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PERIODIC SOLUTIONS FOR A TYPE OF
NEUTRAL SYSTEM WITH VARIABLE
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Abstract In this paper, we firstly analyze some properties of the linear dif-
ference operator [Ax](t) = x(t) − C(t)x(t − τ), where C(t) is a n × n matrix
function, and then using Mawhin’s continuation theorem, a first-order neutral
functional differential system is studied. Some new results on the existence
and stability of periodic solutions are obtained. The results are related to the
deviating arguments τ and µ. Meanwhile, the approaches to estimate a prior
bounds of periodic solutions are different from the corresponding ones of the
known literature.
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1. Introduction

Neutral functional differential equations (NFDEs) are not only an extension of func-
tional differential equations but also provide good models in many fields including
Biology, Mechanics and Economics. In particular, qualitative analysis such as pe-
riodicity and stability of solutions of neutral functional differential equations has
been studied extensively by many authors. We refer to [5, 6, 9–12, 14, 15, 18, 21, 25–
27, 31–33, 38] for some recent work on the subject of periodicity and stability of
neutral equations.

In [20], J. Hale gave a definition for NFDE of D−operator as follows:

dDxt
dt

= f(t, xt), (1.1)

where xt(θ) = x(t + θ), θ ∈ [−τ, 0], τ > 0 is a constant, D : C([−τ, 0],Rn) → Rn
is linear,continuous, and atomic at zero, and f ∈ (C([−τ, 0],Rn),Rn). The difficul-
ty lies in the fact that the message of how properties reflect general properties of
the solution is far from clear. For example, in the definition of a solution u(t) of
(1.1), it is only required that D(ut) is continuously differentiable in t, but, gen-
erally, u(t) may not be differentiable in t, which is essentially different from the
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corresponding case of retarded functional differential equations. In the foundation
of theory of NFDE, J. Hale gave an important definition named stable difference
operator D: The linear difference operator D : C([−τ, 0],Rn) → Rn, D(ϕ) =

ϕ(0) −
∫ 0

−τ ϕ(θ)dµ(θ) called stable, if the zero solution of the difference equation
dyt = 0, y0 = ϕ ∈ {C([−τ, 0],Rn) : Dϕ = 0} is uniformly asymptotically stable.
Under the condition that the operator D is stable, many researchers studied the
problem of existence of periodic solutions for Eq. (1.1) by means of some fixed point
theorems and topology degree theory, see [22,23,37,39].

Now, we consider a type special NFDE. If r > 0, B is an n×n constant matrix,
D(φ) = φ(0)−Bφ(r), and f : Ω→ Rn, the pair (D, f) defines a NFDE:

d

dt
(x(t)−Bx(t− r)) = f(t, xt).

When ||B|| < 1, the operatorD is stable. On the basis of the stability ofD−operator,
one can study NFDEs by using the similar methods to retarded equations, see
[7,8,24,34,42]. For a long time, the treatment of NFDEs used the papers of Hale [20]
and Henry [19]. But when D− operator is not stable, how can we study existence
and stability of solutions to NFDEs, which is very important subject for the theory
and applications to NFDEs. In 1995, under the non-resonance condition, Zhang [43]
studied a kind of neutral differential equation and relieved the above stability re-
striction. Zhang gave some properties for the difference operator A and obtained
the following results: Define the operator A on CT

A : CT → CT , [Ax](t) = x(t)− cx(t− τ),∀t ∈ R, (1.2)

where CT = {x : x ∈ C(R,R), x(t+T ) ≡ x(t)}, c is a constant. When |c| 6= 1, then
A has a unique continuous bounded inverse A−1 satisfying

[A−1f ](t) =


∑
j≥0

cjf(t− jτ), if |c| < 1, ∀f ∈ CT ,

−
∑
j≥1

c−jf(t+ jτ), if |c| > 1, ∀f ∈ CT .

After that, using the properties of A−1 Lu et. al [28] gave some inequalities for A:
(1) ||A−1|| ≤ 1

|1−|c|| ;

(2)
∫ T
0
|[A−1f ](t)|dt ≤ 1

|1−|c||
∫ T
0
|f(t)|dt,∀f ∈ CT ;

(3)
∫ T
0
|[A−1f ](t)|2dt ≤ 1

|1−|c||
∫ T
0
|f(t)|2dt,∀f ∈ CT .

But, when the constant c in (1.2) is a variable c(t), there are no corresponding
results for the neutral operator A. In 2009, when c is a variable c(t), we obtained
the properties of the neutral operator A in [9]:

Lemma 1.1. If c(t) is continuous T−periodic function with |c(t)| 6= 1 for t ∈ R,
then operator A has continuous inverse A−1 on CT , satisfying

(1)

[A−1f ](t) =


f(t) +

∞∑
j=1

j∏
i=1

c(t− (i− 1)τ)f(t− jτ), c0 < 1, ∀f ∈ CT ,

− f(t+τ)c(t+τ) −
∞∑
j=1

j+1∏
i=1

1
c(t+iτ)f(t+ jτ + τ), σ > 1, ∀f ∈ CT ,



Periodic solutions for a type of neutral system 1359

(2)

||A−1|| ≤

 1
1−c0 , c0 < 1, ∀f ∈ CT ,
1

σ−1 , σ > 1, ∀f ∈ CT ,

(3) ∫ T

0

|[A−1f ](t)|dt ≤

 1
1−c0

∫ T
0
|f(t)|dt, c0 < 1, ∀f ∈ CT ,

1
σ−1

∫ T
0
|f(t)|dt, σ > 1, ∀f ∈ CT ,

where
c0 = max

t∈[0,T ]
|c(t)|, σ = min

t∈[0,T ]
|c(t)|.

Remark 1.1. We can improve the result (3) in Lemma 1.1. In fact, if c0 < 1, for
p > 1,∫ T

0

|x(t)|pdt =

∫ T

0

|x(t)|p−1|x(t)|dt

=

∫ T

0

|x(t)|p−1|f(t) +

∞∑
j=1

j∏
i=1

c(t− (i− 1)τ)f(t− jτ)|dt

≤
∫ T

0

|x(t)|p−1||f(t)|dt+
c0

1− c0

∫ T

0

|x(t)|p−1||f(t− jτ)|dt

≤
(∫ T

0

|x(t)|pdt
)(p−1)/p(∫ T

0

|f(t)|pdt
)1/p

+
c0

1− c0

(∫ T

0

|x(t)|pdt
)(p−1)/p(∫ T

0

|f(t− jτ)|pdt
)1/p

≤
(∫ T

0

|x(t)|pdt
)(p−1)/p(∫ T

0

|f(t)|pdt
)1/p

+
c0

1− c0

(∫ T

0

|x(t)|pdt
)(p−1)/p(∫ T

0

|f(t)|pdt
)1/p

=
1

1− c0

(∫ T

0

|x(t)|pdt
)(p−1)/p(∫ T

0

|f(t)|pdt
)1/p

,

which implies ∫ T

0

|x(t)|pdt ≤ 1

(1− c0)p

∫ T

0

|f(t)|pdt.

If σ > 1, for p > 1, similar to the above proof, we have∫ T

0

|x(t)|pdt ≤ 1

(σ − 1)p

∫ T

0

|f(t)|pdt.

Hence result (3) in Lemma 1.1 can be generalized the following form:

∫ T

0

|[A−1f ](t)|pdt ≤

 1
(1−c0)p

∫ T
0
|f(t)|pdt, c0 < 1, ∀f ∈ CT , p ≥ 1,

1
(σ−1)p

∫ T
0
|f(t)|pdt, σ > 1, ∀f ∈ CT , p ≥ 1.
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Using the results of [9], we have obtained some existence results of periodic solu-
tions for first-order, second-order and p−Laplacian neutral equations with variable
parameter, see [12–14]. In very recent paper [40], motivated by the work of [9],
when the neutral operator A has multiple variable parameters as follows

A : CT → CT , [Ax](t) = x(t)−
n∑
i=1

ci(t)x(t− τi).

