the existence and uniqueness of a solution for the nonlinear fractional
differential equations have been researched by means of the Schauder fixed-point
theorem or coincidence degree theory or the lattice structure, see [1,3,6,12,22,25,26]
and the references therein. For instance, authors of [6] studied the existence of a
nontrivial solution for nonlinear higher-order fractional differential equations with
multi-point boundary conditions:

Dα
t u(t) + f(t, u(t)) = 0, α ∈ (n− 1, n](n ≥ 2),

u(i)(0) = 0, 0 ≤ i ≤ n− 2, u(1) =
m−2∑
i=1

aiu(ξi).
(1.2)

In [27], by using topological degree theory, Wu and Zhang obtained the existence
results of a nontrivial solution for superlinear fractional boundary value problems:

Dα
t u(t) + p(t)f

(
t, u(t), Dµ1

t u(t), · · · , Dµn−1

t u(t)
)
= 0, t ∈ (0, 1), n ≥ 3,

Dµi

t u(0) = 0, 1 ≤ i ≤ n− 1, D
µn−1+1
t u(0) = 0, D

µn−1

t u(1) =
m−2∑
i=1

aiD
µn−1

t u(ξi).

(1.3)
With the aid of some inequalities associated with the Green’s function, authors
of [30] obtained the existence of a nontrivial solution for superlinear and sublinear
fractional boundary value problems:Dα

t u(t) + f(t, u(t)) = 0, α ∈ (2, 3],

u(0) = u′(0) = u′(1) = 0.
(1.4)

In [23, 24], Sun and Zhang obtained some existence results of nontrivial solutions
for singular superlinear and sublinear Sturm-Liouville boundary value problems by
using topological degree theory, respectively. However, in [4,23–26,30], the nonlinear
term f(t, u) in the equation (1.1) permits sign-changing, but it is required to be
bounded from below.

In most works, the nonlinear term f(t, u), which appears in the right-hand side
of the equation (1.1), is required to be nonnegative to obtain the existence of positive
solutions by using fixed point theorem on a cone, see [2,9, 14,16,28,32,35] and the
references therein. Generally, the operator A generated by nonnegative function
f(t, u) is a cone mapping. In this paper, the nonlinear term f(t, u) may be a sign-
changing function, and consequently, the operator A is not necessary to be a cone
mapping, thus the theory of fixed point index on a cone becomes invalid, and in
order to obtain the existence of nontrivial solution we make use of topological degree
theory which is not confined in a cone.

Motivated by the papers [23,24,30], this article discusses the existence and multi-
plicity of nontrivial solutions for the singular problem (1.1) by using the topological
degree theory. The nonlinear term f(t, u) of (1.1) is sign-changing and unbounded
from below. Finally, some examples show that our results can’t be obtained by the
method of cone theory.
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2. Preliminaries

Definition 2.1 ( [21]). The Riemann-Liouville fractional integral of order α > 0
of a function u : (0,+∞) → R is given by

Iα0+u(t) =
1

Γ(α)

∫ t

0

(t− s)α−1u(s)ds,

provided the right side is pointwise defined on (0,+∞). The Riemann-Liouville
fractional derivative of order α > 0 of a function u : (0,+∞) → R is given by

Dα
t u(t) =

1

Γ(n− α)

dn

dtn

∫ t

0

(t− s)n−α−1u(s)ds,

where n = [α] + 1, [α] denotes the largest integer not greater than α, provided the
right side is pointwise defined on (0,+∞). We stipulate that D0

t u(t) = u(t) if α = 0.

Lemma 2.1 ( [13]). Let x ∈ Lp(0, 1) (1 ≤ p ≤ +∞), ρ > σ > 0.
(i) Dσ

0+I
ρ
0+x(t) = Iρ−σ

0+ x(t), Dσ
0+I

σ
0+x(t) = x(t), Iρ0+I

σ
0+x(t) = Iρ+σ

0+ x(t) hold at
almost every point t ∈ (0, 1). If ρ + σ > 1, then the above third equation holds at
any point of [0, 1];

(ii) Dσ
0+t

ρ−1 = Γ(ρ)tρ−σ−1/Γ(ρ− σ), t > 0.

Lemma 2.2 ( [13]). Let y1 ∈ C(0, 1) ∩ L1(0, 1), α > 0, then

Iα0+D
α
0+y1(t) = y1(t) + c1t

α−1 + c2t
α−2 + · · ·+ cnt

α−n,

where c1, c2, · · · , cn are arbitrary real constants, n is the smallest integer greater
than or equal to α.

