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ON THE STABILITY OF A POPULATION
MODEL WITH NONLOCAL DISPERSAL∗
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Abstract This paper is concerned with a nonlocal dispersal population model
with spatial competition and aggregation. We establish the existence and
uniqueness of positive solutions by the method of coupled upper-lower solu-
tions. We obtain the global stability of the stationary solutions.
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1. Introduction

Let J : RN ×RN → R be a non-negative function. It is known from [1,13] that the
nonlocal dispersal operator of form

D [u](x, t) =

∫
RN

J(x, y)u(y, t)dy − u(x, t)

and its variations have been widely used to model different dispersal phenom-
ena in material science and ecology. The nonlocal dispersal operator D [u] also
characterizes the diffusion of species which may occur between nonadjacent loca-
tions [5, 6, 10, 20–22, 24]. There is quite an extensive literature on the study of
nonlocal dispersal problems, for example, the papers [4, 9, 14, 15, 18, 19, 21, 23]. In
this paper, we consider the nonlocal dispersal equation{

ut(x, t) = D [u](x, t) + u(x, t)(1 + αu(x, t)− βu2(x, t)− δG ∗ u),
u(x, 0) = u0(x)

(1.1)

for (x, t) ∈ RN×(0,∞), where α, β are positive constants such that δ = 1+α−β > 0
and G ∗ u is given by

G ∗ u(x, t) =
∫
RN

G(x− y)u(y, t)dy.

Throughout this paper, we make the following assumptions.
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(A1) J ∈ C(RN ) is bounded, non-negative and
∫
RN J(x, y)dy = 1 for all x ∈ RN .

There exist α > 0 and l > 0 such that J(x, y) > α if x, y ∈ Ω̄ and |x− y| < l.

(A2) G ∈ C(RN ) is non-negative and G ∗ 1 = 1.

(A3) u0 ∈ [ϵ, 1/ϵ] for some positive constant ϵ.

Nonlocal dispersal equation (1.1) is used to model the diffusion of a single species
in RN whose density is given by u. In (1.1), the term αu represents an advantage
to the population in local aggregation or grouping, by making available different
food success or protecting measure against predation [2]. The term −βu2 represents
competition for space. The integral term δG∗u represents intraspecific competition
for food resources with non-negative weight function G. The reader is referred
to [3, 7, 11, 12] for the study of diffusion population model with aggregation and
nonlocal competition effects.

Among this paper, we mainly focus on the stability analysis of the stationary
solution to (1.1), that is the solution of (1.1) which is independent of time t. It
follows from [1] that (1.1) is a nonlocal version of the reaction-diffusion equation

ut(x, t) = ∆u+ u(x, t)(1 + αu(x, t)− βu2(x, t)− δG ∗ u),

which is well investigated [3]. For the reaction-diffusion equation with aggregations
and nonlocal competitions as considered in [2], it could be transformed into a system
by using a special form of function G. Then the nonlocal term which contains a
spatial average is transformed into local term. So the linear stability of uniform
state and some bifurcation phenomena of the local problem are well studied. It
is not the case for nonlocal problems, as the dispersal operator D is nonlocal and
there is a deficiency of regularization [4]. In order to overcome these differences,
inspired by the recent work of Deng and Wu [8], we define the coupled upper-lower
solutions and obtain the existence and uniqueness of global solution to (1.1). We
then prove the stability of the stationary solution by approximation method.

The paper is organized as follows. In Section 2, we establish the existence and
uniqueness of non-negative solutions to (1.1). We discuss the stability of stationary
solution in Section 3.

2. Existence and uniqueness of solution

It is well-known from [16, 17] that the monotone iteration method is effective in
the study of existence and uniqueness of solutions to classical reaction-diffusion
equations. In this paper, we consider the nonlocal dispersal equation (1.1). Since
the comparison principle is not valid for (1.1), we cannot use the classical nonlocal
upper-lower solutions method [1]. By (A3), we know that u0 ̸∈ L1(RN ), the argu-
ment of [7,18] do not apply. In order to obtain the existence and uniqueness of the
solutions to (1.1), we need to define new type upper-lower solutions. To do this, we
consider the nonlocal dispersal equation{

vt(x, t) = D [v](x, t) + v(x, t)(f(v)− δG ∗ v),
v(x, 0) = v0(x)

(2.1)

for (x, t) ∈ RN × (0,∞). We impose the following assumptions.

(H1) f is a continuously differentiable function on [0,∞).
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(H2) v0 ∈ L∞(RN ) is positive.