Wang, Lu and Cao obtained the following results for the operator A:
If
∑n
i=1 c

0
i < 1, then A has continuous inverse A−1 on CT with the following

properties:
(1) [A−1f ](t) = f(t)+

∑∞
m=1

∑n
i1

∑n
i2
· · ·ΣnimΠm

j=1Cij (t−Σmk=j+1rik)−f(t−Σms=1ris),

(2) ||A−1|| ≤ 1
1−

∑n
i=1 c

0
i
,

(3)
∫ T
0
|[A−1f ](t)|pdt ≤ 1

(1−
∑n

i=1 c
0
i )

p

∫ T
0
|f(t)|pdt, f ∈ CT , p > 1,

(4)[Af ′](t) = [Af ]′(t) +
∑n
i=1 c

′
i(t)f(t− ri), f ∈ C1

T .
Using the above results and Mawhin’s continuation theorem, the authors ob-

tained the existence results of periodic solutions for a kind of p−Laplacian neutral
functional differential equation with multiple variable parameters.

On the other hand, neutral differential system is an important subject for
NFDEs. In 2008, when the constant c of (1.2) is a n × n real symmetrical ma-
trix C, Lu [31] gave the following results:

Lemma 1.2. Suppose that λ1, λ2, · · · , λn are eigenvalues of real symmetrical matrix
C. If |λi| 6= 1, i = 1, 2, · · · , n, then A has continuous bounded inverse with the
following relationships:
(1) ∫ T

0

[A−1f ](t)dt = (E − C)−1
∫ T

0

f(t)dt, ∀f ∈ Z,

||A−1f ||Z ≤
( n∑
i=1

1

|1− |λi||

)
||f ||Z ,

where E = diag(1, 1, · · · , 1);
(2) ∫ T

0

|[A−1f ](t)|pdt ≤ σ
∫ T

0

|f(t)|pdt, ∀f ∈ Z, p ≥ 1,

σ =



maxi∈In
1

|1−|λi||2 , p = 2,(
1

(1−|λi|)2p/2−p

)(2−p)/p

, p ∈ [1, 2),(
1

(1−|λi|)q

)p/q
, p ∈ (2,+∞),

where q is a constant 1/p+ 1/q = 1;
(3)

Ax′ = (Ax)′, ∀x ∈ X.
In 2011, when the constant c of (1.2) is a n × n real matrix C, Lu, Xu and

Xia [33] gave the following results:
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Lemma 1.3. Suppose that the matrix U and the operator A are defined by (2.5)
and (2.2), respectively, and for all i = 1, 2, · · · , l, |λi| 6= 1, where (2.5) and (2.2)
are defined in [33]. Then A has its inverse A−1 : CT → CT with the following
properties:
(1) ||A−1|| ≤ |U−1||U |σ0, σ0 = Σli=1Σni

j=1Σjk=1
1

|1−λi|k ;

(2) For all f ∈ CT ,
∫ T
0
|[A−1f ](s)|pds ≤ |U−1|p|U |pσ1

∫ T
0
|f(s)|pds, p ∈ [1,+∞),

where

σ1 =



Σli=1Σni
j=1

(
Σjk=1

1
|1−λi|k

)2

, p = 2,

n
2−p
2

[
Σli=1Σni

j=1

(
Σjk=1

1
|1−λi|k

)q] p
q

, p ∈ [1, 2)[
Σli=1Σni

j=1

(
Σjk=1

1
|1−λi|k

)q] p
q

, p ∈ [2,+∞)

and q > 0 is a constant with 1/p+ 1/q = 1;
(3)A−1f ∈ C1

T , [A−1f ]′(t) = [A−1f ′](t), for all f ∈ C1
ω, t ∈ R.

In this paper, we also need the following lemmas:

Lemma 1.4 ( [29]). Let p ∈ (1,+∞) be a constant, s ∈ C(R,R) such that s(t+T ) ≡
s(t), u ∈ C1

T . Then∫ T

0

|u(t)− u(t− s(t))|pdt ≤ 2
(

max
t∈[0,T ]

|s(t)|
)p ∫ T

0

|u′(t)|pdt.

Lemma 1.5 ( [30]). Let s, σ ∈ C(R,R) with s(t + T ) ≡ s(t) and σ(t + T ) ≡
σ(t). Suppose that the function t − σ(t) has a unique inverse µ(t), t ∈ R. Then
s(µ(t+ T )) ≡ s(µ(t)).

Lemma 1.6 ( [16]). Suppose that X and Y are two Banach spaces, and L : D(L) ⊂
X → Y, is a Fredholm operator with index zero. Furthermore, Ω ⊂ X is an open
bounded set and N : Ω̄→ Y is L-compact on Ω̄. if all the following conditions hold:

(1) Lx 6= λNx, ∀x ∈ ∂Ω ∩D(L),∀λ ∈ (0, 1),

(2) Nx /∈ ImL, ∀x ∈ ∂Ω ∩KerL,
(3) deg{JQN,Ω ∩KerL, 0} 6= 0,

where J : ImQ→ KerL is an isomorphism. Then equation Lx = Nx has a solution
on Ω̄ ∩D(L).

As a continuity of the previous study [31, 33], it is very natural and interesting
to investigate the case of which the constant c of (1.2) is a n×n real matrix function
C(t). This will be the main purpose of the present paper.

In this work, we consider the following nonlinear neutral functional differential
system as follows:

(Ax)′(t) + f(x(t)) + g(x(t− µ(t))) = e(t), (1.3)

where

(Ax)(t) = x(t)− C(t)x(t− τ) = ((A1x1)(t), (A2x2)(t), · · · , (Anxn)(t))>,
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x(t) = (x1(t), x2(t), · · · , xn(t))>, f, g ∈ C1(Rn,Rn) with

f(x) = (f1(x1), f2(x2), · · · , fn(xn))>, g(x) = (g1(x1), g2(x2), · · · , gn(xn))>,

τ > 0 is a constant, µ ∈ C1(R,R) with µ(t) > 0, µ(t+T ) = µ(t) and µ′(t) < 1, e ∈
C(R,Rn) with e(t+ T ) = e(t), C(t) = (cij(t))n×n is a continuous matrix function.

Throughout this paper, let

In = {1, 2, · · · , n}, |a| =
( n∑
i=1

|ai|2
)1/2

,∀a = (a1, a2, · · · , an) ∈ Rn,

|A| = max{|λ1|, |λ2|, · · · , |λn|},

where λi(i ∈ In) is eigenvalue of matrix A = (aij)n×n,

|u|0 = max
t∈[0,T ]

|u(t)|,

where u is a T−periodic continuous function,

X = {x : x ∈ C(R,Rn), x(t+ T ) = x(t)}

with the norm ||x||X = maxt∈R |x(t)|,

Y = {x : x ∈ C1(R,Rn), x(t+ T ) = x(t)}

with the norm
‖ϕ‖Y = max

t∈[0,T ]
{||ϕ||X , ||ϕ′||X}, ∀ϕ ∈ Y.

Clearly, X and Y are Banach spaces.
The article is organized as follows. In Section 2, when C(t) is a diagonal matrix

function, we obtain some existence results of periodic solutions to system (1.3). In
Section 3, when C(t) is a symmetrical matrix function, we obtain some existence
results of periodic solutions to system (1.3). Section 4 contains some stability
results. Section 5 provides an illustrative examples. Section 6 concludes this article
with a summary of our results.

2. C(t) is a diagonal matrix function

Let
A : X → X, [Ax](t) = x(t)− C(t)x(t− τ),

where C(t) = diag(c1(t), c2(t), · · · , cn(t)), where ci(t)(i ∈ IN ) is continuously dif-
ferentiable T−periodic function. We first give the following theorem:

Theorem 2.1. Let
∫ T
0
e(s)ds = 0 and

∫ T
0
ϕ>(t)ϕ(t)dt 6= 0, where ϕ(t) is defined

by (2.4). Suppose that the following conditions hold:
(H1) there is a constant M > 0 such that for all u = (u1, u2, · · · , un)> ∈ X with
mint∈[0,T ],j∈In |uj(t)| > M ,∫ T

0

[f(u(t)) +
1

1− µ′(γ(t))
g(u(t))]dt 6= 0;
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(H2) there is a constant r > 0 such that

lim
|xi|→+∞

|gi(xi)|
|xi|

≤ r, i ∈ In;

(H3) there is a constant K > 0 such that

|fi(xi)| ≤ K, i ∈ In;

(H4) there is a constant D > 0 such that

x>[f(x) +
1

1− µ′(γ(t))
g(x)] > 0 for |x| > D.

Then system (1.3) has at least one T−periodic solution, if following condition holds:

max

{
c1,iT

1− c0,i
,

T r

(1− µ0)(1− c0,i − c1,iT )

}
< 1 for c0,i <

1

2

or

max

{
c1,iT

σi − 1
,

T r

(1− µ0)(σi − 1− c1,iT )

}
< 1 for σi > 1,

where c1,i = max
t∈[0,T ]

|c′i(t)|, i ∈ In.

