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Abstract In this paper, Coupled Fractional Reduced Differential Transform
method is extended to apply to the generalized time-fractional two-component
evolutionary system of order 2. By using this method, the solutions in the form
of a generalized Taylor series are obtained. The graphics of numerical solutions
together with the error analysis demonstrate that the present method is ef-
fective and accurate for obtaining approximate solutions of fractional coupled
equations. Moreover, the results also indicate that the solutions obtained by
residual power series method in previous literature (M. Alquran, Analytical
solution of time-fractional two-component evolutionary system of order 2 by
residual power series method, J. Appl. Anal. Comput.,5(2015)(4), 589-599.)
contain errors.
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1. Introduction

The fractional calculus, including integrals and derivatives of arbitrary order, was
first founded by Leibnitz in 1695 [16]. It is a generalization of classical integer-order
calculus. In the past decades, the theory of fractional calculus has been widely used
in various areas of engineering, physics and other fields of applied sciences [3,6,8,12].
Due to its wide application, the fractional calculus has aroused wide concern. The
fractional differential equations as mathematical tools form of fractional calculus can
describe various phenomena more reasonably and reflect the physical reality better
than the integer-order differential equations. For more details, see [1, 9, 13, 14] and
the references therein.
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It is well known that two-component evolutionary system of order 2 arises quite
frequently in fluid mechanics, solid state physics, plasma physics and other mathe-
matical physics [11]. Very recently, the author in [2] has proposed a time-fractional
two-component evolutionary system of order 2 by introducing the fractional deriva-
tive of order α. The new system takes the form

∂αu(x, t)

∂tα
= −3vxx(x, t),

∂αv(x, t)

∂tα
= uxx(x, t) + 4u2(x, t),

(1.1)

where 0 ≤ α ≤ 1. Note that α = 1, system (1.1) becomes the standard two-
component evolutionary system of order 2.

Compared to the integer-order differential equations, it is more difficult to con-
struct and develop approximate and analytical methods to solve the fractional dif-
ferential equations. Therefore, a great deal of efforts have been put to find numerical
and exact solutions of the fractional differential equations, such as variation itera-
tion method [22], Adomian decomposition method [20], collocation method [4, 5],
Laplace-Homotopy perturbation method [10], residual power series method (RPSM)
[2,21], coupled fractional reduced differential transform method (CFRDTM) [18,19].

The CFRDTM has been proposed and developed in [18,19]. This method origi-
nated from generalized Taylor’s formula [15]. Like the RPSM, it provides the power
series approximate solution with fast convergence. The CFRDTM is effective and
simple method to construct approximate solutions. It has been successfully imple-
mented to get soliton solutions of time fractional coupled modified KdV equation-
s [18], to obtain traveling wave solutions of time fractional Whitham-Broer-Kaup
equations [19] and so on.

The purpose of this paper is to make use of the CFRDTM to construct ap-
proximate solutions of system (1.1). After some computations, the approximate
analytical solutions with high accuracy can be acquired in the form of a generalized
Taylor series. On the other hand, the results also indicate that the solutions ob-
tained by the RPSM in the previous literature contain errors. The correct results
are also proposed in this paper.

The rest of the paper has been organized as follows. In Section 2, the brief
description of fractional calculus is reviewed. In Section 3, the CFRDTM has been
introduced. In Section 4, using the CFRDTM, we derive the approximate solutions
for system (1.1). In the mean time, we also compare the results with the solutions
obtained in the previous literature. By comparing, we find the previous results
contain errors. Finally, we present a short conclusion.

2. Preliminaries

In this section, we review some fundamental definitions and preliminary results of
fractional calculus. Unlike classical integer-order calculus, there are different defini-
tions of fractional operators including Riemann-Liouville fractional derivative, Ca-
puto derivative, Riesz derivative and Grunwald-Letnikov fractional derivative [17].
In this paper, the fractional derivative is Caputo type, which was first introduced
by Caputo in the late 1960s.
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Definition 2.1. For m to be the smallest integer that exceeds α, the Caputo
fractional derivatives of order α > 0 is defined as

Dα
t u(x, t) =

∂αu(x, t)

∂tα

=


1

Γ(m− α)

∫ t

0

(t− τ)(m−α−1) ∂
mu(x, τ)

∂τm
dτ, m− 1 < α < m,

∂mu(x, t)

∂tm
, α = m ∈ N.