Lemma 2.3. Let
∑∞

j=1 ajξ
α−γ−1
j ∈ [0, 1), γ ≤ β for γ ∈ [1, n − 3], β ∈ [1, n − 2]

and n ≥ 4, then for any y ∈ L1[0, 1], the unique solution of the fractional nonlocal
boundary value problem: 

Dα
t u(t) + y(t) = 0, 0 < t < 1,

u(i)(0) = 0, 0 ≤ i ≤ n− 2,

Dβ
t u(1) =

∞∑
j=1

ajD
γ
t u(ξj),

(2.1)

is given by

u(t) =

∫ 1

0

G(t, s)y(s)ds, (2.2)

where the Green’s function

G(t, s) = g(t, s) +
tα−1

d

∞∑
j=1

ajk(ξj , s), (2.3)

d = Γ(α− γ)− Γ(α− β)
∞∑
j=1

ajξ
α−γ−1
j ,

g(t, s) =
1

Γ(α)

 tα−1(1− s)α−β−1 − (t− s)α−1, 0 ≤ s ≤ t ≤ 1,

tα−1(1− s)α−β−1, 0 ≤ t ≤ s ≤ 1,
(2.4)



Nontrivial solutions of singular fractional BVP 941

k(t, s) =
Γ(α− β)

Γ(α)

 tα−γ−1(1− s)α−β−1 − (t− s)α−γ−1, 0 ≤ s ≤ t ≤ 1,

tα−γ−1(1− s)α−β−1, 0 ≤ t ≤ s ≤ 1.
(2.5)

Γ(α),Γ(α− γ) and Γ(α− β) are the Gamma function.

Proof. By using Lemma 2.1 and Lemma 2.2, the solutions of the equation (2.1)
are

u(t) = −Iα0+y(t) + c1t
α−1 + c2t

α−2 + · · ·+ cnt
α−n,

where c1, c2, · · · , cn are arbitrary real constants. By u(0) = 0, we have cn = 0.
Then

u(t) = −Iα0+y(t) + c1t
α−1 + c2t

α−2 + · · ·+ cn−1t
α−n+1. (2.6)

Differentiating (2.6), we get

u′(t) = −Iα−1
0+ y(t) + c1(α− 1)tα−2 + · · ·+ cn−1(α− n+ 1)tα−n. (2.7)

By (2.7) and u′(0) = 0, we get cn−1 = 0. Similarly, we have c2 = c3 = · · · = cn−2 =
0. Hence,

u(t) =
−1

Γ(α)

∫ t

0

(t− s)α−1y(s)ds+ c1t
α−1, (2.8)

Dγ
t u(t) =

1

Γ(α− γ)

[
c1Γ(α)t

α−γ−1 −
∫ t

0

(t− s)α−γ−1y(s)ds

]
.

By Dβ
t u(1) =

∞∑
j=1

ajD
γ
t u(ξj) and Lemma 2.1, we get

c1=
1

dΓ(α)

[
Γ(α−γ)

∫ 1

0

(1−s)α−γ−1y(s)ds−Γ(α−β)
∞∑
j=1

aj

∫ ξj

0

(ξj−s)α−γ−1y(s)ds

]
.

Substituting c1 into (2.8), we get that the unique solution of the problem (2.1) is

u(t) =
−1

Γ(α)

∫ t

0
(t− s)α−1y(s)ds+

tα−1

d[
Γ(α− γ)

∫ 1

0
(1− s)α−β−1y(s)ds− Γ(α− β)

∞∑
j=1

aj
∫ ξj
0
(ξj − s)α−γ−1y(s)ds

]
=

1

Γ(α)

[ ∫ t

0

[
tα−1(1− s)α−β−1 − (t− s)α−1

]
y(s)ds

+
∫ 1

t
tα−1(1− s)α−β−1y(s)ds+

Γ(α− γ)− d

d

∫ 1

0

tα−1(1− s)α−β−1y(s)ds

− t
α−1

d
Γ(α− β)

∞∑
j=1

aj
∫ ξj
0
(ξj − s)α−γ−1h(s)y(s)ds

]
=

∫ 1

0

g(t, s)y(s)ds+
Γ(α− β)tα−1

dΓ(α)

∞∑
j=1

aj

[ ∫ 1

ξj

ξα−γ−1
j (1− s)α−β−1y(s)ds

+

∫ ξj

0

[
ξα−γ−1
j (1− s)α−β−1 − (ξj − s)α−γ−1

]
y(s)ds

]
=

∫ 1

0

g(t, s)y(s)ds+
tα−1

d

∞∑
j=1

aj

∫ 1

0

k(ξj , s)y(s)ds

=
∫ 1

0
G(t, s)y(s)ds.
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i.e., (2.2) holds.
Conversely, if u ∈ C[0, 1] is a solution of the integral equation (2.2), from Lemma

2.1 we easily see that u satisfies the equation and boundary conditions of (2.1).

Remark 2.1. If β = γ ∈ [1, n− 3] (n ≥ 4), the equation (2.5) can be written as

k(t, s) =
1

Γ(α)

 tα−γ−1(1− s)α−γ−1 − (t− s)α−γ−1, 0 ≤ s ≤ t ≤ 1,

tα−γ−1(1− s)α−γ−1, 0 ≤ t ≤ s ≤ 1.

Hence, the boundary condition of the problem (1.1) is wider than that of [12,27,35].

