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PHRAGMEN-LINDELOF ALTERNATIVE FOR
THE LAPLACE EQUATION WITH DYNAMIC
BOUNDARY CONDITIONS*
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Abstract This paper investigates the spatial behavior of the solutions of
the Laplace equation on a semi-infinite cylinder when dynamical nonlinear
boundary conditions are imposed on its lateral side. We prove a Phragmén-
Lindelof alternative for the solutions. To be precise, we see that the solutions
increase in an exponential way or they decay as a polynomial. To give a
complete description of the decay in this last case we also obtain an upper
bound for the amplitude term by means of the boundary conditions. In the
last section we sketch how to generalize the results to a system of two elliptic
equations related with the heat conduction in mixtures.
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1. Introduction

The analysis of the spatial stability of the solutions for the equilibrium equations
in elasticity is a relevant issue when the deformations of a cylinder are studied. It
is closely related with Saint-Venant’s principle and it has deserved a lot of interest
recently.

Results about spatial stability have been extended to dynamical elastic problems
and to dynamical thermal problems. In fact, the interest for the spatial stability
has gone beyond thermomechanics and, nowadays, it is the aim of study in differ-
ent types of partial differential equations and/or systems. It is worth noting that
the mathematical framework where such results are considered is the Phragmén-
Lindeldf principle which proposes an increase/decay alternative for the solutions.

The spatial behavior of elliptic [3], parabolic [6, 8], hyperbolic [1,4,9] equations
and/or combinations of them [12] have been already obtained. However, there are
many aspects yet which need to be studied and clarified. In this note we want to
pay attention to the Laplace equation with nonlinear dynamical boundary condi-
tions. That is, when a certain nonlinear ordinary dynamical differential equation
is satisfied at the lateral boundary of the cylinder where the Laplace equation is
satisfied. As far as the authors know, there are no results in the literature on spa-
tial behavior of solutions when such kind of boundary conditions are assumed. We
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obtain a Phragmén-Lindelof type alternative for the solutions of the problem. In
fact, we see that the solutions either blow-up in an exponential way when the large
variable becomes unbounded, or they decay as a polynomial when the large variable
is increasing. It is appropriate to recall several results when nonlinear boundary
conditions are imposed (see the papers by Horgan and Payne [7] and Leseduarte
and Quintanilla [11]). We follow a similar approach. However, our results only
apply when the nonlinear term is super-linear, but not in the sub-linear case.

The plan of the paper is the following. In the next section we propose the prob-
lem we are dealing with. A Phragmén-Lindel6f alternative is obtained in Section
3. When the solutions decay, our estimate is impractical if we do not have some
information on the amplitude term. In Section 4 we obtain an upper bound for the
amplitude term when the solutions decay. Section 5 is devoted to give an illustrative
example. In the last section we propose an extension of the results to a system of
two linear elliptic equations that are related with the heat conduction in mixtures.

2. Preliminaries

We want to investigate the spatial asymptotic behavior of the solutions of the
Laplace equation with nonlinear dynamic boundary conditions. Therefore, we con-
sider a semi-infinite cylinder R = [0, 00) x D, where D is a two-dimensional bounded
domain smooth enough to apply the divergence theorem.

We consider a problem related with the Laplace equation

Au=0 on R x (0,1). (2.1)

To define the boundary conditions, we suppose that 9D = Q,UQ,, where Q1N = 0
and such that the measure of ()5 is positive. On {21, we impose that

g—z + fi(u) =0 on [0,00) x 1 x (0,1); (2.2)

on 2y we suppose that

g% + s(u)ug + f2(u) =0 on [0,00) x Qg x (0,1); (2.3)

and on the finite end of the cylinder we impose that
U(O,IQ,l‘g,T) :g(I27CC37T) on {0} x D x (Ovt) (24>

From now on, we assume that
fi(w)u >0 (2.5)

for every u, and that there exists a positive constant C' such that
fo(w)u 4 wSi (u) > Clul??, (2.6)

where p > 1, w is a positive constant large enough and

S1(u) = / " ps(n) dn > 0. (27)
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As we impose dynamic boundary conditions on €25, we need to assume also initial
conditions on 5. We suppose that

u=0 on [0,00) x Q3 x {0}. (2.8)
In this paper we will use the following notation:

D(z) ={z} x D; Q1(2) ={2} x Q; Qa(z) = {z} x Qa;
R(z)={x € Ryx1 > z}; Qi (z)={z €]0,00) x Q;,21 > z}.