Proof. Define

N : X → X, (Nx)(t) = −f(x(t))− g(x(t− µ(t))) + e(t),

L : D(L) ⊂ X → Y, Lx = (Ax)′,

where D(L) = {x : x ∈ X, (Ax)′ ∈ Y }. Then system (1.3) is the operator equation
Lx = Nx. Since for all x ∈ KerL, (x(t)− C(t)x(t− τ))′ = 0, we have

x(t)− C(t)x(t− τ) = 1, (2.4)

where 1 = (1, 1, · · · , 1)>. Let ϕ(t) be the unique T−periodic solution of (2.4), then
for all t ∈ R, ϕ(t) 6= 0 and

KerL = {aϕ(t), a ∈ R},

where ϕ(t) = (ϕ1(t), ϕ2(t), · · · , ϕn(t))>. Obviously, ImL is a closed in X and
dimKerL = condimImL = n. So L is a Fredholm operator with index zero. Define
continuous projectors P,Q

P : X → KerL, (Px)(t) =

∫ T
0
x>(t)ϕ(t)dt∫ T
0
ϕ>ϕdt

ϕ(t)

and

Q : X → X/ImL,Qy =
1

T

∫ T

0

y(s)ds.

Let
LP = L|D(L)∩KerP : D(L) ∩KerP → ImL,
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then
L−1P = KP : ImL→ D(L) ∩KerP.

Since ImL ⊂ X and D(L) ∩KerP ⊂ Y , so KP is an embedding operator. Hence
KP is a completely continuous operator in ImL. By the definitions of Q and N , it
knows that QN(Ω) is bounded on Ω. Hence nonlinear operator N is L-compact on
Ω. We complete the proof by three steps.

Step 1. Let Ω1 = {x ∈ D(L) ⊂ Y : Lx = λNx, λ ∈ (0, 1)}. We show that Ω1 is
a bounded set. If ∀x ∈ Ω1, then Lx = λNx, i.e.,

(x(t)− C(t)x(t− τ))′ = −λf(x(t))− λg(x(t− µ(t))) + λe(t). (2.5)

Integrating both sides of (2.5) over [0, T ], we have∫ T

0

[f(x(t)) + g(x(t− µ(t)))]dt = 0. (2.6)

Let t − µ(t) = u, since µ′(t) < 1, so t − µ(t) exists a inverse function γ, then by
(2.6) and Lemma 1.5 we have t = γ(u) and∫ T

0

[f(x(t)) +
g(x(t))

1− µ′(γ(t))
]dt = 0,

i.e., ∀i ∈ In, ∫ T

0

[fi(xi(t)) +
gi(xi(t))

1− µ′(γ(t))
]dt = 0. (2.7)

We claim that there exists a point t1 ∈ [0, T ] such that

|xi(t1)| ≤M. (2.8)

In fact, if (2.8) does not hold, then by assumption (H1)

fi(xi(t1)) +
gi(xi(t1))

1− τ ′(γ(t1))
6= 0,

which is contradiction to (2.7). So (2.8) holds. Hence we get

|xi|0 = max
t∈[0,T ]

∣∣∣∣xi(t1) +

∫ t

t1

x′i(s)ds

∣∣∣∣ ≤ |xi(t1)|+
∫ T

0

|x′i(s)|ds

≤M +

∫ T

0

|x′i(s)|ds, i ∈ In.
(2.9)

From [Aixi](t) = xi(t)− ci(t)xi(t− τ), we have

[Aix
′
i](t) = (Aixi)

′(t) + c′i(t)xi(t− τ),

then from Lemma 1.1, if c0,i < 1/2 (i ∈ In) we have∫ T

0

|x′i(t)|dt =

∫ T

0

|(A−1i Aix
′
i)(t)|dt ≤

∫ T

0

|(Aix′i)(t)|
1− c0,i

dt

=

∫ T

0

|(Aixi)′(t) + c′i(t)xi(t− τ)|
1− c0,i

dt

≤
∫ T

0

|(Aixi)′(t)|
1− c0,i

dt+
c1,iT

1− c0,i

(
M +

∫ T

0

|x′i(t)|dt
)
.
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In view of c1,iT/(1− c0,i) < 1, we have∫ T

0

|x′i(t)|dt ≤
∫ T

0

|(Aixi)′(t)|
1− c0,i − c1,iT

dt+
c1,iTM

1− c0,i − c1,iT
, i ∈ In. (2.10)

From (2.5) and (H3), for i ∈ In we have∫ T

0

|(Aixi)′(t)|dt ≤
∫ T

0

|fi(xi(t))|dt+

∫ T

0

|gi(xi(t− µ(t)))|dt+

∫ T

0

|ei(t)|dt

≤ KT +
1

1− µ0

∫ T

0

|gi(xi(t))|dt+ T |ei|0.

(2.11)
In view of Tr

(1−µ0)(1−c0,i−c1,iT ) < 1, there exists a constant ε > 0 such that

T (r + ε)

(1− µ0)(1− c0,i − c1,iT )
< 1.

For such a positive constant ε, in view of (H2), we obtain that there exists a constant
ρ > 0 such that

|gi(xi)| ≤ (r + ε)|xi|, for |xi| > ρ, i ∈ In. (2.12)

Let

E1 = {t ∈ [0, T ] : |xi(t)| > ρ, i ∈ In}, E2 = {t ∈ [0, T ] : |xi(t)| ≤ ρ, i ∈ In}.

By (2.12), for i ∈ In, we have∫ T

0

|gi(xi(t))|dt =

∫
E1

|gi(xi(t))|dt+

∫
E2

|gi(xi(t))|dt

≤ T (r + ε)|xi|0 + Tgρ,

(2.13)

where gρ = max|xi|≤ρ |g(xi)|. From (2.11) and (2.13), for i ∈ In, we have∫ T

0

|(Aixi)′(t)|dt ≤
∫ T

0

|fi(xi(t))|dt+

∫ T

0

|gi(xi(t− µ(t)))|dt+

∫ T

0

|ei(t)|dt

≤ KT +
T (r + ε)

1− µ0
|xi|0 +

Tgρ
1− µ0

+ T |ei|0.

(2.14)
From (2.10) and (2.14), for i ∈ In, we have∫ T

0

|x′i(t)|dt ≤
KT

1− c0,i − c1,iT
+

T (r + ε)

(1− µ0)(1− c0,i − c1,iT )
|xi|0

+
Tgρ

(1− µ0)(1− c0,i − c1,iT )
+

T |ei|0
1− c0,i − c1,iT

+
c1,iTM

1− c0,i − c1,iT
.

(2.15)
From (2.9) and (2.15), for i ∈ In, we have

|xi|0 ≤M +

∫ T

0

|x′i(s)|ds

≤M +
KT

1− c0,i − c1,iT
+

T (r + ε)

(1− µ0)(1− c0,i − c1,iT )
|xi|0

+
Tgρ

(1− µ0)(1− c0,i − c1,iT )
+

T |ei|0
1− c0,i − c1,iT

+
c1,iTM

1− c0,i − c1,iT
.

(2.16)
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By T (r+ε)
(1−µ0)(1−c0,i−c1,iT ) < 1, there exists a constant M1 > 0 such that

|xi|0 ≤M1, ||x||X ≤
√
nM1, i ∈ In.

If σi > 1 (i ∈ IN ), based on the conditions of Theorem 2.1, similar to the above
proof, there exist constants M ′1 and M ′2 such that

||x||X ≤M ′1, ||x′||X ≤M ′2.

Then we have

||x||X ≤ max{
√
nM1,M

′
1}+ 1 := M̃.

Step 2. Let Ω2 = {x ∈ KerL : QNx = 0}, we shall prove that Ω2 is a
bounded set. ∀x ∈ Ω2, then x(t) = a0ϕ(t), a0 ∈ R satisfying∫ T

0

[fi(a0ϕi(t)) +
1

1− µ′(γ(t))
gi(a0ϕi(t)]dt = 0, i ∈ In. (2.17)

When c0,i <
1
2 , i ∈ In, we have

ϕi(t) = A−1(1) = 1 +

∞∑
j=1

j∏
k=1

ci(t− (k − 1)τ)

≥ 1−
∞∑
j=1

j∏
k=1

c0,i = 1− c0,i
1− c0,i

=
1− 2c0,i
1− c0,i

:= δ > 0.