Lemma 2.4. Under the assumption of Lemma 2.3, functions g(t, s) and k(t, s)
defined by (2.4) and (2.5) have the following properties:

(i) g(t, s) ≥ 0 is continuous on [0, 1]× [0, 1] and g(t, s) > 0 for t, s ∈ (0, 1).
(ii) tα−1g(1, s) ≤ g(t, s) ≤ maxt∈[0,1] g(t, s) = g(1, s) for t, s ∈ [0, 1], where

g(1, s) =
1

Γ(α)

[
(1− s)α−β−1 − (1− s)α−1

]
.

(iii) k(t, s) ≥ 0 is continuous on [0, 1]× [0, 1].

Proof. For the proof of (i) and (ii), respectively, see Theorem 3.2.6 in [9] and
Lemma 2.7 in [14].

(iii) it is clear that k(t, s) ∈ C([0, 1]× [0, 1]). Since γ ≤ β for γ ∈ [1, n− 3], β ∈
[1, n− 2] and n ≥ 4, then 0 < α− β − 1 ≤ α− γ − 1, and

tα−γ−1(1− s)α−β−1 − (t− s)α−γ−1

= tα−γ−1
[
(1− s)α−β−1 −

(
1− s

t

)α−γ−1]
≥ tα−γ−1

[
(1− s)α−β−1 − (1− s)α−γ−1

]
≥ tα−γ−1

[
(1− s)α−β−1 − (1− s)α−β−1

]
= 0, 0 ≤ s ≤ t ≤ 1.

Hence k(t, s) ≥ 0 for t, s ∈ [0, 1].
We give the following assumption to be used in the rest of this paper.
(H1) h ∈ C((0, 1),R+), h(t) ̸≡ 0 on any subinterval of (0, 1) and

0 <

∫ 1

0

(1− t)h(t)dt < +∞.

Lemma 2.5. Under the assumption of Lemma 2.3, the Green’s function G(t, s)
defined by (2.3) has the following properties:

(1) G(t, s) ≥ 0 is continuous on [0, 1]× [0, 1] and G(t, s) > 0 for t, s ∈ (0, 1).
(2) tα−1G(1, s) ≤ G(t, s) ≤ maxt∈[0,1]G(t, s) = G(1, s) for t, s ∈ [0, 1], where

G(1, s) = g(1, s) +
1

d

∞∑
j=1

ajk(ξj , s) ≤
Γ(α− γ)

dΓ(α)
(1− s)α−β−1, s ∈ [0, 1].

(3) Let ω(t) = G(1, t), t ∈ [0, 1]. If the condition (H1) holds, then

k1ω(s) ≤
∫ 1

0

G(t, s)h(t)ω(t)dt ≤ k2ω(s), s ∈ [0, 1], (2.9)

where 0 < k1 =
∫ 1

0
tα−1ω(t)h(t)dt ≤ k2 =

∫ 1

0
ω(t)h(t)dt.
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Proof. From Lemma 2.4 we know that (1) and (2) are true. Since α− β − 1 > 1,∫ 1

0

ω(t)h(t)dt ≤
∫ 1

0

Γ(α− γ)

dΓ(α)
h(t)(1− t)α−β−1dt ≤

∫ 1

0

h(t)

dΓ(α)
(1− t)dt < +∞.

By simple computation, we arrive at the inequality (2.9) immediately.
Let E = C[0, 1] be a real Banach space endowed with the norm ∥u∥ = maxt∈J |u(t)|,

and P = {u ∈ C[0, 1] : u(t) ≥ 0, t ∈ [0, 1]}, then P is a total cone in E. For fixed
r > 0, let Ωr = {u ∈ E : ∥u∥ < r}.

By (H1), we define three integral operators A,L,L∗ : E → E by

Lu(t) =

∫ 1

0

G(t, s)h(s)u(s)ds, L∗u(s) =

∫ 1

0

G(t, s)h(t)u(t)dt.

Au(t) =

∫ 1

0

G(t, s)h(s)f(s, u(s))ds, t ∈ [0, 1], (2.10)

Similar to the proof of Lemma 2.15 in [27], we can prove that L,L∗ : E → E are
completely continuous linear operators with the spectral radius r(L) > 0 and the
first eigenvalue λ1 = r−1(L), satisfying L(P ) ⊂ P . Then there are φ,ψ ∈ P \ {0}
such that

Lφ(t) =
∫ 1

0
G(t, s)h(s)φ(s)ds = r(L)φ(t),

L∗ψ(s) =
∫ 1

0
G(t, s)h(t)ψ(t)dt = r(L)ψ(s).

(2.11)

Since G(t, 0) = G(t, 1) = 0, t ∈ [0, 1], it follows the second equation in (2.11) from
ψ(0) = ψ(1) = 0, which implies ψ′(0) > 0, ψ′(1) < 0 (see [20]). Define a function X
on [0, 1] by

X (s) =


ψ′(0), s = 0,

ψ(s)

s(1− s)
, 0 < s < 1,

−ψ′(1), s = 1.