(2.1)

We collect some properties of the Caputo fractional derivative as follows:

DαC = 0, (C is a constant),

Dα(γf(t) + δg(t)) = γDαf(t) + δDαg(t), (γ and δ are constants),

and

Dαtβ =

{
0, β ≤ α− 1,
Γ(β+1)tβ−α

Γ(β−α+1) , β ≥ α− 1.

Its corresponding Leibnitz’s rule is following

Dα(g(t)f(t)) =

∞∑
k=0

(
α

k

)
g(k)(t)Dα−kf(t),

if f(τ) is continuous in [0, t] and g(τ) has n+ 1 continuous derivatives in [0, t].
Next, we will state Generalized Taylor’s formula. For more detail, the reader is

referred to [7, 15].

Theorem 2.1 (Generalized Taylor’s formula [15]). Suppose that Dkα
a f(t) ∈ C(a, b]

for k = 0, 1, ..., n+ 1, where 0 < α ≤ 1, we have

f(t) =

n∑
i=0

(t− a)iα

Γ(iα+ 1)
[Diα

a f(t)]t=α + Rα
n(t; a) (2.2)

with Rα
n(t; a) = (t−a)(n+1)α

Γ((n+1)α+1) [D
(n+1)α
a f(t)]t=ξ, a ≤ ξ ≤ t , ∀t ∈ (a, b], where Dkα

a =

Dα
a ·Dα

a ·Dα
a · · ·Dα

a (k times).

3. Coupled fractional reduced differential transfor-
m method

For a better description of the CFRDTM, we will firstly give some interpretations.
Notice that the fractional derivatives of the two equations in system (1.1) are the
same α. In fact, the CFRDTM can solve more generalized time-fractional two-
component evolutionary system of order 2, which has the following form:

∂αu(x, t)

∂tα
= −3vxx(x, t),

∂βv(x, t)

∂tβ
= uxx(x, t) + 4u2(x, t),

(3.1)
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where 0 ≤ α ≤ 1, 0 ≤ β ≤ 1.
In this section, we will introduce the CFRDTM to solve more generalized system

(3.1). It is clear that system (1.1) is just the special case of system (3.1).
For convenience, we use U(h, k − h) to denote the coupled fractional reduced

differential transform of u(x, t). Suppose that u(x, t) is analytic and differentiat-
ed continuously with respect to time t, and then the fractional coupled reduced
differential transform of u(x, t) is defined as

U(h, k − h) =
1

Γ(hα+ (k − h)β + 1)
[D

(hα+(k−h)β)
t u(x, t)]t=0, (3.2)

whereas the inverse transform of U(h, k − h) is

u(x, t) =

∞∑
k=0

k∑
h=0

U(h, k − h)thα+(k−h)β , (3.3)

which is one of the solution of coupled fractional differential equations.
Here, we present the import theorem of the fractional coupled reduced differen-

tial transform from [18,19].

Theorem 3.1. Suppose that U(h, k−h) and V (h, k−h) are the coupled fractional
reduced differential transform of the functions u(x, t) and v(x, t), respectively.

(i) If u(x, t) = f(x, t)± g(x, t), then U(h, k − h) = F (h, k − h)±G(h, k − h).
(ii) If u(x, t) = af(x, t), where a ∈ R, then U(h, k − h) = aF (h, k − h).

(iii) If f(x, t) = u(x, t)v(x, t), then F (h, k−h) =
∑h
l=0

∑k−h
s=0 U(h− l, s)V (l, k−

h− s).
(iv) If f(x, t) = Dα

t u(x, t), then

F (h, k − h) =
Γ((h+ 1)α+ (k − h)β + 1)

Γ(hα+ (k − h)β + 1)
U(h+ 1, k − h).

(v) If f(x, t) = Dβ
t v(x, t), then

F (h, k − h) =
Γ(hα+ (k − h+ 1)β + 1)

Γ(hα+ (k − h)β + 1)
V (h, k − h+ 1).