Let us give the definition of upper-lower solutions.

Definition 2.1. A pair of functions ω(x, t) and ϕ(x, t) are called upper-lower solu-
tions of (2.1) on RN × (0, T ) if they satisfy the following conditions.

(i) ω and ϕ are bounded.

(ii) ω(·, x), ϕ(·, x) ∈ C1(0, T )
∩
C[0, T ) and ω(x, 0) ≥ v0(x) ≥ ϕ(x, 0) in RN .

(iii) For any (x, t) ∈ RN × (0, T ),

ωt(x, t) ≥ D [ω](x, t) + ω(x, t)(f(ω)− δG ∗ ϕ), (2.2)

ϕt(x, t) ≤ D [ϕ](x, t) + ϕ(x, t)(f(ϕ)− δG ∗ ω). (2.3)

We can show that the upper-lower solutions defined above are ordered.

Theorem 2.1. Assume that ω and ϕ are a pair of non-negative upper-lower solu-
tions of (2.1). Then

ϕ(x, t) ≤ ω(x, t) in RN × [0, T ).

Proof. Set θ(x, t) = ω(x, t)− ϕ(x, t), it follows from (2.2)-(2.3) that

θt(x, t) ≥ D [θ](x, t) + ω(x, t)f(ω)− ϕ(x, t)f(ϕ) + δϕ(x, t)G ∗ ω − δω(x, t)G ∗ ϕ
= D [θ](x, t) + [f(ω) + ϕf ′(θ1)− δG ∗ ω]θ(x, t) + δω(x, t)G ∗ θ,

where θ1 is between ϕ(x, t) and ω(x, t). Let us denote a(x, t) = f(ω) + ϕf ′(θ1) −
δG ∗ ω, then there holds{

θt(x, t) ≥
∫
RN [J(x, y) + δωG(x− y)]θ(y, t)dy + (a(x, t)− 1)θ(x, t),

θ(x, 0) ≥ 0.

Note that G is non-negative and
∫
RN G(x)dx = 1, by the comparison principle

(see [24]), we get θ ≥ 0.

Theorem 2.2. Suppose that ω and ϕ are a pair of non-negative upper-lower solu-
tions of (2.1) in RN×[0, T ). Then (2.1) admits a unique solution u∈C1((0, T );L∞(RN))
which satisfies the relation

ϕ(x, t) ≤ u(x, t) ≤ ω(x, t) in RN × [0, T ).

Proof. Note that ω and ϕ are bounded, we can choose a constant L > 0 such
that f(s)+ sf ′(s)+L > 0 for s ∈ [0, ∥ω∥∞ + ∥ϕ∥∞]. We give the main proof in the
following steps.

Step 1. Consider the linear nonlocal dispersal equations{
ϕkt (x, t) = D [ϕk](x, t) + ϕk−1(x, t)f(ϕk−1)− δϕkG ∗ ωk−1 − L(ϕk − ϕk−1),

ϕk(x, 0) = v0(x)

(2.4)
and{

ωk
t (x, t) = D [ωk](x, t) + ωk−1(x, t)f(ωk−1)− δωkG ∗ ϕk−1 − L(ωk − ωk−1),

ωk(x, 0) = v0(x),

(2.5)
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where k = 1, 2, . . ., ϕ0(x, t) = ϕ(x, t) and ω0(x, t) = ω(x, t). For each k ≥ 1, we
know that the sequences {ϕk} and {ωk} are well defined in RN × (0, T ) (see [1]).

Step 2. We show that the sequences defined above satisfy

ϕ(x, t) ≤ ϕk(x, t) ≤ ϕk+1(x, t) ≤ ωk+1(x, t) ≤ ωk(x, t) ≤ ω(x, t) (2.6)

for k = 1, 2, . . . and (x, t) ∈ RN × [0, T ).
Let us begin to show that (2.6) holds for k = 1. Take z(x, t) = ϕ1(x, t)−ϕ(x, t),

it follows from (2.3) and (2.4) that{
zt(x, t) ≥ D [z](x, t)− [δG ∗ ω(x, t) + L]z(x, t) in RN ,

z(x, 0) ≥ 0 in RN .
(2.7)

Thus we know that z(x, t) ≥ 0 in RN × [0, T ), since 0 is a lower-solution to (2.7).
A similar discussion gives that ω1(x, t) ≤ ω(x, t) in RN × [0, T ).