So X is continuous on [0, 1] and X (s) > 0 for all s ∈ [0, 1]. Then there exist
δ1, δ2 > 0 such that δ1 ≤ X (s) ≤ δ2 for all s ∈ [0, 1]. Thus

δ1s(1− s) ≤ ψ(s) ≤ δ2s(1− s), s ∈ [0, 1].

From this and (H1) we yield∫ 1

0

ψ(s)h(s)u(s)ds ≤ δ2∥u∥
∫ 1

0

h(s)(1− s)ds < +∞, u ∈ P.

Let

P1 = {u ∈ P :

∫ 1

0

ψ(t)h(t)u(t)dt ≥ k1∥u∥},

where k1 is given by Lemma 2.5. It is easy to verify that P1 is a cone in E.

Lemma 2.6. Under the assumption of Lemma 2.3 and (H1), we can get the fol-
lowing conclusions,

1) k1 ≤ r(L) ≤ k2,
2) L(P ) ⊂ P1.
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Proof. 1) Multiply by h(t)ω(t) the first equation in (2.11) and integrate over [0,1],
and use the inequality (2.9) to obtain

k1
∫ 1

0
h(s)ω(s)φ(s)ds ≤

∫ 1

0
h(s)φ(s)ds

∫ 1

0
G(t, s)ω(t)h(t)dt

= r(L)
∫ 1

0
ω(t)h(t)φ(t)dt ≤ k2

∫ 1

0
ω(s)h(s)φ(s)ds.

Since
∫ 1

0
ω(t)h(t)φ(t)dt > 0, k1 ≤ r(L) ≤ k2.

2) For u ∈ P, t ∈ [0, 1], we have

Lu(t) =

∫ 1

0

G(t, s)h(s)u(s)ds ≤
∫ 1

0

G(1, s)h(s)u(s)ds.

On the other hand, we have by the second equation in (2.11)∫ 1

0
ψ(t)h(t)Lu(t)dt ≥

∫ 1

0
tα−1ψ(t)h(t)dt

∫ 1

0
G(1, s)h(s)u(s)ds

≥ k1
∫ 1

0
G(t, s)h(s)u(s)ds = k1Lu(t).

Hence
∫ 1

0
ψ(t)h(t)Lu(t)dt ≥ δ∥Lu∥, and so L(P ) ⊂ P1.

It is similar to the proof of Lemma 3 in [23], we get the following lemma.

Lemma 2.7. Assume that the condition (H1) is satisfied, then A : E → E is a
completely continuous operator.

Lemma 2.8 ( [5]). Let X be a Banach space and Ω be a bounded open set. Assume
that A : Ω → X is a completely continuous operator. If there is u0 ̸= 0 such that
u ̸= Au+λu0 for any λ ≥ 0, u ∈ ∂Ω, then the topological degree deg(I−A,Ω, 0) = 0.

Lemma 2.9 ( [5]). Let X be a Banach space and Ω ⊂ X be a bounded open set with
0 ∈ Ω. Assume that A : Ω → X is a completely continuous operator and Au ̸= µu
for any µ ≥ 1, u ∈ ∂Ω (Particularly, if ∥Au∥ ≤ ∥u∥, Au ̸= u,∀ u ∈ ∂Ω), then the
topological degree deg(I −A,Ω, 0) = 1.

Let X be a Banach space and W be a convex closed set in X. W is called a
wedge if it satisfies the following conditions,

(1) λu ∈W for any u ∈W and λ ≥ 0,
(2) there is y ∈W such that −y ̸∈W .

Lemma 2.10 ( [18]). Let X and Yi be Banach spaces, Pi ⊂ Yi be a cone for each
i = 1, 2, · · · , n, Ω ⊂ X be a bounded open set. Assume that A : Ω → X is a
condensing operator, which has no fixed point on ∂Ω. If there are linear operators
T :W →W,Ni :W → Pi (i = 1, 2, · · · , n) and x0 ∈W \ {0} such that

(1) Nix0 ̸= 0 (i = 1, 2, · · · , n),
(2) there is u∗ ∈W such that A(∂Ω) ⊂W (u∗) =: {x ∈ X : x+ u∗ ∈W},
(3) NiTx = Nix for any x ∈W, i = 1, 2, · · · , n,
(4) for any x ∈ ∂Ω ∩W (u∗), there is i0 = i0(x) such that Ni0Ax ≥ Ni0Tx.

Then the topological degree deg(I −A,Ω, 0) = 0.

3. Existence of a nontrivial solution

Theorem 3.1. Assume that (H1) holds and the following conditions are satisfied,
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(H2) there is a constant β1 > k−1
1 such that lim inf

u→+∞
mint∈[0,1]

f(t,u)
u ≥ β1,

(H3) there is a constant β2 ∈ (0, k−1
2 ) such that lim sup

u→−∞
maxt∈[0,1]

f(t,u)
u ≤ β2,

(H4) there is a constant b ∈ [0, k−1
2 ) such that lim sup

u→0
maxt∈[0,1]

|f(t,u)|
|u| ≤ b.