Thus

a0 ≤
M

δ
.

Otherwise, ∀t ∈ [0, T ], |a0ϕi(t)| > M , from assumption (H1), we have∫ T

0

[f(a0ϕi(t)) +
1

1− µ′(γ(t))
g(a0ϕi(t)]dt > 0 (or < 0), i ∈ In,

which is contradiction to (2.17). When σi > 1, i ∈ In, we have

ϕi(t) = A−1(1) = − 1

ci(t+ τ)
−
∞∑
j=1

j∏
k=1

1

ci(t+ kτ)

≤ − 1

σi
−
∞∑
j=1

j+1∏
k=1

1

σi

= − 1

σi − 1
:= γ < 0.

Thus

a0 ≤
M

|γ|
.
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Otherwise, ∀t ∈ [0, T ], |a0ϕi(t)| > M , from assumption (H1), we have∫ T

0

[fi(a0ϕi(t)) +
1

1− µ′(γ(t))
gi(a0ϕi(t)]dt > 0 (or < 0), i ∈ In,

which is contradiction to (2.17). Hence Ω2 is a bounded set.

Step 3. Let Ω = {x ∈ X : ||x||X < M̃}, then Ω1∪Ω2 ⊂ Ω, ∀(x, λ) ∈ ∂Ω×(0, 1),
from the above proof, Lx 6= λNx is satisfied. Obviously, condition (2) of Lemma
1.6 is also satisfied. Now we prove that condition (3) of Lemma 1.6 is satisfied.

∀x0 ∈ ∂Ω∩KerL, we have |x0| = ||a0ϕ||X , a0 ∈ R. Then |x0| = M̃ > D. Take the
homotopy

H(x, µ) = µx+ (1− µ)QNx, x ∈ Ω ∩KerL, µ ∈ [0, 1].

Then, by using assumption (H4), we have H(x, µ) 6= 0. And then by the degree
theory,

deg{QN,Ω ∩KerL, 0} = deg{H(·, 0),Ω ∩ kerL, 0}
= deg{H(·, 1),Ω ∩ kerL, 0}
= deg{I,Ω ∩ kerL, 0} 6= 0.

Applying Lemma 1.6, we reach the conclusion.

3. C(t) is a symmetrical matrix function

Let C(t) = c(t)B in (1.3), where c(t) is a T−periodic continuous function, B is a
n× n real symmetrical matrix. Then (1.3) is changed into the following form:

(x(t)− c(t)Bx(t− τ))′ + f(x(t)) + g(x(t− µ(t))) = e(t). (3.1)

Denote the operator by

Ã : X → X, [Ãx](t) = x(t)− c(t)Bx(t− τ). (3.2)

We first give the following lemma.

Lemma 3.1. Let p ≥ 1 be a constant. Suppose that λ1, λ2, · · · , λn are eigenvalues
of matrix B. ∀i ∈ In, operator Ã has continuous inverse Ã−1 on X, satisfying

(1) If c0λi < 1, then

||Ã−1f ||X ≤
n∑
i=1

1

1− c0λi
||f ||X .

If σλi > 1, then

||Ã−1f ||X ≤
n∑
i=1

1

σλi − 1
||f ||X .

(2) If c0λi < 1, then∫ T

0

|Ã−1f(t)|pdt ≤ ~1
∫ T

0

|f(t)|pdt,
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where

~1 =



(∑n
i=1

1
(1−c0λi)2p/(2−p)

)(2−p)/2

, p ∈ [1, 2),∑n
i=1

1
(1−c0λi)2

, p = 2,(∑n
i=1

1
(1−c0λi)q

)p/q
, p > 2.

If σλi > 1, then ∫ T

0

|Ã−1f(t)|pdt ≤ ~2
∫ T

0

|f(t)|pdt,

where

~2 =



(∑n
i=1

1
(σλi−1)2p/(2−p)

)(2−p)/2

, p ∈ [1, 2),∑n
i=1

1
(σλi−1)2 , p = 2,(∑n

i=1
1

(σλi−1)q

)p/q
, p > 2.

Proof. Let
[Ãx](t) = x(t)− c(t)Bx(t− τ) = f(t), ∀f ∈ X. (3.3)

Since B is a symmetric matrix, we find that there is an orthogonal matrix U such
that

UBU> = Eλ = diag{λ1, λ2, · · · , λn}.

Setting y(t) = (y1(t), y2(t), · · · , yn(t))> = Ux(t), by (3.3) we have

y(t)− c(t)Eλy(t− τ) = f̃(t),

i.e.,
yi(t)− c(t)λiyi(t− τ) = f̃i(t), i ∈ IN ,

where f̃(t) = (f̃1(t), f̃2(t), · · · , f̃n(t))> = Uf(t). From Lemma 1.1, Ã has continuous
inverse Ã−1 with

Ã−1 : X → X, (Ã−1f)(t) = U>y(t).

(1) From Lemma 1.1, if c0λi < 1, we have

||Ã−1f ||X = ||y||X = max
t∈[0,T ]

|y(t)| = max
t∈[0,T ]

√√√√ n∑
i=1

|yi(t)|2

≤
n∑
i=1

max
t∈[0,T ]

|yi(t)|

≤
n∑
i=1

1

1− c0λi
max
t∈[0,T ]

|f̃i(t)|

≤
n∑
i=1

1

1− c0λi
||f̃ ||X

=

n∑
i=1

1

1− c0λi
||f ||X .
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Similar to the above proof, for σλi > 1, we have

||Ã−1f ||X ≤
n∑
i=1

1

σλi − 1
||f ||X .

(2) Case 1: p ∈ [1, 2). By Lemma 1.1, for c0λi < 1, we have∫ T

0

|y(t)|pdt =

∫ T

0

[ n∑
i=1

y2i (t)
]p/2

dt ≤
n∑
i=1

∫ T

0

|yi(t)|pdt

≤
n∑
i=1

1

(1− c0λi)p

∫ T

0

|f̃i(t)|pdt

≤
( n∑
i=1

1

(1− c0λi)2p/(2−p)

)(2−p)/2 ∫ T

0

( n∑
i=1

|f̃i(t)|2
)p/2

dt

=

( n∑
i=1

1

(1− c0λi)2p/(2−p)

)(2−p)/2 ∫ T

0

|f̃(t)|pdt

=

( n∑
i=1

1

(1− c0λi)2p/(2−p)

)(2−p)/2 ∫ T

0

|f(t)|pdt.

Case 2: p = 2. For c0λi < 1, by Lemma 1.1 we have∫ T

0

|y(t)|2dt =

∫ T

0

n∑
i=1

y2i (t)dt =

n∑
i=1

∫ T

0

y2i (t)dt

≤
n∑
i=1

1

(1− c0λi)2

∫ T

0

f̃2i (t)dt

≤
n∑
i=1

1

(1− c0λi)2

∫ T

0

|f̃(t)|2dt

=

n∑
i=1

1

(1− c0λi)2

∫ T

0

|f(t)|2dt.

Case 3: p > 2. For c0λi < 1, by Lemma 1.1 we have(∫ T

0

|y(t)|pdt
)1/p

=

(∫ T

0

[ n∑
i=1

y2i (t)
]p/2

dt

)1/p

≤
(∫ T

0

[

n∑
i=1

|yi(t)|]pdt
)1/p

≤
n∑
i=1

(∫ T

0

|yi(t)|pdt
)1/p

≤
n∑
i=1

1

(1− c0λi)

(∫ T

0

|f̃i(t)|pdt
)1/p

≤
( n∑
i=1

1

(1− c0λi)q

)1/q(∫ T

0

n∑
i=1

|f̃i(t)|pdt
)1/p

=

( n∑
i=1

1

(1− c0λi)q

)1/q(∫ T

0

n∑
i=1

|f̃i(t)|pdt
)1/p

.
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thus ∫ T

0

|y(t)|pd ≤
( n∑
i=1

1

(1− c0λi)q

)p/q ∫ T

0

n∑
i=1

|f̃i(t)|pdt

=

( n∑
i=1

1

(1− c0λi)q

)p/q ∫ T

0

n∑
i=1

(|f̃i(t)|2)p/2dt

≤
( n∑
i=1

1

(1− c0λi)q

)p/q ∫ T

0

( n∑
i=1

(|f̃i(t)|2
)p/2

dt

=

( n∑
i=1

1

(1− c0λi)q

)p/q ∫ T

0

|f̃(t)|pdt

=

( n∑
i=1

1

(1− c0λi)q

)p/q ∫ T

0

|f(t)|pdt.