4. Application

Consider the following time-fractional two-component evolutionary system of order
2 [2]:

∂αu(x, t)

∂tα
= −3vxx(x, t), (4.1)

∂αv(x, t)

∂tα
= uxx(x, t) + 4u2(x, t), (4.2)

subject to the initial conditions:

u(x, 0) = − 3

4(1 + cos(x))
, (4.3)

v(x, 0) =

√
3

4
tan(

x

2
). (4.4)



1316 L. Wang & F. Wang

For the special case, where α = 1, the exact solutions of Eqs.(4.1), (4.2) are
given by

u(x, t) = −3

8
− 3

8
tan2(

x

2
+

√
3

2
t), (4.5)

v(x, t) =

√
3

4
tan(

x

2
+

√
3

2
t). (4.6)

In the purpose of using the CFRDTM for solving time-fractional two-component
evolutionary system of order 2, we derive the recursive formula from Eqs.(4.1), (4.2)
in the first step. We suppose that U(h, k − h) and V (h, k − h) are the coupled
fractional reduced differential transform of u(x, t) and v(x, t), respectively. Here,
u(x, t) and v(x, t) are assumed to be the solutions of Eqs.(4.1), (4.2) and U(0, 0) =
u(x, 0),V (0, 0) = v(x, 0) are the given initial conditions. Without loss of generality,
we assume that

U(0, j) = 0, j = 1, 2, 3, · · · and V (i, 0) = 0, i = 1, 2, 3 · · · .

By applying CFRDTM to Eq.(4.1), we have the following recursive formula

Γ((k + 1)α+ 1)

Γ(kα+ 1)
U(h+ 1, k − h) = −3

∂2

∂x2
V (h, k − h). (4.7)

From the initial condition (4.3), we have

U(0, 0) = u(x, 0) = − 3

4(1 + cos(x))
= −3

8
− 3

8
tan2(

x

2
). (4.8)

Similarly, the recursive formula from Eq.(4.2) can be obtained as follows:

Γ((k + 1)α+ 1)

Γ(kα+ 1)
V (h, k−h+1) =

∂2

∂x2
U(h, k−h)+4

h∑
i=0

k−h∑
s=0

U(i, k−h−s)U(h−i, s).

(4.9)
Due to the initial condition of Eq.(4.4), we have

V (0, 0) = v(x, 0) =

√
3

4
tan(

x

2
). (4.10)

According to the process of CFRDTM, using recursive formulas (4.7) and (4.9)
together with initial conditions (4.8) and (4.10), we can easily get

U(1, 0) =
−3
√

3 sec2(x2 ) tan(x2 )

8Γ(1 + α)
,

V (0, 1) =
3 sec2(x2 )

8Γ(1 + α)
,

U(1, 1) =
−9 sec2(x2 )(3 tan2(x2 ) + 1)

16Γ(1 + 2α)
,

V (0, 2) = 0,

U(2, 0) = 0,

V (1, 1) =
3
√

3(tan(x2 ) + tan3(x2 ))

8Γ(1 + 2α)
.
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The other recursive expressions can be derived by the same manner as above.

To obtain the approximate solutions, we substitute the recursive expressions
into (3.3), i.e.,

u(x, t) =

∞∑
k=0

k∑
h=0

U(h, k − h)tkα

= U(0, 0) +

∞∑
k=1

k∑
h=1

U(h, k − h)tkα

= −3

8
− 3

8
tan2(

x

2
)−

3
√

3 sec2(x2 ) tan(x2 )

8Γ(1 + α)
tα

−
9 sec2(x2 )(3 tan2(x2 ) + 1)

16Γ(1 + 2α)
t2α + · · ·

(4.11)

and

v(x, t) =

∞∑
k=0

k∑
h=0

V (h, k − h)tkα

= V (0, 0) +

∞∑
k=1

k∑
h=0

V (h, k − h)tkα

=

√
3

4
tan(

x

2
) +

3 sec2(x2 )

8Γ(1 + α)
tα +

3
√

3(tan(x2 ) + tan3(x2 ))

8Γ(1 + 2α)
t2α + · · · .(4.12)

Thus, the approximate solutions in the series form for Eqs.(4.1), (4.2) are ob-
tained respectively. Now, let us discuss the solutions in the special case of α = 1.
When α = 1, the solutions are given by

u(x, t) = −3

8
− 3

8
tan2(

x

2
)− 3

√
3

8
sec2(

x

2
) tan(

x

2
)t

− 9

32
sec2(

x

2
)(3 tan2(

x

2
) + 1)t2 + · · · (4.13)

and

v(x, t) =

√
3

4
tan (

x

2
) +

3

8
sec2(

x

2
)t+

3
√

3

16
(tan(

x

2
) + tan3(

x

2
))t2 + · · · . (4.14)