Then the singular problem (1.1) has at least one nontrivial solution.

Proof. By (H2), (H3), there are ε1 ∈ (0, β1−β2

2 ) and C1 > 0 such that (β1 − ε1) >

k−1
1 , (β2 + ε1) < k−1

2 , and

f(t, u) ≥ (β1 − ε1)u− C1, t ∈ [0, 1], u ≥ 0, (3.1)

f(t, u) ≥ (β2 + ε1)u− C1, t ∈ [0, 1], u ≤ 0. (3.2)

By (3) of Lemma 2.5, we have β1 − ε1 > β2 + ε1, then (3.1) and (3.2) yield

f(t, u) ≥ (β1 − ε1)u− C1, t ∈ [0, 1], u ∈ R, (3.3)

f(t, u) ≥ (β2 + ε1)u− C1, t ∈ [0, 1], u ∈ R. (3.4)

Now we prove that

Ω = {u ∈ E : u = Au+ λφ for some λ ≥ 0}

is a bounded set, where φ ∈ P \{0} is determined by (2.11). Indeed, for any u ∈ Ω,
there is a λ ≥ 0 such that u = Au+ λφ. From this and (3.3), we have

u(t) ≥ Au(t) ≥ (β1 − ε1)

∫ 1

0

G(t, s)h(s)u(s)ds− C1

∫ 1

0

G(t, s)h(s)ds. (3.5)

Multiply by ψ(t)h(t) both sides of the inequality (3.5) and integrate over [0, 1], we
get ∫ 1

0

ψ(t)h(t)u(t)dt ≥ (β1 − ε1)r(L)

∫ 1

0

ψ(t)h(t)u(t)dt− C2, (3.6)

where C2 = C1r(L)
∫ 1

0
ψ(t)h(t)dt. Since (β1 − ε1)r(L) ≥ (β1 − ε1)k1 > 1, (3.6)

yields ∫ 1

0

ψ(t)h(t)u(t)dt ≤ C2

(β1 − ε1)r(L)− 1
. (3.7)

Similarly, noting (β2 + ε1)r(L) ≤ (β2 + ε1)k2 < 1, we have∫ 1

0

ψ(t)h(t)u(t)dt ≥ −C2

1− (β2 + ε1)r(L)
. (3.8)

Since u = Au+ λφ,

u− (β2 + ε1)Lu+ C1Lu0 = L
(
fu− (β2 + ε1)u+ C1u0 + λr−1(L)φ

)
, (3.9)

where u0 ∈ P, u0(t) ≡ 1, Au = Lfu, f : E → E is the Nemytskii operator, fu(t) =
f(t, u(t)). From (3.4), (3.9) and Lemma 2.6 we obtain that u−(β2+ε1)Lu+C1Lu0 ∈
P1. Consequently,

k1∥u− (β2 + ε1)Lu+ C1Lu0∥ ≤
∫ 1

0

[
u(t)− (β2 + ε1)Lu(t) + C1Lu0(t)

]
ψ(t)h(t)dt

= [1− (β2 + ε1)r(L)]
∫ 1

0
ψ(t)h(t)u(t)dt+ C2.

(3.10)
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By (3.7), (3.8) and (3.10), there is C3 > 0 such that ∥u−(β2+ε1)Lu∥ ≤ C3. Hence,

−C3u0 ≤ u− (β2 + ε1)Lu ≤ C3u0.

Since (β2 + ε1)r(L) ≤ (β2 + ε1)k2 < 1, it follows from that −u ≤ u ≤ u, where
u = [I−(β2+ε1)L]

−1C3u0. This shows Ω is bounded. Then there exists a sufficiently
large constant K > 0 such that

u ̸= Au+ λφ, ∀ u ∈ ∂ΩK , λ ≥ 0.

Lemma 2.8 yields
deg(I −A,ΩK , 0) = 0. (3.11)

On the other hand, by (H4), there are sufficiently small constants ε2 > 0, ρ > 0
such that b+ ε2 < k−1

2 , and

|f(t, u)| ≤ (b+ ε2)|u|, t ∈ [0, 1], |u| ≤ ρ.

Consequently,

∥Au∥ ≤ (b+ ε2)
∫ 1

0
G(1, s)h(s)|u(s)|ds

< k−1
2

∫ 1

0
ω(s)h(s)ds∥u∥ = ∥u∥, ∀ u ∈ Ωρ.

(3.12) and Lemma 2.9 yield

deg(I −A,Ωρ, 0) = 1. (3.12)

We have by (3.11) and (3.12)

deg(I −A,ΩK \ Ωρ, 0) = deg(I −A,ΩK , 0)− deg(I −A,Ωρ, 0) = −1.

Then A has a fixed point on ΩK \ Ωρ. This means that the singular problem (1.1)
has at least one nontrivial solution.

