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Abstract This paper investigates the spatial behavior of the solutions of
the Laplace equation on a semi-infinite cylinder when dynamical nonlinear
boundary conditions are imposed on its lateral side. We prove a Phragmén-
Lindelöf alternative for the solutions. To be precise, we see that the solutions
increase in an exponential way or they decay as a polynomial. To give a
complete description of the decay in this last case we also obtain an upper
bound for the amplitude term by means of the boundary conditions. In the
last section we sketch how to generalize the results to a system of two elliptic
equations related with the heat conduction in mixtures.
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1. Introduction

The analysis of the spatial stability of the solutions for the equilibrium equations
in elasticity is a relevant issue when the deformations of a cylinder are studied. It
is closely related with Saint-Venant’s principle and it has deserved a lot of interest
recently.

Results about spatial stability have been extended to dynamical elastic problems
and to dynamical thermal problems. In fact, the interest for the spatial stability
has gone beyond thermomechanics and, nowadays, it is the aim of study in differ-
ent types of partial differential equations and/or systems. It is worth noting that
the mathematical framework where such results are considered is the Phragmén-
Lindelöf principle which proposes an increase/decay alternative for the solutions.

The spatial behavior of elliptic [3], parabolic [6, 8], hyperbolic [1, 4, 9] equations
and/or combinations of them [12] have been already obtained. However, there are
many aspects yet which need to be studied and clarified. In this note we want to
pay attention to the Laplace equation with nonlinear dynamical boundary condi-
tions. That is, when a certain nonlinear ordinary dynamical differential equation
is satisfied at the lateral boundary of the cylinder where the Laplace equation is
satisfied. As far as the authors know, there are no results in the literature on spa-
tial behavior of solutions when such kind of boundary conditions are assumed. We
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obtain a Phragmén-Lindelöf type alternative for the solutions of the problem. In
fact, we see that the solutions either blow-up in an exponential way when the large
variable becomes unbounded, or they decay as a polynomial when the large variable
is increasing. It is appropriate to recall several results when nonlinear boundary
conditions are imposed (see the papers by Horgan and Payne [7] and Leseduarte
and Quintanilla [11]). We follow a similar approach. However, our results only
apply when the nonlinear term is super-linear, but not in the sub-linear case.

The plan of the paper is the following. In the next section we propose the prob-
lem we are dealing with. A Phragmén-Lindelöf alternative is obtained in Section
3. When the solutions decay, our estimate is impractical if we do not have some
information on the amplitude term. In Section 4 we obtain an upper bound for the
amplitude term when the solutions decay. Section 5 is devoted to give an illustrative
example. In the last section we propose an extension of the results to a system of
two linear elliptic equations that are related with the heat conduction in mixtures.

2. Preliminaries

We want to investigate the spatial asymptotic behavior of the solutions of the
Laplace equation with nonlinear dynamic boundary conditions. Therefore, we con-
sider a semi-infinite cylinder R = [0,∞)×D, where D is a two-dimensional bounded
domain smooth enough to apply the divergence theorem.

We consider a problem related with the Laplace equation

∆u = 0 on R× (0, t). (2.1)

To define the boundary conditions, we suppose that ∂D = Ω1∪Ω2, where Ω1∩Ω2 = ∅
and such that the measure of Ω2 is positive. On Ω1, we impose that

∂u

∂n
+ f1(u) = 0 on [0,∞)× Ω1 × (0, t); (2.2)

on Ω2 we suppose that

∂u

∂n
+ s(u)ut + f2(u) = 0 on [0,∞)× Ω2 × (0, t); (2.3)

and on the finite end of the cylinder we impose that

u(0, x2, x3, τ) = g(x2, x3, τ) on {0} ×D × (0, t). (2.4)