We find that the solutions (4.13) and (4.14) are exactly same as the Taylor series
expansions of the exact solutions

u(x, t) = −3

8
− 3

8
tan2(

x

2
+

√
3

2
t)

= −3

8
− 3

8
tan2(

x

2
)− 3

√
3

8
(sec2(

x

2
) tan(

x

2
))t

− 9

32
(sec2(

x

2
)(3 tan2(

x

2
) + 1))t2 + · · · (4.15)
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and

v(x, t) =

√
3

4
tan(

x

2
+

√
3

2
t)

=

√
3

4
tan(

x

2
) +

3

8
sec2(

x

2
)t+

3
√

3

16
(tan(

x

2
) + tan3(

x

2
))t2 + · · · . (4.16)

In order to illustrate the efficiency and accuracy of the present method, we
construct n-th truncated series of u(x, t), v(x, t), which are exactly same as the
n-th truncated Taylor series of the exact solutions. Let un(x, t) and vn(x, t) denote
the n-th truncated series as follows:

un(x, t) =

n∑
k=0

k∑
h=0

U(h, k − h)tkα,

vn(x, t) =

n∑
k=0

k∑
h=0

V (h, k − h)tkα.

Therefore, the 1-st truncated series solutions are

u1(x, t) = −3

8
− 3

8
tan2(

x

2
)−

3
√

3 sec2(x2 ) tan(x2 )

8Γ(1 + α)
tα,

v1(x, t) =

√
3

4
tan(

x

2
) +

3 sec2(x2 )

8Γ(1 + α)
tα. (4.17)

The 2-nd truncated series solutions have the form

u2(x, t) = u1(x, t)−
9 sec2(x2 )(3 tan2(x2 ) + 1)

16Γ(1 + 2α)
t2α,

v2(x, t) = v1(x, t) +
3
√

3(tan(x2 ) + tan3(x2 ))

8Γ(1 + 2α)
t2α. (4.18)

The 3-rd and the 4-th truncated series solutions are represented as

u3(x, t) = u2(x, t)−
9
√

3(2 tan(x2 ) + 5 tan3(x2 ) + 3 tan5(x2 ))

8Γ(1 + 3α)
t3α,

v3(x, t) = v2(x, t) + (
9 sec2(x2 )(2− 6 tan2(x2 )− 12 tan4(x2 ))

32Γ(1 + 3α)

+
27 sec4(x2 ) tan2(x2 )Γ(1 + 2α)

16(Γ(1 + α))2Γ(1 + 3α)
)t3α,

(4.19)

and

u4(x, t) = u3(x, t) + (
27 sec2(x2 )(1 + 30 tan2(x2 ) + 90 tan4(x2 ) + 63 tan6(x2 ))

16Γ(1 + 4α)

+
−81Γ(1 + 2α) sec4(x2 )(21 tan4(x2 ) + 14 tan2(x2 ) + 1)

32(Γ(1 + α))2Γ(1 + 4α)
)t4α,

v4(x, t) = v3(x, t) + (
27
√

3 sec2(x2 )(2 tan(x2 ) + 5 tan3(x2 ) + 3 tan5(x2 ))

8Γ(1 + 4α)
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+
−9
√

3 tan(x2 )(1 + tan2(x2 ))(17 + 60 tan2(x2 ) + 45 tan4(x2 ))

16Γ(1 + 4α)

+
27
√

3Γ(1 + 3α) sec4(x2 ) tan(x2 )(3 tan2(x2 ) + 1)

16Γ(1 + α)Γ(1 + 2α)Γ(1 + 4α)
)t4α. (4.20)

Now, let us compare our results with the residual power series (RPS) solutions
obtained in [2]. Since both of the solutions were calculated in the form of a gener-
alized Taylor series, it is possible to compare. It is evident that the 1-st and 2-nd
RPS approximate solutions obtained by the RPSM in [2] are identical to (4.17)
and (4.18), respectively. However, we find that the 3-rd and 4-th RPS approximate
solutions presented in [2] are not in agreement with (4.19) and (4.20). They are the
same only in the special case of α = 1. Notice that there are errors on p.595 in [2]:
when the author applied D2α

t on both sides of Eq.(3.22), the terms in (3.23) are
wrong. As a result, the expressions of g3(x) and g4(x) in (3.24) and (3.25) contain
errors in [2]. The reason for the errors is that the author mixed the derivation
rule of fractional derivative with integer-order derivative. By the properties of the
Caputo fractional derivative, when β > α− 1, we have