Theorem 3.2. Assume that (H1) holds and the following conditions are satisfied,

(H5) there is η1 > k−1
1 such that lim inf

u→0+
mint∈[0,1]

f(t,u)
u ≥ η1,

(H6) there is η2 ∈ (0, k−1
2 ) such that lim sup

u→0−
maxt∈[0,1]

f(t,u)
u ≤ η2,

(H7) there is d ∈ [0, k−1
2 ) such that lim sup

|u|→+∞
maxt∈[0,1]

|f(t,u)|
|u| ≤ d.

Then the singular problem (1.1) has at least one nontrivial solution.

Proof. By (H5) and (H6), there are ε3 ∈ (0, η1−η2

2 ) and sufficiently small constant

σ > 0 such that η1 − ε3 > k−1
1 , η2 + ε3 < k−1

2 , and

f(t, u) ≥ (η1 − ε3)u, t ∈ [0, 1], u ∈ [0, σ], (3.13)

f(t, u) ≥ (η2 + ε2)u, t ∈ [0, 1], u ≤ [−σ, 0]. (3.14)

Since η1 − ε3 > η2 + ε3, (3.13) and (3.14) yield

f(t, u) ≥ (η1 − ε3)u, t ∈ [0, 1], u ∈ [−σ, σ], (3.15)

f(t, u) ≥ (η2 + ε3)u, t ∈ [0, 1], u ≤ [−σ, σ]. (3.16)



Nontrivial solutions of singular fractional BVP 947

Now we prove that

M1 = {u ∈ E : u = Au+ λφ for some λ ≥ 0} = ∅,

where φ ∈ P \ {0} is determined by (2.11). If not, there are λ2 ≥ 0, u2 ∈ ∂Ωσ ∩ P
such that u2 = Au2 + λ2φ, then

u2 = Au2 + λ2φ = Lfu2 + λ2φ. (3.17)

Multiply by ψ(t)h(t) both sides of (3.17) and integrate over [0, 1], and use (3.15) to
obtain ∫ 1

0

ψ(t)h(t)u2(t)dt ≥ (η1 − ε3)r(L)

∫ 1

0

ψ(s)h(s)u2(s)ds. (3.18)

Since (η1 − ε3)r(L) ≥ (η1 − ε3)k1 > 1, (3.18) yields that
∫ 1

0
ψ(s)h(s)u2(s)ds ≤ 0.

Similarly, noting (η2+ε3)r(L) ≤ (η2+ε3)k2 < 1, from (3.16) and (3.17) we get that∫ 1

0
ψ(s)h(s)u2(s)ds ≥ 0. Hence,

∫ 1

0
ψ(s)h(s)u2(s)ds = 0. (3.17) can be written as

u2 − (η2 + ε3)Lu2 = L
(
fu2 − (η2 + ε3)u2 + λ2r

−1(L)φ
)
. (3.19)

It is similar to the proof of Theorem 3.1, we obtain from (3.16), (3.19) and Lemma
2.6 that u2 − (η2 + ε3)Lu2 ∈ P1. Consequently,

k1∥u2 − (η2 + ε3)Lu2∥ ≤
∫ 1

0

[
u2(t)− (η2 + ε3)Lu2(t)

]
ψ(t)h(t)dt

= [1− (η2 + ε3)r(L)]
∫ 1

0
ψ(s)h(s)u2(s)ds = 0,

u2 = (η2 + ε3)Lu2. From (η2 + ε3)r(L) ≤ (η2 + ε3)k2 < 1 We obtain that u2 = 0,
which contradicts ∥u2∥ = σ. Hence M1 = ∅. According to the property of the lack
of direction of the Leray-Schauder degree, we get

deg(I −A,Ωσ, 0) = 0. (3.20)

On the other hand, by (H7), there are ε4 > 0, C4 > 0 such that (d+ ε4) < k−1
2 ,

and
|f(t, u)| ≤ (d+ ε4)|u|+ C4, t ∈ [0, 1], u ∈ R.

Consequently,

|Au(t)| ≤ (d+ ε4)

∫ 1

0

G(t, s)h(s)|u(s)|ds+ C4Lu0, t ∈ [0, 1], u ∈ E. (3.21)

We claim that the set

M2 = {u ∈ E : Au = µu for some µ ≥ 1}

is bounded. Indeed, for any u ∈ M2, there is µ2 ≥ 1 such that Au = µ2u. (3.21)
yields

|u(t)| ≤ (d+ ε4)L|u(t)|+ C5u0, t ∈ [0, 1],

where C5 = C4

∫ 1

0
G(1, s)ds. Due to (d+ ε4)r(L) ≤ (d+ ε4)k2 < 1, this yields that

|u(t)| ≤ [I − (d+ ε4)L]
−1C4u0, t ∈ [0, 1]. This shows M2 is bounded. Then there is

a sufficiently large constant G > 0 such that

Au ̸= µu, ∀ u ∈ ∂ΩG, µ ≥ 1,
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that is, I−A and I are homotopic on ∂ΩG. From the homotopic invariant property
of the Leray-Schauder degree, we yield

deg(I −A,ΩG, 0) = 1. (3.22)

We have by (3.20) and (3.22)

deg(I −A,ΩG \ Ωσ, 0) = deg(I −A,ΩG, 0)− deg(I −A,Ωσ, 0) = 1.