From now on, we assume that

f1(u)u ≥ 0 (2.5)

for every u, and that there exists a positive constant C such that

f2(u)u+ ωS1(u) ≥ C|u|2p, (2.6)

where p ≥ 1, ω is a positive constant large enough and

S1(u) =

∫ u

0

ηs(η) dη ≥ 0. (2.7)
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As we impose dynamic boundary conditions on Ω2, we need to assume also initial
conditions on Ω2. We suppose that

u = 0 on [0,∞)× Ω2 × {0}. (2.8)

In this paper we will use the following notation:

D(z) = {z} ×D; Ω1(z) = {z} × Ω1; Ω2(z) = {z} × Ω2;

R(z) = {xxx ∈ R, x1 ≥ z}; Ω∗i (z) = {xxx ∈ [0,∞)× Ωi, x1 ≥ z}.

In the analysis we will need to use the generalized Poincaré inequality. We recall
that there exists a positive constant C1 such that (see [2], p281)∫

D

|u|2 da ≤ C1

[∫
D

|∇u|2 da+

∣∣∣∣∫
Ω2

u dl

∣∣∣∣2
]
, (2.9)

for every smooth function u and for a two dimensional domain D. It is worth
noting that the precise value of the constant C1 depends on the domain D and on
the subset of the boundary Ω2.

3. Spatial estimates

In this section we obtain an alternative of the Phragmén-Lindelöf type for the
solutions of the problem determined by (2.1)–(2.4) and (2.8). From now on, we
consider a positive constant, ω, such that condition (2.6) is satisfied. We define the
function

Φ(z, t) = −
∫ t

0

∫
D(z)

exp(−ωτ)uu,1 da dτ. (3.1)

We note that for z ≥ z0, the function Φ(z, t) may be expressed as

Φ(z, t)− Φ(z0, t) =−
∫ t

0

∫ z

z0

∫
D

exp(−ωτ)|∇u|2 dx dτ

−
∫ t

0

∫ z

z0

∫
Ω1

exp(−ωτ)f1(u)u da dτ

−
∫ t

0

∫ z

z0

∫
Ω2

exp(−ωτ) [f2(u)u+ ωS1(u)] da dτ

−
∫ z

z0

∫
Ω2

exp(−ωt)S1(u) da.

(3.2)

Notice that if
lim
z→∞

Φ(z, t) = 0, (3.3)

then the relation (3.2) implies that

Φ(z, t) =

∫ t

0

∫
R(z)

exp(−ωτ)|∇u|2 dx dτ +

∫ t

0

∫
Ω∗

1(z)

exp(−ωτ)f1(u)u da dτ

+

∫ t

0

∫
Ω∗

2(z)

exp(−ωτ) [f2(u)u+ ωS1(u)] da dτ

+

∫
Ω∗

2(z)

exp(−ωt)S1(u) da.

(3.4)
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From (3.2) we also see that

∂Φ

∂z
=−

∫ t

0

∫
D(z)

exp(−ωτ)|∇u|2 da dτ −
∫ t

0

∫
Ω1(z)

exp(−ωτ)f1(u)u dl dτ

−
∫ t

0

∫
Ω2(z)

exp(−ωτ) [f2(u)u+ ωS1(u)] dl dτ

− exp(−ωt)
∫

Ω2(z)

S1(u) dl.

(3.5)

In view of the Schwarz inequality, from (3.1) we find

|Φ(z, t)| ≤

(∫ t

0

∫
D(z)

exp(−ωτ)u2 da dτ

)1/2

×

(∫ t

0

∫
D(z)

exp(−ωτ)u2
,1 da dτ

)1/2

.

(3.6)

We have that∫ t

0

∫
D(z)

exp(−ωτ)u2 da dτ ≤
∫ t

0

∫
D(z)

u2 da dτ

≤C1

∫ t

0

∫
D(z)

u,αu,α da+

∣∣∣∣∣
∫

Ω2(z)

u dl

∣∣∣∣∣
2
 dτ

≤C1

∫ t

0

[∫
D(z)

u,αu,α da+M1

∫
Ω2(z)

u2 dl

]
dτ,

(3.7)

where

M1 =
[
measure (Ω2)

]1/2
,

and Greek sub-indices are restricted to two and three.