In the analysis we will need to use the generalized Poincaré inequality. We recall
that there exists a positive constant C such that (see [2], p281)

2
/|u\2da§C’1 /|Vu|2da+/ wdl| |, (2.9)
D D Qo

for every smooth function v and for a two dimensional domain D. It is worth
noting that the precise value of the constant C; depends on the domain D and on
the subset of the boundary (2.

3. Spatial estimates
In this section we obtain an alternative of the Phragmén-Lindelof type for the

solutions of the problem determined by (2.1)—(2.4) and (2.8). From now on, we
consider a positive constant, w, such that condition (2.6) is satisfied. We define the

function .
- / / exp(—wT)uu, 1 dadr. (3.1)
0 JD(z)

We note that for z > zp, the function ®(z,t) may be expressed as

B(z,1) — B(z0,1 // /exp )| Vul? dz dr
7/0 /ZO /Q1 exp(—wr) f1(u)udadr

L (3.2)
—/ / / exp(—wT) [fa(u)u + wS1(u)] dadr
0 zo J Qo
7/ / exp(—wt)Sy(u) da
zZ0 Qz
Notice that if
ZILIEO O(z,t) =0, (3.3)
then the relation (3.2) implies that
D(z,1t) / / exp(—wr) |Vu\2dxd7'+/ / exp(—wT) fi(w)udadr
R(z)
—I—/ / exp(—wT) [fa(u)u + wS1(u)] dadr (3.4)
0 /Q5(2)

+ / exp(—wt) St (u) da.
3(2)
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From (3.2) we also see that

t t
o= [ | ewlenivutdadr— [ [ ew-wenpudds
0z 0 JD(2) 0 JQi(z)

- / / exp(—wr) [fo(u)u + wSi (u)] dl dr (3.5)
0 QQ(Z)

—exp(—wt S (u)dl.
p(—wt) /Q 5w

In view of the Schwarz inequality, from (3.1) we find

. 1/2
|®(z,1)] < / / exp(—wr)u? da dr
0 JD(z)

t » (3.6)
X / / exp(—wr)u? dadr .
0 JD(2) '
We have that
t t
/ / exp(—wr)u? da dr §/ / u* da dr
0 JD(z) 0 JD(z)
. 2
SC&/ / U U o da + / udl dr (3.7)
0 D(z) Qs(2)
t
gcl/ / U oo da + Ml/ u?dl| dr,
0 D(z) Q2(z)
where
1/2
M; = [measure (Qs)] ",
and Greek sub-indices are restricted to two and three.
From (3.6) and (3.7), it follows that
. . 1/2
|D(z,1)] SC’ll/z / / U U o dadr + Ml/ / u?dl dr
0 JD(z2) 0 JQa(2)
(3.8)

; 1/2
X // exp(—wr)u? dadr .
0 JD(2) '
t t 1/p
// |u|? dl dr < M, // |u|?P dl dr , (3.9)
0 JQa(2) 0 JQa(z)

where p > 1 and

But

My = [t measure (Qg)]p/(p_l).
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We obtain that

. 1/2
/ / lu|? dl dr
0 JQ2(z)

. 1/(2p)
< exp(wt)/ 2P ALY/ ( I el a d¢> (3.10)
2(z

t 1/(2p)
<M; (/o /Qz(z) exp(—wT) [fa(u)u + wSy (u)] di dT> )

where
M; = C—1/2p) exp(wt)l/(Qp)le/2.

Then, it follows that

. 1/2
D(z,t) < [2My // exp(—wT)u,qU o dadr
0 JD(z)

¢ 1/(2p)
o </0 /Qz(z) exp(—wr) [fa(w)u+ wSi(w)] di dT) (3.11)

; 1/2
X / / exp(—wr)u? dadr ,
0 JD(2) ’

1
M4 = 5 011/2 exp(wt), M5 = 011/2M1M3.

After some standard manipulations we arrive at (see [7, p128])

where

(p+1)/(2p)
8@} + Mg [ gf] , (3.12)

< =
(2, 1)) < M4[ o

where
Mg = pl/Q(p + 1)—(p+1)/(2p)M5.