Then A has a fixed point on ΩG \ Ωσ. This means that the singular problem (1.1)
has at least one nontrivial solution.

Theorem 3.3. Assume that (H1), (H7) hold and the following condition is satisfied,
(H8) there is r > 0 such that f(t, u) ≥ k−1

1 u for any t ∈ [0, 1], |u| ≤ r.
Then the singular problem (1.1) has at least one nontrivial solution.

Proof. Take n=1, Y1=R, P1=R+,W =P1 and u
∗(t)=x0(t)=k

−1
1 r

∫ 1

0
G(t, s)h(s)ds

in Lemma 2.9. Linear operators T :W → E,N :W → R are defined by

Tu = λ1Lu, N1u =

∫ 1

0

ψ(t)h(t)u(t)dt,

where λ1 = r−1(L), ψ ∈ P \{0} is given by (2.11). Clearly, N1x0 > 0, N1(W ) ⊂ P1.
It is similar to the proof of 2) in Lemma 2.6, we can prove that T (W ) ⊂ W , and
use (2.11) to obtain∫ 1

0
ψ(t)h(t)x0(t)dt ≥ k−1

1 r
∫ 1

0
tα−1ψ(t)h(t)dt

∫ 1

0
G(1, s)h(s)ds

= r
∫ 1

0
G(1, s)h(s)ds = k1∥x0∥,

so x0 ∈ W \ {0}. Now we verify that the conditions of Lemma 2.9 are satisfied in
Ωr. Without loss of generality, we may assume that A has no fixed point on ∂Ωr.
For any u ∈W , we have by (2.11),

N1T (u) = λ1

∫ 1

0

ψ(t)h(t)dt

∫ 1

0

G(t, s)h(s)u(s)ds =

∫ 1

0

ψ(s)h(s)u(s)ds = N1u.

From (H8) we obtain that

u∗(t) +Au(t) =

∫ 1

0

G(t, s)h(s)[k−1
1 r + f(s, u(s))]ds ≥ 0, t ∈ [0, 1], u ∈ Ωr, (3.23)

∫ 1

0
ψ(t)h(t)[u∗(t) +Au(t)]dt

=
∫ 1

0
ψ(t)h(t)dt

∫ 1

0
G(t, s)h(s)[k−1

1 r + f(s, u(s))]ds

≥
∫ 1

0
ψ(t)h(t)tα−1dt

∫ 1

0
G(1, s)h(s)[k−1

1 r + f(s, u(s))]ds

≥ k1
∫ 1

0
G(t, s)h(s)[k−1

1 r + f(s, u(s))]ds

= k1[u
∗(t) +Au(t)], t ∈ [0, 1].

This, together with (3.23), we have∫ 1

0

ψ(t)h(t)[u∗(t) +Au(t)]dt ≥ k1∥u∗ +Au∥.
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Hence u∗ +Au ∈W . Further, for any u ∈ ∂Ωr ∩W (u∗), (H8) yields

N1A(u) ≥ k−1
1

∫ 1

0
h(t)ψ(t)

∫ 1

0
G(t, s)h(s)u(s)dsdt

= k−1
1 r(L)

∫ 1

0
ψ(s)h(s)u(s)ds

≥
∫ 1

0
ψ(s)h(s)u(s)ds = N1u.

According to Lemma 2.10, we get

deg(I −A,Ωr, 0) = 0. (3.24)

On the other hand, by (H7), take G > r such that (3.22) hold. (3.22) and (3.24)
yield

deg(I−A, (ΩG∩P )\(Ωr∩P ), 0) = deg(I−A,ΩG∩P, 0)−deg(I−A,Ωr∩P, 0) = 1.

Then A has a fixed point on ΩG \ Ωr. This means that the singular problem (1.1)
has at least one nontrivial solution.

Theorem 3.4. Assume that (H1), (H4) and (H8) hold, then the singular problem
(1.1) has at least one nontrivial solution.

Proof. We may take r > ρ such that (3.12) and (3.24) hold, then

deg(I −A,Ωr \ Ωρ, 0) = deg(I −A,Ωr, 0)− deg(I −A,Ωρ, 0) = −1.

Hence A has a fixed point on Ωr \ Ωρ. This means that the singular problem (1.1)
has at least one nontrivial solution.

4. Existence of multiple nontrivial solutions

Theorem 4.1. Assume that (H1), (H2), (H3), (H4) hold and

uf(t, u) ≥ 0, ∀ t ∈ [0, 1], u ∈ R. (4.1)

Then the singular problem (1.1) has at least one positive solution and one negative
solution.

Proof. From (4.1) we know that A(P ) ⊂ P . Similar to the proof of Theorem 3.1,
from (3.11) and (3.12) we know that fixed point index

i(A,ΩK ∩ P, 0) = deg(I −A,ΩK , 0) = 0, i(A,Ωρ ∩ P, 0) = deg(I −A,Ωρ, 0) = 1.