Similar to the above proof, for σλi > 1, we have∫ T

0

|Ã−1f(t)|pdt ≤ ~2
∫ T

0

|f(t)|pdt.

Next, we will study the existence of periodic solution for system (3.1).

Theorem 3.1. Let λm = max{|λ1|, |λ2|, · · · , |λn|}, where λi(i ∈ In )are eigenval-

ues of matrix B,
∫ T
0
e(s)ds = 0 and

∫ T
0
ϕ>(t)ϕ(t)dt 6= 0, where ϕ(t) is defined by

(3.6). Suppose that the following conditions hold:
(H5) there is a constant d > 0 such that for all u = (u1, u2, · · · , un)> ∈ X with
mint∈[0,T ],j∈In |uj(t)| > d,

∫ T

0

[f(u(t)) +
1

1− µ′(γ(t))
g(u(t))]dt 6= 0;

(H6) there is a constant r > 0 such that

lim
|x|→+∞

|g(x)|
|x|

≤ r;

(H7) there is a constant K > 0 such that

|f(x)| ≤ K, ∀x ∈ X;

(H8) there is a constant D > 0 such that

x>[f(x) +
1

1− µ′(γ(t))
g(x)] > 0, ∀x ∈ X with |x| > D > d.

Then system (3.1) has at least one T−periodic solution, if the following condition
holds:
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For c0λi <
1
2 , i ∈ In,

~1 max
t∈[0,T ]

(
1

1− µ′(γ(t))

)1/2

r(1 + c0λm)
n2T 2

π2

+
√

2rτ max
t∈[0,T ]

(
1

1− µ′(γ(t))

)1/2
nT

π
+ ~1c21λ2m

n2T 2

π2

+ 2~1c1λm
(

max
t∈[0,T ]

(
1

1− µ′(γ(t))

)1/2

r(1 + c0λm)
n2T 2

π2

+
√

2rτ max
t∈[0,T ]

(
1

1− µ′(γ(t))

)1/2
nT

π

)1/2
nT

π
< 1,

or for σλi > 1, i ∈ In,

~2 max
t∈[0,T ]

(
1

1− µ′(γ(t))

)1/2

r(1 + c0λm)
n2T 2

π2
+
√

2rτ max
t∈[0,T ]

(
1

1− µ′(γ(t))

)1/2
nT

π

+ ~2c21λ2m
n2T 2

π2
+ 2~2c1λm

(
max
t∈[0,T ]

(
1

1− µ′(γ(t))

)1/2

r(1 + c0λm)
n2T 2

π2

+
√

2rτ max
t∈[0,T ]

(
1

1− µ′(γ(t))

)1/2
nT

π

)1/2
nT

π
< 1,

where c1 = maxt∈[0,T ] |c′(t)|, ~1 and ~2 are defined by Lemma 3.1.

Proof. In order to use Lemma 1.6 to study the existence of periodic solutions for
system (3.1), we set

L : D(L) ⊂ X → Y, Lx = (Ãx)′(t), (3.4)

where D(L) = {x : x ∈ X, Ãx ∈ Y },

N : X → X, (Nx)(t) = −f(x(t))− g(x(t− µ(t))) + e(t). (3.5)

Since for all x ∈ KerL, (x(t)− c(t)Bx(t− τ))′ = 0, we have

x(t)− c(t)Bx(t− τ) = 1, (3.6)

where 1 = (1, 1, · · · , 1)>. Let ϕ(t) be the unique T−periodic solution of (3.6), then
∀t ∈ [0, T ], ϕ(t) 6= 0 and

KerL = {aϕ(t), a ∈ R},

where ϕ(t) = (ϕ1(t), ϕ2(t), · · · , ϕn(t))>. Obviously, ImL is a closed in X and
dimKerL = condimImL = n. So L is a Fredholm operator with index zero.
Similar to the proof of Theorem 2.1, we can define the operators P,Q,LP ,KP and
prove that KP is a completely continuous operator in ImL. Then We complete the
proof by three steps.

Step 1. Let Ω1 = {x ∈ D(L) ⊂ X : Lx = λNx, λ ∈ (0, 1)}. We show that Ω1 is
a bounded set. If ∀x ∈ Ω1, then Lx = λNx, i.e.,

(Ãx)′(t) = −λf(x(t))− λg(x(t− τ)) + λe(t). (3.7)
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Similar to the proof of Theorem 2.1, assumption (H5) leads to the fact that there
is a ξi ∈ [0, T ] such that

|xi(ξi)| ≤ d, ∀i ∈ In. (3.8)

By (3.8) we have

|x| ≤
√
nd+

∫ T

0

|x′(t)|dt ≤
√
nd+ T 1/2

(∫ T

0

|x′(t)|2dt
)1/2

. (3.9)

For all i ∈ In, let ωi = xi(t+ ξi), and hence ωi(0) = ωi(T ) = 0. From [17], we have∫ T

0

|ωi(t)|2dt ≤
T 2

π2

∫ T

0

|ω′i(t)|2dt =
T 2

π2

∫ T

0

|x′i(t)|2dt, i ∈ In. (3.10)

For all i ∈ In, (3.8) and Minkowski’s inequality yields(∫ T

0

|xi(t)|2dt
)1/2

=

(∫ T

0

|ωi(t) + xi(t)|2dt
)1/2

≤
(∫ T

0

|ωi(t)|2dt
)1/2

+

(∫ T

0

|xi(t)|2dt
)1/2

≤ T

π

(∫ T

0

|x′i(t)|2dt
)1/2

+ dT 1/2

≤ T

π

(∫ T

0

|x′(t)|2dt
)1/2

+ dT 1/2.

Thus (∫ T

0

|x(t)|2dt
)1/2

≤ nT

π

(∫ T

0

|x′(t)|2dt
)1/2

+ 2ndT 1/2 (3.11)

and∫ T

0

|x(t)|2dt ≤ n2T 2

π2

∫ T

0

|x′(t)|2dt+
2n2dT 3/2

π

(∫ T

0

|x′(t)|2dt
)1/2

+ 4n2d2T.

(3.12)
Multiplying the two sides of (3.7) by ((Ãx)(t))> and integrating them on [0, T ], we
have∫ T

0

|(Ãx)′(t)|2dt =λ

∫ T

0

(x>(t)− c(t)x>(t− τ)B)f(x(t))dt

+ λ

∫ T

0

(x>(t)− c(t)x>(t− τ)B)g(x(t− µ(t)))dt

− λ
∫ T

0

(x>(t)− c(t)x>(t− τ)B)e(t)dt

=λ

∫ T

0

(x>(t)− c(t)x>(t− τ)B)f(x(t))dt

+ λ

∫ T

0

x>(t− τ)(I − c(t)B)g(x(t− µ(t)))dt

+ λ

∫ T

0

[x>(t)− x>(t− τ)]g(x(t− µ(t)))dt

− λ
∫ T

0

(x>(t)− c(t)x>(t− τ)B)e(t)dt.

(3.13)
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In view of

~1 max
t∈[0,T ]

(
1

1− µ′(γ(t))

)1/2

r(1 + c0λm)
n2T 2

π2
+
√

2rτ max
t∈[0,T ]

(
1

1− µ′(γ(t))

)1/2
nT

π

+ ~1c21λ2m
n2T 2

π2
+ 2~1c1λm

(
max
t∈[0,T ]

(
1

1− µ′(γ(t))

)1/2

r(1 + c0λm)
n2T 2

π2

+
√

2rτ max
t∈[0,T ]

(
1

1− µ′(γ(t))

)1/2
nT

π

)1/2
nT

π
< 1,

there must be a sufficiently small constant ε > 0 such that

~1β1 + ~1c21λ2m
n2T 2

π2
+ 2~1c1λmβ1/2

1

nT

π
< 1, (3.14)

where

β1 = max
t∈[0,T ]

(
1

1− µ′(γ(t))

)1/2

(r + ε)(1 + c0λm)
n2T 2

π2

+
√

2(r + ε)τ max
t∈[0,T ]

(
1

1− µ′(γ(t))

)1/2
nT

π
.

(3.15)

For such an ε > 0, in view of assumption (H6), there is a constant ρ > d, where d
is defined by assumption (H5), such that

|g(x)| < (r + ε)|x|, ∀x ∈ Rn with |x| > ρ. (3.16)

Let

E1 = {t : t ∈ [0, T ], |x(t− µ(t))| ≤ ρ}, E2 = {t : t ∈ [0, T ], |x(t− µ(t))| > ρ}.