From (3.6) and (3.7), it follows that

|Φ(z, t)| ≤C1/2
1

[∫ t

0

∫
D(z)

u,αu,α da dτ +M1

∫ t

0

∫
Ω2(z)

u2 dl dτ

]1/2

×

[∫ t

0

∫
D(z)

exp(−ωτ)u2
,1 da dτ

]1/2

.

(3.8)

But ∫ t

0

∫
Ω2(z)

|u|2 dl dτ ≤M2

(∫ t

0

∫
Ω2(z)

|u|2p dl dτ

)1/p

, (3.9)

where p ≥ 1 and

M2 =
[
t measure (Ω2)

]p/(p−1)
.
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We obtain that(∫ t

0

∫
Ω2(z)

|u|2 dl dτ

)1/2

≤ exp(ωt)1/(2p)M
1/2
2

(∫ t

0

∫
Ω2(z)

exp(−ωτ)|u|2p dl dτ

)1/(2p)

≤M3

(∫ t

0

∫
Ω2(z)

exp(−ωτ) [f2(u)u+ ωS1(u)] dl dτ

)1/(2p)

,

(3.10)

where
M3 = C−1/(2p) exp(ωt)1/(2p)M

1/2
2 .

Then, it follows that

Φ(z, t) ≤

2M4

(∫ t

0

∫
D(z)

exp(−ωτ)u,αu,α da dτ

)1/2

+M5

(∫ t

0

∫
Ω2(z)

exp(−ωτ) [f2(u)u+ ωS1(u)] dl dτ

)1/(2p)


×

[∫ t

0

∫
D(z)

exp(−ωτ)u2
,1 da dτ

]1/2

,

(3.11)

where

M4 =
1

2
C

1/2
1 exp(ωt), M5 = C

1/2
1 M1M3.

After some standard manipulations we arrive at (see [7, p128])

|Φ(z, t)| ≤M4

[
−∂Φ

∂z

]
+M6

[
−∂Φ

∂z

](p+1)/(2p)

, (3.12)

where
M6 = p1/2(p+ 1)−(p+1)/(2p)M5.

Consequences of the estimate (3.12) have been studied by Horgan and Payne (see [7,
p134]). It can be proved that either there exists a positive constant Q1 (see [7, p135])
such that

− Φ(z, t) ≥ Ĉ1Q1 exp

(
z − z0

Ĉ1

)
, z ≥ z0, (3.13)

where

Ĉ1 = M4 +M6(2− β)β−1σ̂2, β =
2p

p+ 1

and σ̂2 is an arbitrary positive constant, or the decay estimate (see [7, p136])

Φ(z, t) ≤Ĉ2

{[
2Ĉ3(p+ 1)

]−1

(p− 1)
[
z + Q̂(0)

]}−(p+1)/(p−1)

+ Ĉ3

{[
2Ĉ3(p+ 1)

]−1

(p− 1)
[
z + Q̂(0)

]}−2(p+1)/(p−1)
(3.14)
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holds, where

Ĉ2 = M4(2− β)σ̂
−(β−1)/(2−β)
1 +M6, Ĉ3 = M4(β − 1)σ̂1

and σ̂1 is an arbitrary positive constant and

Q̂(0) =2Ĉ3(p+ 1)


[

Φ(0, t)Ĉ−1
3 +

Ĉ2
2

4Ĉ2
3

]1/2

− Ĉ2

2Ĉ3


−(p−1)/(p+1)

− Ĉ3(p+ 1)


[

Φ(0, t)Ĉ−1
3 +

Ĉ2
2

4Ĉ2
3

]1/2

− Ĉ2

2Ĉ3


2/(p+1)

.

We note that estimate (3.14) implies that (3.3) holds and then the function Φ(z, t)
is determined by (3.4).

Our results can be summarize by means of the following theorem.