Consequences of the estimate (3.12) have been studied by Horgan and Payne (see [7,
p134]). It can be proved that either there exists a positive constant 1 (see [7, p135])
such that

— ®(z2,t) > C1Q1 exp <zézo) , 7> 20, (3.13)

1

where
2p

= m
and G5 is an arbitrary positive constant, or the decay estimate (see [7, p136])

Cr = My+ Ms(2—B)B" 62, B

—(p+1)/(p—1)

—2(p+1)/(p—1) (3.14)
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holds, where
Co = My(2— B)o; PV L ppg, Gy = Mu(B - 1)5,

and &7 is an arbitrary positive constant and

g 11/2 . —(p—1)/(p+1)
. . Al C Cy
0) =2C5(p+ 1)< |®(0,6)Cit + =2 -
Q(0) =2Ca(p+ 1) [ 006"+ 15| e
Ao 1/2 . 2/(p+1)
. NE C. Cy
—C3(p+1)< |2(0,6)C5 1 + =2 - —

We note that estimate (3.14) implies that (3.3) holds and then the function ®(z,1)
is determined by (3.4).
Our results can be summarize by means of the following theorem.

Theorem 3.1. Let u(x,t) be a solution of the problem determined by (2.1)-( 2.4)
and (2.8). Then either the function

t z t z
/ / / \Vu|?dz dr +/ / filw)udadr
oJo Jp 0o Jo Jou

+/Ot/oz/92 [f2(u)u+w51(u)]dadr+/oz o, S1(u) da

becomes unbounded in an exponential way when z tends to infinite, or the function

t t
/ / \w\zdm+/ / f1(u)udadr
0 JR(z) 0 JQi(2)

+/Ot/%(z) [fQ(u)u—l—wSl(u)]dadT—i—/ S1(u) da

23(2)
decays at least as fast as z=PH/P=1) when 2z tends to infinite.

For the particular case p = 1, we can improve the estimates. From the estimate
(3.12), we see that

0P
It is well known that this inequality implies an alternative of the following type
(see [3]):
The function ®(z,t) satisfies the estimate
zZ— 20
—®(z,t) > Q] _— > 3.16
(Za)_QleXp(M4+M6>7Z_ZOa ( )
where (Y7 is a positive constant, or the decay estimate
z
D(z,t) < D(0,t —_ > 1
(s.0) < 20,000 (g ) 220 .17

is satisfied. We note that estimates (3.16) and (3.17) give an alternative of expo-
nential type.
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4. The amplitude term

To make clear the estimates obtained in the previous section, we require a bound
for ®(0,t) in terms of the boundary conditions at the end of the cylinder x3 = 0.
Otherwise, the decay estimate obtained at (3.14) would be impractical because
the dependence of the amplitude on the data would not be explicit. To make
calculations easier, we assume in this section that Q; = () and that fa(u) = 0.
Furthermore, we impose that

mSy(u) > [S2(u)|”, m >0, p; > 1, (4.1)
where Sy(u) = [, s(n) dn.
We note that

t t
®(0,1) :/ / exp(—w7‘)|Vu|2dxdT+w/ / exp(—wT)Sy(u) dadr
0 JR 0 /Q5(0)

. (4.2)
+ exp(—wt) / S1(u) da = f/ / exp(—wT)gu 1 dadr,
Q3(0) 0 JD(0)
where g(x2,z3,t) was considered at (2.4). We now define
h(z1,x2,z3,5) = g(x2, T3, s) exp(—bz1), (4.3)

where b is an arbitrary positive constant. We have that

t t
®(0,1) :/ / exp(—wTr)h ju; dvdr + / / exp(—wr)hS(u)u, dadr
0o JR 0 J3(0)
t t
= / / exp(—wr)h u;dedr +w / / exp(—wt)hSs(u) dadr (4.4)
o JR 0 J/3(0)

¢
- / / exp(—wT)hsS2(u) da dr + exp(—wt) / hSs(u) da.
0 J03(0) Q3(0)

We see that

t /20 1/
@(O,t)g[/ /exp(—wT)hyih,idde} [/ /exp(—wr)u7iu,id$d7}
0o JR 0o JR
t /a1
/ / exp(—wTr)h" dadr
0 /Q35(0)
[ .t 1/p1
X // exp(—wt)|S2(u) P da dr
/o Jazo
[ .t /aq
+ // exp(—wT)hi dadr
/0 /93(0)
[ .t 1/p1
X // exp(—wT)|S2(u)|P* dadr
/o Jaj(0)
1/p1

a1
+ exp(—wt) [/ h‘“da] [/ |Sg(u)|p1da‘| ,
Q3(0) Q3(0)