From (3.16), Lemma 1.4 and 1.5, we get∫ T

0

x>(t− τ)(I − c(t)B)g(x(t− µ(t)))dt

≤(1 + c0λm)

∫ T

0

|x>(t− τ)||g(x(t− µ(t)))|dt

≤(1 + c0λm)

(∫ T

0

|x|2dt
)1/2(

α2
0T +

∫
E2

|g(x(t− µ(t)))|2dt
)1/2

≤(1 + c0λm)

(∫ T

0

|x|2dt
)1/2(

α2
0T + max

t∈[0,T ]

1

1− µ′(γ(t))
(r + ε)2

∫ T

0

|x(t)|2dt
)1/2

≤ max
t∈[0,T ]

(
1

1− µ′(γ(t))

)1/2

(r + ε)(1 + c0λm)

∫ T

0

|x(t)|2dt

+ (1 + c0λm)τ0T
1/2

(∫ T

0

|x|2dt
)1/2

≤ max
t∈[0,T ]

(
1

1− µ′(γ(t))

)1/2

(r + ε)(1 + c0λm)
n2T 2

π2

∫ T

0

|x′(t)|2dt

+ max
t∈[0,T ]

(
1

1− µ′(γ(t))

)1/2

(r + ε)(1 + c0λm)
2n2dT 2/3

π

(∫ T

0

|x′(t)|2dt
)1/2
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+ 4 max
t∈[0,T ]

(
1

1− µ′(γ(t))

)1/2

(r + ε)(1 + c0λm)n2d2T

+ (1 + c0λm)α0T
1/2nT

π

(∫ T

0

|x′(t)|2dt
)1/2

+ 2nd(1 + c0λm)α0T (3.17)

where α0 = max|x|≤ρ |g(x)|, and∫ T

0

[x>(t)− x>(t− τ)]g(x(t− µ(t)))dt

≤
(∫ T

0

|x(t)− x(t− τ)|2dt
)1/2(∫ T

0

|g(x(t− µ(t)))|2dt
)1/2

=

(∫ T

0

|x(t)−x(t−τ)|2dt
)1/2(∫

E1

|g(x(t− µ(t)))|2dt+

∫
E2

|g(x(t− µ(t)))|2dt
)1/2

≤
(∫ T

0

|x(t)− x(t− τ)|2dt
)1/2(

α2
0T+

∫
E2

|g(x(t− µ(t)))|2dt
)1/2

≤
√

2τ

(∫ T

0

|x′(t)|2dt
)1/2(

α2
0T + max

t∈[0,T ]

1

1− µ′(γ(t))
(r + ε)2

∫ T

0

|x(t)|2dt
)1/2

≤
√

2Tα0τ

(∫ T

0

|x′(t)|2dt
)1/2

+
√

2(r + ε)τ max
t∈[0,T ]

(
1

1− µ′(γ(t))

)1/2(∫ T

0

|x′(t)|2dt
)1/2(∫ T

0

|x(t)|2dt
)1/2

≤
√

2Tα0τ

(∫ T

0

|x′(t)|2dt
)1/2

+
√

2(r+ε)τ max
t∈[0,T ]

(
1

1−µ′(γ(t))

)1/2
nT

π

∫ T

0

|x′(t)|2dt

+ 2
√

2(r + ε)τ max
t∈[0,T ]

(
1

1− µ′(γ(t))

)1/2

ndT 1/2

(∫ T

0

|x′(t)|2dt
)1/2

(3.18)

Furthermore, by (H7) we have

λ

∫ T

0

(x>(t)− c(t)x>(t− τ)B)f((x(t)))dt

≤K
∫ T

0

|(I − c(t)B)x(t)|dt

≤(1 + c0λm)K

∫ T

0

|x(t)|dt

≤(1 + c0λm)KT 1/2

(∫ T

0

|x(t)|2dt
)1/2

≤(1 + c0λm)KT 3/2n

π

(∫ T

0

|x′(t)|2dt
)1/2

+ 2nd(1 + c0λm)KT.

(3.19)

Obviously,

− λ
∫ T

0

(x>(t)− c(t)x>(t− τ)B)e(t)dt ≤ ||e||X
∫ T

0

|(I − c(t)B)x(t)|dt
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≤ (1 + c0λm)||e||XT 1/2

(∫ T

0

|x(t)|dt
)1/2

≤ (1 + c0λm)||e||XT 3/2n

π

(∫ T

0

|x′(t)|dt
)1/2

+ 2nd(1 + c0λm)||e||XT. (3.20)

Substituting (3.17)-(3.20) into (3.13), we have∫ T

0

|(Ãx)′(t)|2dt ≤ β1
∫ T

0

|x′(t)|2dt+ β2

(∫ T

0

|x′(t)|2dt
)1/2

+ β3, (3.21)

where β1 is defined by (3.15),

β2 = max
t∈[0,T ]

(
1

1− µ′(γ(t))

)1/2

(r + ε)(1 + c0λm)
2n2dT 2/3

π

+(1 + c0λm)α0T
1/2nT

π
+
√

2Tα0δ

+
√

2(r + ε)δ max
t∈[0,T ]

(
1

1− µ′(γ(t))

)1/2

+(1 + c0λm)KT 3/2n

π
+ (1 + c0λm)||e||XT 3/2n

π
,

β3 = 4 max
t∈[0,T ]

(
1

1− µ′(γ(t))

)1/2

(r + ε)(1 + c0λm)n2d2T + 2nd(1 + c0λm)α0T

+2
√

2(r + ε)δ max
t∈[0,T ]

(
1

1− µ′(γ(t))

)1/2

ndT 1/2

(∫ T

0

|x′(t)|2dt
)1/2

+2nd(1 + c0λm)KT + 2nd(1 + c0λm)||e||XT.

For x ∈ X, from (Ãx)(t) = x(t)− c(t)Bx(t− τ), we have

(Ãx′)(t) = (Ãx)′(t) + c′(t)Bx(t− τ). (3.23)

Then from (3.11),(3.12),(3.21),(3.23) and Lemma 3.1, if c0λi < 1/2 (i ∈ In) we
have∫ T

0

|x′(t)|2dt =

∫ T

0

|(Ã−1Ãx′(t)|2dt

≤ ~1
∫ T

0

|(Ãx′(t)|2dt

= ~1
∫ T

0

|(Ãx)′(t) + c′(t)Bx(t− τ)|2dt

≤ ~1
∫ T

0

|(Ãx)′(t)|2dt+ ~1c21λ2m
∫ T

0

|x(t)|2dt

+ 2~1c1λm
∫ T

0

|(Ãx)′(t)||x(t− τ)|dt

≤ ~1β1
∫ T

0

|x′(t)|2dt+ ~1β2
(∫ T

0

|x′(t)|2dt
)1/2

+ ~1β3

+ ~1c21λ2m
∫ T

0

|x(t)|2dt+2~1c1λm
(∫ T

0

|(Ãx)′(t)|2dt
)1/2(∫ T

0

|x(t)|2dt
)1/2
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≤ ~1β1
∫ T

0

|x′(t)|2dt+ ~1β2
(∫ T

0

|x′(t)|2dt
)1/2

+ ~1β3

+ ~1c21λ2m
n2T 2

π2

∫ T

0

|x′(t)|2dt

+ ~1c21λ2m
2n2dT 3/2

π

(∫ T

0

|x′(t)|2dt
)1/2

+ 4n2d2T~1c21λ2m

+ 2~1c1λm
(
β1

∫ T

0

|x′(t)|2dt+ β2

(∫ T

0

|x′(t)|2dt
)1/2

+ β3

)1/2

×
[
nT

π

(∫ T

0

|x′(t)|2dt
)1/2

+ 2ndT 1/2

]
. (3.24)

From (3.24) and (3.14), there is a constant D1 > 0 such that∫ T

0

|x′(t)|2dt ≤ D1

which together with (3.9) gives

||x||X ≤
√
nd+ T 1/2D

1/2
1 := D2. (3.25)

If σλi > 1 (i ∈ In), similar to the above proof, we obtain that there exists a constant
D3, D

′
3 > 0 such that

||x||X ≤ D3, ||x′||X ≤ D′3. (3.27)

From (3.25)-(3.27), we have

||x||X < max{D2, D3}+ 1 := M̃.

The proof of Step 2 and Step 3 is similar to the Theorem 2.1, we omit it here.