Theorem 3.1. Let u(xxx, t) be a solution of the problem determined by (2.1)–( 2.4)
and (2.8). Then either the function∫ t

0

∫ z

0

∫
D

|∇u|2dx dτ +

∫ t

0

∫ z

0

∫
Ω1

f1(u)u da dτ

+

∫ t

0

∫ z

0

∫
Ω2

[f2(u)u+ ωS1(u)] da dτ +

∫ z

0

∫
Ω2

S1(u) da

becomes unbounded in an exponential way when z tends to infinite, or the function∫ t

0

∫
R(z)

|∇u|2dx dτ +

∫ t

0

∫
Ω∗

1(z)

f1(u)u da dτ

+

∫ t

0

∫
Ω∗

2(z)

[f2(u)u+ ωS1(u)] da dτ +

∫
Ω∗

2(z)

S1(u) da

decays at least as fast as z−(p+1)/(p−1) when z tends to infinite.

For the particular case p = 1, we can improve the estimates. From the estimate
(3.12), we see that

|Φ(z, t)| ≤ (M4 +M6)

(
−∂Φ

∂z

)
. (3.15)

It is well known that this inequality implies an alternative of the following type
(see [3]):

The function Φ(z, t) satisfies the estimate

− Φ(z, t) ≥ Q∗1 exp

(
z − z0

M4 +M6

)
, z ≥ z0, (3.16)

where Q∗1 is a positive constant, or the decay estimate

Φ(z, t) ≤ Φ(0, t) exp

(
− z

M4 +M6

)
, z ≥ 0 (3.17)

is satisfied. We note that estimates (3.16) and (3.17) give an alternative of expo-
nential type.



Laplace equation with dynamic conditions 1329

4. The amplitude term

To make clear the estimates obtained in the previous section, we require a bound
for Φ(0, t) in terms of the boundary conditions at the end of the cylinder x3 = 0.
Otherwise, the decay estimate obtained at (3.14) would be impractical because
the dependence of the amplitude on the data would not be explicit. To make
calculations easier, we assume in this section that Ω1 = ∅ and that f2(u) = 0.
Furthermore, we impose that

mS1(u) ≥ |S2(u)|p1 , m > 0, p1 > 1, (4.1)

where S2(u) =
∫ u

0
s(η) dη.

We note that

Φ(0, t) =

∫ t

0

∫
R

exp(−ωτ)|∇u|2 dx dτ + ω

∫ t

0

∫
Ω∗

2(0)

exp(−ωτ)S1(u) da dτ

+ exp(−ωt)
∫

Ω∗
2(0)

S1(u) da = −
∫ t

0

∫
D(0)

exp(−ωτ)gu,1 da dτ,

(4.2)

where g(x2, x3, t) was considered at (2.4). We now define

h(x1, x2, x3, s) = g(x2, x3, s) exp(−bx1), (4.3)

where b is an arbitrary positive constant. We have that

Φ(0, t) =

∫ t

0

∫
R

exp(−ωτ)h,iu,i dx dτ +

∫ t

0

∫
Ω∗

2(0)

exp(−ωτ)hS(u)uτ da dτ

=

∫ t

0

∫
R

exp(−ωτ)h,iu,i dx dτ + ω

∫ t

0

∫
Ω∗

2(0)

exp(−ωτ)hS2(u) da dτ

−
∫ t

0

∫
Ω∗

2(0)

exp(−ωτ)hsS2(u) da dτ + exp(−ωt)
∫

Ω∗
2(0)

hS2(u) da.