2

+w
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where ¢; ' +p;t =1
Using the arithmetic-geometric mean inequality and Young’s inequality, we find

that
1t
Sf/ /exp(—wT)u,iquxdT
2Jo Jr

1 t
+7/ /exp(fwT)hﬂ-hJ- dx dr
2Jo Jr

1 st
+ - / / exp(—wT)S1(u) dadr
2 Q1 (0)

q1/p1 wit
) / / exp(—wTr)h® dadr (4.6)
Q:(0)

@
”
ie)
n
€
[y
=
2
n
—~
~
U
S

> — exp(—wt)h? da.
P1 Jax(o)

We obtain that

//exp —wT)h;h dx dr
o JR

4 a/rr g
+2 (m) @ / / exp(—w7)h? da dr
1 Q1 (0) (47)
4 q1/p1 1 :
+2 <m) / / exp(—wr)hd da dr
Y4 Qx(0)
2 q1/p1 1
+2 (m) — eXp wlt)/ h9 da.
P1 Q*(0)
We have
hi(z1,w2,23,7) = —bg(w2, 23, T) exp(—bxy), (4.8)
ha(x1,m2,23,7) = go(w2, 23, 7) exp(—bry1), (4.9)
hr(x1,x2,23,7) = g, (22,3, 7) exp(—bxq). (4.10)
Therefore,
t t .09 b
/ / exp(—wt)h ;h;dxdr = / / exp(—wr) <M + 92) dadr, (4.11)
o Jr o JD(0) 2b 2
t t ga
/ / exp(—wTr)hdadr = / / exp(—wT)=— dl dr, (4.12)
0 Jar (o) o JaD(0) b

t t q1
/ / exp(—wr)hftdadr = / / (— )gT dldr (4.13)
0 Jar () o Jap(o) qib
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and

q1
/ h‘“da:/ I_a. (4.14)
Q1 (0) aD(0) q1b
We then obtain

t
e’ [e3% b
D(0,1) S/ / exp(—wr) (g oy 2 g )dadr
4 q1/p1 q1
+2< m> d / / exp(—wT)|g|™dl dr
D1 p1q1b aD(0)
4 q1/p1
—|—2<m> // exp(—wT)|g, .| dl dr
D1 P191b Jo Jap(o)

2 q1/p1 1
+2 (m) exp(—wt)/ lg|? dl.
D1 p1g1b aD(0)

We can optimize the right hand side of (4.15) with respect to b, but it does seem
an easy task.

(4.15)

5. An example

In this section we give an exemple for the boundary conditions satisfying (2.5)—(2.7)
and (4.1). We try to illustrate the obtained results.

First we consider the conditions (2.5)—(2.7). We can take, for instance, fi(u) =
a1(1 — cosu)u™!, where a; > 0; fo(u) = az(1 — cosu)u™"' — by|u|*u, where ay > 0,
by > 0 and k > 0 and s(u) = s;|ul¥, with s; > 0. In this case we have that
fi(w)u = a1(1 —cosu) > 0 and (2.5) holds. Moreover,

_ 5 k+2
Siw) = 225l
and condition (2.7) holds. Regard to the condition (2.6), if we take C' > 0 and
k+2)b ~
= @ + C’
S1
we have
k+2)b -
fo(w)u + wSy (u) = az(1 — cosu) — bo|u|*2 + (k+2)bs +C |ulF+2
S1 k + 2

51C

=az(1 —cosu) + —— F4o \ |F+2 > Clul*+2 > Clul?,

- 5:C . k+2
where C' = 12 and p = 7 So, (2.6) holds.

We now give some explicit values for the parameters obtained in the estimates
of Section 3. We assume that 5 is such that mesure(Qs) =1, by =0, k =2, C = 2
and s; = 1. Therefore, w = 2, p = 2 and C = 1/2. We also consider 61 = 69 = 1.
With these values, we obtain

1
My =1, My=1t> Ms=2"4%exp(2t)"/*, M, = 5011/2 exp(2t),

2\ 3/4
My = 21/4011/215 exp(2t)t*, Mg = <3) 01/2t exp(2t)1/4.
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We note that @), is an arbitrary constant, but we do not have any a priori bound.
Thus, estimates (3.13) and (3.14) hold for

1 1 2
Cl = 5 011/2 exp(2t) + 5011/2 (

3/4
3) texp(2t)'/4,

L1 2\ %/ L1
Cy = 3 011/2 exp(2t) + 011/2 (3) texp(2t)Y/4, and (s = 8 011/2 exp(2t).