Remark 3.1. When C(t) is a symmetrical matrix function V (t) in (1.3), it is very
difficult to obtain the existence results of periodic solutions. Define

A1 : X → X, Ax(t) = x(t)− V (t)x(t− τ),

where V (t) is a symmetrical matrix function. Although Lemma 1.2 gives some
properties for the case of C(t) is a symmetrical constant matrix C, and we can
obtain that A1 exists inverse operator A−11 and some related properties for A1, but
in this case, the prior bound of solutions to (1.3) can not been obtained, we hope
that some results for (1.3) will be obtained in the case of C(t) is a symmetrical
matrix function.

Remark 3.2. When C(t) is a real matrix function in (1.3), it is very difficult to
obtain the existence results of periodic solutions. Define

A2 : X → X, Ax(t) = x(t)− C(t)x(t− τ),

where C(t) is a real matrix function. Although Lemma 1.3 gives some properties
for the case of C(t) is a real constant matrix C, but we can not obtain that A2

exists inverse operator A−1 and some related properties for A2, so when C(t) is a
real matrix function in (1.3), we hope that some results for (1.3) will be obtained.
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4. Asymptotic behaviors of periodic solution

In this section, we will study asymptotic behaviors of periodic solution to system
(1.3) for the cases of C(t) is a diagonal and symmetrical matrix function.

Definition 4.1. If x∗(t) = (x∗1(t), x∗2(t), · · · , x∗n(t))> is an periodic solution of (1.3)
and x(t) = (x1(t), x2(t), · · · , xn(t))> is any solution of (1.3) satisfying

lim
t→+∞

n∑
i=1

|xi(t)− x∗i (t)| = 0.

We call x∗(t) is globally asymptotic stable.

Definition 4.2. If x∗(t) = (x∗1(t), x∗2(t), · · · , x∗n(t))> is an periodic solution of (1.3)
with initial value φ∗(t) = (φ∗1(t), φ∗2(t), · · · , φ∗n(t))>. If there exist constants λ >
0, Mφ > 1 such that, for any solution x(t) = (x1(t), x2(t), · · · , xn(t))> of (1.3) with
initial value φ(t) = (φ1(t), φ2(t), · · · , φn(t))>,

|xi(t)− x∗i (t)| ≤Mφ||φ− φ∗||e−λt ∀t > 0, i ∈ In.

We call x∗(t) is globally exponential stable.

For convenience of obtaining globally asymptotic stability, let C(t) = diag{c1(t),
c2(t), · · · , cn(t)}, ei(t) = 0, fi(0) = gi(0) = 0, i ∈ IN . Then (1.3) is changed into

(Aixi)
′(t) = (xi(t)− ci(t)xi(t− τ))′ = −fi(xi(t))− gi(xi(t− µ(t))), i ∈ IN , t > 0

(4.1)
with initial condition

xi(t) = φi(t), t ∈ [−r, 0],

where r = maxt∈[0,T ]{τ, µ(t)}, i ∈ IN . Clearly, x = 0 is the equilibrium point of
(4.1). Now, we give the following theorem:

Theorem 4.1. Under conditions of Theorem 2.1, assume further that
(i) there exist L1i > 0, L2i > 0 such that

|fi(x)− fi(y)| ≤ L1i|x− y|, |gi(x)− gi(y)| ≤ L2i|x− y|, ∀x, y ∈ R, i ∈ In.

Then (4.1) has unique T−periodic solution x∗(t) = (x∗1(t), x∗2(t), · · · , x∗n(t))> =
0 which is globally asymptotic stable if

2δ − L2i − c0,iL2i − (c0,iL2i + L2i) max
t∈[0,T ]

1

1− µ′(γ(t))
> 0,

where i ∈ IN , t > 0, γ is a inverse function of t− µ(t).

Proof. Assumptions of Theorem 2.1 imply that (4.1) has unique T−periodic so-
lution x∗(t) = 0. Suppose x(t) be any solution of (4.1). Let

Vi(t) = (Aixi)
2, i ∈ IN , t > 0.
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Derivation of it along the solution of (4.1) gives

V ′i (t) = −2xi(t)fi(xi(t))− 2xi(t)gi(xi(t− µ(t)))

+ 2ci(t)xi(t− τ)fi(xi(t)) + 2cixi(t− τ)gi(xi(t− µ(t)))

≤ −2δx2i (t) + 2|xi(t)|L2i|xi(t− µ(t))|
+ 2c0,i|xi(t− τ)|L1i|xi(t)|+ 2c0,i|xi(t− τ)|L2i|xi(t− µ(t))|
≤ −2δx2i (t) + L2ix

2
i (t) + L2ix

2
i (t− µ(t))

+ c0,iL1ix
2
i (t) + c0,iL1ix

2
i (t− τ) + c0,iL2ix

2
i (t− τ) + c0,iL2ix

2
i (t− µ(t))

= −(2δ − L2i − c0,iL1i)x
2
i (t) + (c0,iL2i + c0,iL1i)x

2
i (t− τ)

+ (c0,iL2i + L2i)x
2
i (t− µ(t)).

For t > 0, define further that

Vτi(t) = (c0,iL2i + c0,iL1i)

∫ t

t−τ
x2i (s)ds, Vµi(t)

= (c0,iL2i + L2i)

∫ t

t−µ(t)

1

1− µ′(γ(s))
x2i (s)ds.

Then we have
V ′τi(t) = (c0,iL2i + c0,iL1i)[x

2
i (t)− x2i (t− τ)]

and

V ′µi(t) = (c0,iL2i + L2i)[
1

1− µ′(γ(t))
x2i (t)− x2i (t− µ(t))].

Choose the Lyapunov functional for (4.1) in the following form:

V (t) =

n∑
i=1

[Vi(t) + Vτi(t) + Vµi(t)], t > 0.

Derivating it along the solution of (4.1) gives

V ′(t) ≤
n∑
i=1

[
− (2δ − L2i − c0,iL1i)x

2
i (t) + (c0,iL2i + c0,iL1i)x

2
i (t− τ)

+ (c0,iL2i + L2i)x
2
i (t− µ(t)) + (c0,iL2i + c0,iL1i)[x

2
i (t)− x2i (t− τ)]

+ (c0,iL2i + L2i)[
1

1− µ′(γ(t))
x2i (t)− x2i (t− µ(t))]

]
= −

n∑
i=1

[
2δ − L2i − c0,iL1i − (c0,iL2i + c0,iL1i)−

c0,iL2i + L2i

1− µ′(γ(t))

]
x2i (t).

From 2δ − L2i − c0,iL2i − (c0,iL2i + L2i) maxt∈R
1

1−µ′(γ(t)) > 0, we have

V ′(t) < 0.

From Barbalat’s Lemma [4], we have

lim
t→+∞

n∑
i=1

|xi(t)| = 0.
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The proof of Theorem 4.1 is now finished.
Let C(t) = c(t)B, ei(t) = 0, fi(0) = gi(0) = 0. Then (1.3) is changed into

(Aixi)
′(t) = (xi(t)−c(t)

n∑
j=1

bijxi(t−τ))′ = −fi(xi(t))−gi(xi(t−µ(t))), t > 0 (4.2)

with initial condition
xi(t) = φ̃i(t), t ∈ [−r, 0],

where r = maxt∈[0,T ]{τ, µ(t)}, i ∈ IN , (Aixi)(t) = xi(t)−c(t)
∑n
j=1 bijxi(t−τ), B =

(bij)n×n is n×n real symmetrical matrix, c(t) is T−periodic function. Clearly, x = 0
is the equilibriun point of (4.2), Similar to the proof of Theorem 4.1, we have the
following theorem:

Theorem 4.2. Under conditions of Theorem 3.1, assume further that condition
(i) of Theorem 4.1 holds. Then (4.2) has unique T−periodic solution x∗(t) =
(x∗1(t), x∗2(t), · · · , x∗n(t))> = 0 which is globally asymptotic stable if

2δ − L2i − c0
n∑
j=1

|bij |L2i − (c0

n∑
j=1

|bij |L2i + L2i) max
t∈R

1

1− µ′(γ(t))
> 0,

where i ∈ IN , t > 0, γ is a inverse function of t− µ(t).

For convenience of obtaining globally exponential stability, for i ∈ IN , let fi(t) =
ai(t)xi(t) + f̃(xi(t)) with ai(t) > 0, ei(t) = 0, fi(0) = gi(0) = 0.