Dα
t t
β =

Γ(β + 1)

Γ(β − α+ 1)
tβ−α. (4.21)

Unfortunately, the author in [2] treated it as integer-order derivative and used

Dα
t t
β = βtβ−1Dα

t t =
β

Γ(2− α)
tβ−α. (4.22)

Obviously, (4.22) only holds when α = 1. The correct expressions of g3(x) and
g4(x) in [2] should be

g3(x) = f ′′2 (x) + 8f(x)f2(x) + 4
Γ(1 + 2α)

(Γ(1 + α))2
f2

1 (x), (4.23)

g4(x) = f ′′3 (x) + 8f(x)f3(x) + 8
Γ(1 + 3α)

Γ(1 + α)Γ(1 + 2α)
f1(x)f2(x). (4.24)

Replacing the expressions of g3(x) and g4(x) by (4.23) and (4.24) in [2], we obtain
the correct 3-rd and 4-th RPS approximate solutions, which appear to coincide with
(4.19) and (4.20).

Figure 1 explores the 4-th truncated series solutions of u(x, t) for different values
of the fractional order α. The comparison between the approximate solution and
exact solution for α = 1 is also shown in Figure 1. The corresponding graphics of
v4(x, t) and v(x, t) are demonstrated in Figure 2.

When α = 1, the absolute errors between the 4-th truncated series solutions
obtained by the CFRDTM and the exact solutions for Eqs.(4.1), (4.2) are given in
Tables 1 and 2. From Tables 1-2, it is not difficult to observe that we can obtain
good approximate solutions by using the CFRDTM.

5. Conclusion

In this paper, we have shown the solvability of the CFRDTM for time-fractional two-
component evolutionary system of order 2. In theory, we can get the exact solutions
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Figure 1. The 4-th truncated series solutions of u(x, t): (a1) u4(x, t, α = 0.5), (a2) u4(x, t, α = 0.75),
(a3) u4(x, t, α = 1), (a4) u(x, t, α = 1).
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Figure 2. The 4-th truncated series solutions of v(x, t): (b1) v4(x, t, α = 0.5), (b2) v4(x, t, α = 0.75),
(b3) v4(x, t, α = 1), (b4) v(x, t, α = 1).
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Table 1. The absolute errors of u4(x, t) obtained by the CFRDTM.

t/x 0.1 0.2 0.3 0.4 0.5
0.01 2.1577×10−12 4.4156×10−12 7.0073×10−12 1.0146×10−11 1.4110×10−11

0.05 7.5267×10−9 1.4678×10−8 2.2942×10−8 3.3004×10−8 4.5770×10−8

0.1 2.7288×10−7 5.0610×10−7 7.7789×10−7 1.1111×10−6 1.5360×10−6

0.15 2.3226×10−6 4.1321×10−6 6.2586×10−6 8.8827×10−6 1.2247×10−5

0.2 1.0879×10−5 1.8691×10−5 2.7947×10−5 3.9445×10−5 5.4265×10−5

Table 2. The absolute errors of v4(x, t) obtained by the CFRDTM

t/x 0.1 0.2 0.3 0.4 0.5
0.01 2.8762×10−12 3.0648×10−12 3.3925×10−12 3.8844×10−12 4.5798×10−12

0.05 9.0385×10−9 9.6756×10−9 1.0755×10−8 1.2359×10−8 1.4618×10−8

0.1 2.9166×10−7 3.1401×10−7 3.5084×10−7 4.0501×10−7 4.8089×10−7

0.15 2.2368×10−6 2.4219×10−6 2.7200×10−6 3.1542×10−6 3.7599×10−6

0.2 9.5343×10−6 1.0383×10−5 1.1720×10−5 1.3653×10−5 1.6339×10−5

of the infinite series form. On the other hand, the approximate analytical solutions
can be derived by truncated series. The graphical results and error analysis reveal
that the CFRDTM yields a very efficient and accurate approach to solve time-
fractional two-component evolutionary system of order 2. From what has been
discussed above, we may safely come to a conclusion that the CFRDTM can be
used as an alternative for this type of system. Our results also reveal there are
errors in the expressions of g3(x) and g4(x) in [2].
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