(4.4)

We see that

Φ(0, t) ≤
[∫ t

0

∫
R

exp(−ωτ)h,ih,idx dτ

]1/2 [∫ t

0

∫
R

exp(−ωτ)u,iu,idx dτ

]1/2

+ ω

[∫ t

0

∫
Ω∗

2(0)

exp(−ωτ)hq1 da dτ

]1/q1

×

[∫ t

0

∫
Ω∗

2(0)

exp(−ωτ)|S2(u)|p1 da dτ

]1/p1

+

[∫ t

0

∫
Ω∗

2(0)

exp(−ωτ)hq1τ da dτ

]1/q1

×

[∫ t

0

∫
Ω∗

2(0)

exp(−ωτ)|S2(u)|p1 da dτ

]1/p1

+ exp(−ωt)

[∫
Ω∗

2(0)

hq1da

]1/q1 [∫
Ω∗

2(0)

|S2(u)|p1da

]1/p1

,

(4.5)
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where q−1
1 + p−1

1 = 1.
Using the arithmetic-geometric mean inequality and Young’s inequality, we find

that

Φ(0, t) ≤1

2

∫ t

0

∫
R

exp(−ωτ)u,iu,i dx dτ

+
1

2

∫ t

0

∫
R

exp(−ωτ)h,ih,i dx dτ

+
1

2

∫ t

0

∫
Ω∗

1(0)

exp(−ωτ)S1(u) da dτ

+

(
4m

p1

)q1/p1 ωq1
p1

∫ t

0

∫
Ω∗

1(0)

exp(−ωτ)hq1 da dτ

+

(
4m

p1

)q1/p1 1

p1

∫ t

0

∫
Ω∗

1(0)

exp(−ωτ)hq1τ da dτ

+
1

2
exp(−ω1t)

∫
Ω∗

1(0)

S1(u) da

+

(
2m

p1

)q1/p1 1

p1

∫
Ω∗

1(0)

exp(−ωt)hq1 da.

(4.6)

We obtain that

Φ(0, t) ≤
∫ t

0

∫
R

exp(−ωτ)h,ih,idx dτ

+ 2

(
4m

p1

)q1/p1 ωq1
p1

∫ t

0

∫
Ω∗

1(0)

exp(−ωτ)hq1 da dτ

+ 2

(
4m

p1

)q1/p1 1

p1

∫ t

0

∫
Ω∗

1(0)

exp(−ωτ)hq1τ da dτ

+ 2

(
2m

p1

)q1/p1 1

p1
exp(−ω1t)

∫
Ω∗

1(0)

hq1 da.

(4.7)

We have

h,1(x1, x2, x3, τ) = −bg(x2, x3, τ) exp(−bx1), (4.8)

h,α(x1, x2, x3, τ) = g,α(x2, x3, τ) exp(−bx1), (4.9)

hτ (x1, x2, x3, τ) = gτ (x2, x3, τ) exp(−bx1). (4.10)

Therefore,∫ t

0

∫
R

exp(−ωτ)h,ih,i dx dτ =

∫ t

0

∫
D(0)

exp(−ωτ)

(
g,αg,α

2b
+
b

2
g2

)
da dτ, (4.11)∫ t

0

∫
Ω∗

1(0)

exp(−ωτ)hq1da dτ =

∫ t

0

∫
∂D(0)

exp(−ωτ)
gq1

q1b
dl dτ, (4.12)∫ t

0

∫
Ω∗

1(0)

exp(−ωτ)hq1τ da dτ =

∫ t

0

∫
∂D(0)

exp(−ωτ)
gq1τ
q1b

dl dτ (4.13)
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and ∫
Ω∗

1(0)

hq1da =

∫
∂D(0)

gq1

q1b
dl. (4.14)

We then obtain

Φ(0, t) ≤
∫ t

0

∫
D(0)

exp(−ωτ)

(
g,αg,α

2b
+
b

2
g2

)
da dτ

+ 2

(
4m

p1

)q1/p1 ωq1

p1q1b

∫ t

0

∫
∂D(0)

exp(−ωτ)|g|q1dl dτ

+ 2

(
4m

p1

)q1/p1 1

p1q1b

∫ t

0

∫
∂D(0)

exp(−ωτ)|g,τ |q1dl dτ

+ 2

(
2m

p1

)q1/p1 1

p1q1b
exp(−ωt)

∫
∂D(0)

|g|q1dl.

(4.15)

We can optimize the right hand side of (4.15) with respect to b, but it does seem
an easy task.