Theorem 4.3. Under conditions of Theorem 2.1, assume further that
(i) there exist L1i > 0, L2i > 0 such that

|f̃i(x)− f̃i(y)| ≤ L1i|x− y|, |gi(x)− gi(y)| ≤ L2i|x− y|, ∀x, y ∈ R, i ∈ In;

(ii) there exists a constant vector ξ = (ξ1, ξ2, · · · , ξn)> > 0 such that

(−a−i + c0a0,iκi + L1iκi + L2iκi)ξi < 0,

where a−i = mint∈[0,T ] ai(t), a0,i = maxt∈[0,T ] ai(t), κi = max{ 1
1−c0,i ,

1
σ0,i−1}, i ∈

IN . Then (4.1) has unique T−periodic solution x∗(t) = (x∗1(t), x∗2(t), · · · , x∗n(t))> =
0 satisfying initial condition x∗i (t) = φ∗i (t), t ∈ [−r, 0], which is globally exponential
stable.

Proof. For i ∈ In, define function

Ξi(t) = (t− a−i + c0a0,iκie
tτ + L1iκi + L2iκie

tµ0)ξi.

In view of condition (ii), Ξi(t) is continuous on interval [0, λ0] with

Ξi(0) = (−a−i + c0a0,iκi + L1iκi + L2iκi)ξi < 0, i ∈ In.

Thus there must be a positive constant λ ∈ [0, λ0] such that

Ξi(λ) = (t− a−i + c0a0,iκie
λτ + L1iκi + L2iκie

λµ0)ξi < 0, i ∈ In. (4.3)

For above λ, we choose the following Lyapunov functional

Vi(t) = |(Aixi)(t)|eλt, i ∈ In,∀t > 0.
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It is easy to check that

Vi(t) = |(Aixi)(t)|eλt < ξi, i ∈ In, ∀t > 0. (4.4)

Otherwise, there must be an i ∈ In and ti > 0 such that

Vi(ti) = ξi and Vi(t) < ξi, i ∈ In, for 0 < t < ti.

From (4.1), condition (i) and Lemma 1.1, for i ∈ In, we have

0 ≤ D+Vi(ti − ξi) = D+Vi(ti)

= sgn{(Aixi)(ti)}(Aixi)′(ti)eλti + λ|(Aixi)(ti)|eλti

= sgn{(Aixi)(ti)}
(
− aixi(ti)−f̃i(xi(t))−gi(xi(ti−µ(ti)))

)
eλti +λ|(Aixi)(ti)|eλti

≤ (λ− a−i )|(Aixi)(ti)|eλti + c0a0,i|xi(ti − τ)|eλ(ti−τ)eλτ

+ L1i|xi(ti)|eλti + L2i|xi(ti − µ(ti))|eλ(ti−µ(ti))eλµ(ti)

≤ (λ− a−i )|(Aixi)(ti)|eλti + c0a0,i|(A−1i Aixi)(ti − τ)|eλ(ti−τ)eλτ

+ L1i|(A−1i Aixi)(ti)|eλti + L2i|(A−1i Aixi)(ti − µ(ti))|eλ(ti−µ(ti))eλµ(ti)

≤ (λ− a−i )|(Aixi)(ti)|eλti + c0a0,iκi|(Aixi)(ti − τ)|eλ(ti−τ)eλτ

+ L1iκi|(Aixi)(ti)|eλti + L2iκi|(Aixi)(ti − µ(ti))|eλ(ti−µ(ti))eλµ(ti)

≤ (λ− a+i + c0a0,iκie
λτ + L1iκi + L2iκie

λµ0)ξi,

which is a contravention to (4.3). Thus, (4.4) holds. It follows from (4.4) and
Lemma 1.1 that, ∀i ∈ In, t > 0

|xi(t)| = |(A−1i Aixi)(t)| ≤ κi|(Aixi)(t)| < κie
−λtξi ≤Mφ||φ− φ∗||e−λt,

where Mφ > 1 is a constant such that

Mφ||φ− φ∗|| ≥ κ−1i ξi, i ∈ In.

The proof is completed.
For system (4.2), similar to the proof of Theorem 4.3, we have the following

theorem:

Theorem 4.4. Under conditions of Theorem 3.1, assume further that
(i) there exist L1i > 0, L2i > 0 such that

|f̃i(x)− f̃i(y)| ≤ L1i|x− y|, |gi(x)− gi(y)| ≤ L2i|x− y|, ∀x, y ∈ R, i ∈ In;

(ii) there exists a constant vector ξ = (ξ1, ξ2, · · · , ξn)> > 0 such that

(−a−i + c0a0,iχi + L1iχi + L2iχi)ξi > 0,

where a−i =mint∈[0,T ] ai(t), a0,i=maxt∈[0,T ] ai(t), χi=max{ 1
1−c0

∑n
j=1 |bij |

, 1
σ0

∑n
j=1 |bij |−1

}
with c0

∑n
j=1 |bij | < 1 and σ0

∑n
j=1 |bij | > 1,c0 =maxt∈[0,T ]|c(t)|, σ0 =mint∈[0,T ]|c(t)|.

Then (4.2) has unique T−periodic solution x∗(t) = (x∗1(t), x∗2(t), · · · , x∗n(t))> = 0
satisfying initial condition x∗i (t) = φ̃∗i (t), t ∈ [−r, 0], which is globally exponential
stable.
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Remark 4.1. From Definitions 4.1 to 4.2, one knows that the global exponential
stability of the periodic solutions of (4.1) and (4.2) implies its global asymptotic
stability. In fact, for Mφ > 1 and λ > 0, we have

|xi(t)− x∗i (t)| ≤Mφe
λt → 0, t→ +∞, i ∈ In.

However, by comparing Theorem 4.1 (or 4.2) and 4.3 (or 4.4), we find that the
conditions presented in Theorem 4.3 (or 4.4) are weaker than the corresponding
ones in 4.1 (or 4.2). Obviously, in Theorem 4.1 (or 4.2) we need µ′(t) < 1, t ∈ R,
which are not needed in Theorem 4.3 (or 4.4).

5. Example

In order to verify the feasibility of our results, consider the following two neutral
type systems:

Example 5.1. (A1x1)′(t) + a1(t)x1(t) + f1(x1(t)) + g1(x1(t− µ(t))) = 0,

(A2x2)′(t) + a2(t)x2(t) + f2(x2(t)) + g2(x2(t− µ(t))) = 0,
(5.1)

where

(A1x1)(t) = x1(t)− c1(t)x1(t− τ), (A2x2)(t) = x2(t)− c2(t)x2(t− τ).

T = 2π, τ = π, a1(t) = a2(t) = 2, c1(t) = c2(t) = 0.01 cos t,

µ(t) =
1

2π
sin t, fi(xi) = gi(xi) = 0.2 sinxi, i = 1, 2.

Obviously, based on the above parameters, all the conditions of Theorem 2.1 and
4.1 hold, hence, system (5.1) has a unique periodic solution x(t) = (x1(t), x2(t))>

which is globally asymptotic stable.

Example 5.2. (A1x1)′(t) + a1(t)x1(t) + f1(x1(t)) + g1(x1(t− µ(t))) = 0,

(A2x2)′(t) + a2(t)x2(t) + f2(x2(t)) + g2(x2(t− µ(t))) = 0,
(5.2)

where

(A1x1)(t) = x1(t)− c(t)
2∑
j=1

b1jx1(t− τ), (A2x2)(t) = x2(t)− c(t)
2∑
j=1

b2jx2(t− τ).

T = 2π, τ = π, a1(t) = a2(t) = 2, c(t) = 0.01 cos t, b11 = b22 = 1, b12 = b21 = −1,

µ(t) =
1

2π
sin t, fi(xi) = gi(xi) = 0.2 sinxi, i = 1, 2.

Obviously, based on the above parameters, all the conditions of Theorem 3.1 and
4.3 hold, hence, system (5.2) has a unique periodic solution x(t) = (x1(t), x2(t))>

which is globally exponential stable.
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6. Conclusions

In this article, we have investigated periodic problems for a class of neutral type
system with variable parameters. The methods under study are Mawhin’s continu-
ation theorem and some considerate analysis techniques. For asymptotic behaviors
of periodic solution, we developed a Lyapunov based framework and derived the
theoretical results that the time-varying delays. Examples further illustrate our
theoretical approach. It is possible to extend the main results to the more compli-
cated cases such as the neutral systems with the finite and infinite distributed time
delays, or with impulse terms, which are the future research topics.
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