The proposed example also satisfies condition (4.1). As we pointed out before, we
assume that Q; = ) and fo(u) = 0. When s(u) = s;|ul*, with s; > 0 and k& > 0
condition (4.1) is always satisfied. In fact, in this case we have that

51 k+1
S = — .
Sa(w)| = 2 Ju
If we take )
k+2 sk +2)
=——>1 d S S S s
p1 k+1> and m Gt m >0,
we get

S1 k S1 P (k+1)
+2 5 +1)p1
m ol <k+1> ful

and condition (4.1) holds.

6. Extension to the system

In this section we sketch how to extend the Phragmén-Lindelof alternative to a
system of equations related with the heat conduction in a mixture of rigid solids.
In place of the equation (2.1) we will consider the system

k11Auq + k12Aug — oz(ul — UQ) =0, (6 1)
kzlAul + kQQAUQ — a(u1 - ’LLQ) = 0, ’
where we asume that the matrix
ki1 k
11 12 (6.2)
ka1 koo

is positive definite and that « is a positive constant.

It is worth recalling that this system determines the temperatures in a mixture
of isotropic and homogeneous heat conducting materials (see [5,10,13]). To define
the boundary conditions, we assume that

u; —uz2 =0 on (0,00) x 9D x (0,¢) (6.3)

together with
gin; + f1 (u1,u2) =0 on [0,00) x @y x (0,1) (6.4)

and on {25 we assume that

qing +ma (w1, u2)u ¢ +meo(ur, u2)ug s+ fo (w1, ug) =0 on [0,00) x Q% (0,1), (6.5)
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where
G = qi(l) + qz@), q§1) = kiiu1; + Kiauoy, qi@) = koruy; + kooug; (6.6)

and
fru,w)u >0, fr(u,u)u +wMy (u) > Clul?, (6.7)

with u
M, = / n[ma(n,n) +ma(n,n)]dn >0
0

and C' a positive constant. In this situation, the analysis starts by considering the
function

¢
P(z,t) = _/0 /D( )eXP(—WT)[(k11u1,1 + k1gug,1) us

+ (k21u1,2 + k22u2’2) ’LLQ] dadr.

(6.8)

We note that, for z > zg,

t z
D(z,t) — D(z0,t) = — / / / exp(—wT) [k11|Vu1|2 + (k12 + k21)Vuis Vug
0 z0 D

+ koo |Vus > + a(uy — ug)?]dz dr

_ /0 t / /Q exp(wr) i (o wpucdadr 69)
-[ t / | esplom) £ o+ ()] dace

_ / /Q exp(—wt) M, (u) da.

It is worth noting that
0P ¢ )
87 = — exp(—wT) [kll\Vuﬂ + (klg + le)VU1VU2
z 0 JD(z)
+ kgg|VU2\2 + a(ug — uQ)Q]da dr

7/0 /Ql(z) exp(—w7) f1 (u, w)udl dr (6.10)
t

,/ / exp(—wT) [ f3 (u, w)u + wMi (uv)]dl dr
0 JQ2(z)

—/ exp(—wt) M (u) dl.
Qs(2)

An analysis similar to the one proposed at Section 3 allows us to obtain the inequal-
ity

(p+1)/(2p)
d d
9 4 ] , (6.11)

— | + M¥ | ——
62} 6 [ 0z
where My and M are calculable positive constants depending on the parameters
of the problem and the time. This estimate allows us to get an alternative of the

0G0 < 017 |
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type (3.13) and (3.14). Therefore, we can obtain a similar result to the one given
at Theorem 3.1. To be precise, we can prove that either the function

t
/ / ) exp(—wT) [k;11|Vu1|2 + (k12 + k21)Vuis Vug
0 JR(z
t
+ koo |Vus|* 4+ a(uy — up)*|da dr + / / exp(—wT) f1 (u, w)uda dr
0 JQi(2)

" /ot /Q;(z) exp(~wr) [f3 (u, w)u + wMy (u)] dadr + /Q;(z) exp(—wt) M (u) da

decays as a polynomial, or the function
t z
/ / / eXp(—WT) [k11|Vu1|2 + (klz + kzl)VmVug
0 zo J D
t z
+ koo |Vus|* + a(uy — up)?|da dr + / / / exp(—wT) f1 (u, w)udadr
0 Z0 Ql

+/Ot / /Q exp(—wr) [f3 (u, w)u + WM (u)] dadTJr/z: /Q exp(—wt) M1 (u) da

increases in an exponential way.
Estimates for the amplitude term can be obtained in a similar way as in Section 5.
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