5. An example

In this section we give an exemple for the boundary conditions satisfying (2.5)–(2.7)
and (4.1). We try to illustrate the obtained results.

First we consider the conditions (2.5)–(2.7). We can take, for instance, f1(u) =
a1(1− cosu)u−1, where a1 ≥ 0; f2(u) = a2(1− cosu)u−1 − b2|u|ku, where a2 ≥ 0,
b2 ≥ 0 and k ≥ 0 and s(u) = s1|u|k, with s1 > 0. In this case we have that
f1(u)u = a1(1− cosu) ≥ 0 and (2.5) holds. Moreover,

S1(u) =
s1

k + 2
|u|k+2

and condition (2.7) holds. Regard to the condition (2.6), if we take C̄ > 0 and

ω =
(k + 2)b2

s1
+ C̄,

we have

f2(u)u+ ωS1(u) = a2(1− cosu)− b2|u|k+2 +

[
(k + 2)b2

s1
+ C̄

]
s1

k + 2
|u|k+2

= a2(1− cosu) +
s1C̄

k + 2
|u|k+2 ≥ C|u|k+2 ≥ C|u|2p,

where C =
s1C̄

k + 2
and p =

k + 2

2
. So, (2.6) holds.

We now give some explicit values for the parameters obtained in the estimates
of Section 3. We assume that Ω2 is such that mesure(Ω2) = 1, b2 = 0, k = 2, C̄ = 2
and s1 = 1. Therefore, ω = 2, p = 2 and C = 1/2. We also consider σ̂1 = σ̂2 = 1.
With these values, we obtain

M1 = 1, M2 = t2, M3 = 21/4t exp(2t)1/4, M4 =
1

2
C

1/2
1 exp(2t),

M5 = 21/4C
1/2
1 t exp(2t)1/4, M6 =

(
2

3

)3/4

C
1/2
1 t exp(2t)1/4.
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We note that Q1 is an arbitrary constant, but we do not have any a priori bound.
Thus, estimates (3.13) and (3.14) hold for

Ĉ1 =
1

2
C

1/2
1 exp(2t) +

1

2
C

1/2
1

(
2

3

)3/4

t exp(2t)1/4,

Ĉ2 =
1

3
C

1/2
1 exp(2t) + C

1/2
1

(
2

3

)3/4

t exp(2t)1/4, and Ĉ3 =
1

6
C

1/2
1 exp(2t).

The proposed example also satisfies condition (4.1). As we pointed out before, we
assume that Ω1 = ∅ and f2(u) = 0. When s(u) = s1|u|k, with s1 > 0 and k ≥ 0
condition (4.1) is always satisfied. In fact, in this case we have that

|S2(u)| = s1

k + 1
|u|k+1.

If we take

p1 =
k + 2

k + 1
> 1 and m =

sp1−1
1 (k + 2)

(k + 1)p1
> 0,

we get

m
s1

k + 2
|u|k+2 ≥

(
s1

k + 1

)p1
|u|(k+1)p1

and condition (4.1) holds.

6. Extension to the system

In this section we sketch how to extend the Phragmén-Lindelöf alternative to a
system of equations related with the heat conduction in a mixture of rigid solids.
In place of the equation (2.1) we will consider the system

k11∆u1 + k12∆u2 − α(u1 − u2) = 0,

k21∆u1 + k22∆u2 − α(u1 − u2) = 0,

}
(6.1)

where we asume that the matrix k11 k12

k21 k22

 (6.2)

is positive definite and that α is a positive constant.
It is worth recalling that this system determines the temperatures in a mixture

of isotropic and homogeneous heat conducting materials (see [5, 10, 13]). To define
the boundary conditions, we assume that

u1 − u2 = 0 on (0,∞)× ∂D × (0, t) (6.3)

together with
qini + f∗1 (u1, u2) = 0 on [0,∞)× Ω1 × (0, t) (6.4)

and on Ω2 we assume that

qini+m1(u1, u2)u1,t+m2(u1, u2)u2,t+f
∗
2 (u1, u2) = 0 on [0,∞)×Ω2×(0, t), (6.5)
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where

qi = q
(1)
i + q

(2)
i , q

(1)
i = k11u1,i + k12u2,i, q

(2)
i = k21u1,i + k22u2,i (6.6)

and
f∗1 (u, u)u ≥ 0, f∗2 (u, u)u+ ωM1(u) ≥ C|u|2p, (6.7)

with

M1 =

∫ u

0

η
[
m1(η, η) +m2(η, η)