Consequently,

i(A, (ΩK ∩ P ) \ (Ωρ ∩ P ), 0) = i(A,ΩK ∩ P, 0)− i(A,Ωρ ∩ P, 0) = −1,

so A has a fixed point in (ΩK ∩P ) \ (Ωρ ∩P ) and the singular problem (1.1) has at
least one positive solution.

Let f1(t, u) = −f(t,−u), ∀ t ∈ [0, 1], u ∈ R and define

A1u(t) =

∫ 1

0

G(t, s)h(s)f1(s, u(s))ds, t ∈ [0, 1].
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Then A1(P ) ⊂ P . By the same method as above, we know that A1 has a fixed
point v ∈ P \ {0}, i.e., A1v = v. Consequently,

−v(t) =
∫ 1

0

G(t, s)h(s)f(s,−v(s))ds = A(−v(t)), t ∈ [0, 1].

Hence −v is the negative solution of the singular problem (1.1).
Similarly, we can prove the following theorem.

Theorem 4.2. Assume that (H1), (H7), (H8) hold and

uf(t, u) ≥ 0, ∀ t ∈ [0, 1], u ∈ R.

Then the singular problem (1.1) has at least one positive solution and one negative
solution.

Theorem 4.3. Assume that (H1), (H4), (H7) and (H8) hold, then the singular prob-
lem (1.1) has at least two nontrivial solutions.

Proof. We may take G > r > ρ such that (3.12), (3.22) and (3.24) hold. Then

deg(I −A,Ωr \ Ωρ, 0) = deg(I −A,Ωr, 0)− deg(I −A,Ωρ, 0) = −1,

deg(I −A,ΩG \ Ωr, 0) = deg(I −A,ΩG, 0)− deg(I −A,Ωr, 0) = 1.

Hence A has a fixed point on ΩG \ Ωr and Ωr \ Ωρ, respectively. This means that
the singular problem (1.1) has at least two nontrivial solutions.

Remark 4.1. Since k1 ≤ r(L) ≤ k2, our conditions (H2)− (H8) are relatively easy
to verify in many applications.

Remark 4.2. If h(t) ≡ 1 in the problem (1.1), all our conclusion is true for β, γ ∈
[1, n− 2], γ ≤ β and n ≥ 3.

5. Some examples

Example 5.1. Consider nonlocal boundary problems of nonlinear higher-order sin-
gular fractional differential equations:

D
7
2
0+u(t) +

f(t, u(t))

1− t
= 0, t ∈ (0, 1),

u(0) = u′(0) = u′′(0) = 0, u′(1) =
∞∑
k=1

1

2
√
k
u′
(1
k

)
,

(5.1)

where α =
7

2
, β = γ = 1, ak =

1

2
√
k
, ξk =

1

k
(k = 1, 2, 3, · · · ), h(t) = (1 −

t)−1, f(t, u) = u2 + b sinu is usually sign-changing for
π2

4
< b < k−1

2 . By simple

calculation, we get k1 = 5
√
π

96d , k2 = 16
45d

√
π
, d = 1−

∞∑
k=1

akξ
α−γ−1
k = 1− π2

12 . Clearly,

the conditions (H1), (H2), (H3) and (H4) hold. From Theorem 3.1 we conclude that
the singular problem (5.1) has a nontrivial solution.
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Example 5.2. Consider nonlocal boundary problems of nonlinear higher-order sin-
gular fractional differential equations:

D
7
2
0+u(t) +

f(t, u(t))

1− t
= 0, t ∈ (0, 1),

u(0) = u′(0) = u′′(0) = 0, u′(1) =
∞∑
k=1

1

2
√
k
u′
(1
k

)
,

(5.2)

where h(t) = (1− t)−1, f(t, u) = u
2
3 +4 sinu2 is usually sign-changing. It is easy to

verify that the conditions (H1), (H5), (H6) and (H7) hold. From Theorem 3.2 we
conclude that the singular problem (5.2) has a nontrivial solution.

Example 5.3. Consider nonlocal boundary problems of nonlinear higher-order sin-
gular fractional differential equations:

D
7
2
0+u(t) +

f(t, u(t))

1− t
= 0, t ∈ (0, 1),

u(0) = u′(0) = u′′(0) = 0, u′(1) =
∞∑
k=1

1

2
√
k
u′
(1
k

)
,

(5.3)

where h(t) = (1− t)−1,

f(t, u) = k−1
1


u3, t ∈ [0, 1],−1 ≤ u ≤ 0,

u, t ∈ [0, 1], 0 ≤ u ≤ 1,

u
1
3 , t ∈ [0, 1], u ≥ 1.

Take r = 1, it is easy to see that f(t, u) ≥ k−1
1 u, |u| ≤ 1, t ∈ [0, 1] and the condition

(H7) holds. From Theorem 3.3 we conclude that the singular problem (5.3) has a
nontrivial solution.
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