]
dη ≥ 0

and C a positive constant. In this situation, the analysis starts by considering the
function

Φ(z, t) =−
∫ t

0

∫
D(z)

exp(−ωτ)
[

(k11u1,1 + k12u2,1)u1

+ (k21u1,2 + k22u2,2)u2

]
da dτ.

(6.8)

We note that, for z ≥ z0,

Φ(z, t)− Φ(z0, t) =−
∫ t

0

∫ z

z0

∫
D

exp(−ωτ)
[
k11|∇u1|2 + (k12 + k21)∇u1∇u2

+ k22|∇u2|2 + α(u1 − u2)2
]
dx dτ

−
∫ t

0

∫ z

z0

∫
Ω1

exp(−ωτ)f∗1 (u, u)u da dτ

−
∫ t

0

∫ z

z0

∫
Ω2

exp(−ωτ) [f∗2 (u, u)u+ ωM1(u)] da dτ

−
∫ z

z0

∫
Ω2

exp(−ωt)M1(u) da.

(6.9)

It is worth noting that

∂Φ

∂z
=−

∫ t

0

∫
D(z)

exp(−ωτ)
[
k11|∇u1|2 + (k12 + k21)∇u1∇u2

+ k22|∇u2|2 + α(u1 − u2)2
]
da dτ

−
∫ t

0

∫
Ω1(z)

exp(−ωτ)f∗1 (u, u)u dl dτ

−
∫ t

0

∫
Ω2(z)

exp(−ωτ)
[
f∗2 (u, u)u+ ωM1(u)

]
dl dτ

−
∫

Ω2(z)

exp(−ωt)M1(u) dl.

(6.10)

An analysis similar to the one proposed at Section 3 allows us to obtain the inequal-
ity

|Φ(z, t)| ≤M∗4
[
−∂Φ

∂z

]
+M∗6

[
−∂Φ

∂z

](p+1)/(2p)

, (6.11)

where M∗4 and M∗6 are calculable positive constants depending on the parameters
of the problem and the time. This estimate allows us to get an alternative of the
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type (3.13) and (3.14). Therefore, we can obtain a similar result to the one given
at Theorem 3.1. To be precise, we can prove that either the function∫ t

0

∫
R(z)

exp(−ωτ)
[
k11|∇u1|2 + (k12 + k21)∇u1∇u2

+ k22|∇u2|2 + α(u1 − u2)2
]
dx dτ +

∫ t

0

∫
Ω∗

1(z)

exp(−ωτ)f∗1 (u, u)u da dτ

+

∫ t

0

∫
Ω∗

2(z)

exp(−ωτ) [f∗2 (u, u)u+ ωM1(u)] da dτ +

∫
Ω∗

2(z)

exp(−ωt)M1(u) da

decays as a polynomial, or the function∫ t

0

∫ z

z0

∫
D

exp(−ωτ)
[
k11|∇u1|2 + (k12 + k21)∇u1∇u2

+ k22|∇u2|2 + α(u1 − u2)2
]
dx dτ +

∫ t

0

∫ z

z0

∫
Ω1

exp(−ωτ)f∗1 (u, u)u da dτ

+

∫ t

0

∫ z

z0

∫
Ω2

exp(−ωτ) [f∗2 (u, u)u+ ωM1(u)] da dτ +

∫ z

z0

∫
Ω2

exp(−ωt)M1(u) da

increases in an exponential way.
Estimates for the amplitude term can be obtained in a similar way as in Section 5.
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