Now denote z1(x, t) = ω1(x, t) − ϕ1(x, t). We know from Theorem 2.1 that
ϕ(x, t) ≤ ω(x, t). Then by (2.4)-(2.5), we have

z1t =D [z1](x, t)− Lz1(x, t)− δG ∗ ω(x, t)z1(x, t)
+ [θ(x, t)f ′(θ) + f(θ) + L](ω(x, t)− ϕ(x, t))

≥D [z1](x, t)− Lz1(x, t)− δG ∗ ω(x, t)z1(x, t),

and z1(x, 0) ≥ 0, here θ is between ϕ(x, t) and ω(x, t). Thus we get v1(x, t) ≤
ω1(x, t) in RN × [0, T ).

We then show that ϕ1(x, t) and ω1(x, t) are a pair of lower-upper solutions to
(2.1). Since ϕ(x, t) ≤ ϕ1(x, t) and ω1(x, t) ≤ ω(x, t), we have

ϕ1t (x, t)− D [ϕ1](x, t)− ϕ1(x, t)f(ϕ1) + δϕ1(x, t)G ∗ ω1

=ϕ(x, t)f(ϕ)− ϕ1(x, t)f(ϕ1) + δϕ1(x, t)G ∗ ω1 − δϕ1(x, t)G ∗ ω − L(ϕ1 − ϕ)

=δϕ1(x, t)G ∗ (ω1 − ω)− [f(θ1) + θ1(x, t)f ′(θ1) + L](ϕ1 − ϕ)

≤0,

here θ1 is between ϕ(x, t) and ω(x, t). Similarly, we get

ω1
t (x, t)− D [ω1](x, t)− ω1(x, t)f(ω1) + δω1(x, t)G ∗ ϕ1

=ω(x, t)f(ω)− ω1(x, t)f(ω1) + δω1(x, t)G ∗ ϕ1 − δω1(x, t)G ∗ ϕ− L(ω1 − ω)

≥0.

By choosing ω1 and ϕ1 as upper-lower solutions, after the similar above argu-
ment, we have

ϕ1(x, t) ≤ ϕ2(x, t) ≤ ω2(x, t) ≤ ω1(x, t) in RN × [0, T ).

Also ϕ2(x, t) and ω2(x, t) are lower-upper solutions of (2.1). The conclusion of (2.6)
is followed by induction argument.

Step 3. Since the sequences {ϕk}∞k=1 and {ωk}∞k=1 are monotone and bounded,
there exist two function ϕ̄ and ω̄ such that

lim
k→∞

ϕk(x, t) = ϕ̄(x, t) and lim
k→∞

ωk(x, t) = ω̄(x, t)
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pointwise in RN × [0, T ). It is trivial to see that ϕ̄ ≤ ω̄,{
ω̄t(x, t) = D [ω̄](x, t) + ω̄(x, t)f(ω̄)− δω̄G ∗ ϕ̄,
ω̄(x, 0) = v0(x)

and {
ϕ̄t(x, t) = D [ϕ̄](x, t) + ϕ̄(x, t)f(ϕ̄)− δϕ̄G ∗ ω̄,
ϕ̄(x, 0) = v0(x).

Meanwhile, we can treat ω̄ and ϕ̄ as a pair of upper-lower solutions to (2.1). Thus
we have ϕ̄(x, t) ≥ ω̄(x, t) and then ϕ̄(x, t) = ω̄(x, t) in RN × [0, T ). This gives ϕ̄ is
a solution to (2.1).

Step 4. We show that ϕ̄(x, ·) ∈ C1((0, T ))
∩
C([0, T )). Note that ϕ̄ is a solution

of (2.1), we get

ϕ̄(x, t) = v0(x) +

∫ t

0

[D [ϕ̄](x, s) + ϕ̄(x, s)(f(x, s, ϕ̄)− δG ∗ ϕ̄(x, s))]ds,

and so

ϕ̄(x, t+ ε)− ϕ̄(x, t) =

∫ t+ε

t

[D [ϕ̄](x, s) + ϕ̄(x, s)(f(x, s, ϕ̄)− δG ∗ ϕ̄(x, s))]ds,

here ε is a parameter. Then we know that

|ϕ̄(x, t+ ε)− ϕ̄(x, t)| ≤
∣∣∣∣∫ t+ε

t

[D [ϕ̄](x, s) + ϕ̄(x, s)(f(x, s, ϕ̄)− δG ∗ ϕ̄(x, s))]ds
∣∣∣∣

≤ |ε|C,

where C > 0 is constant which is independent of ε. This gives that ϕ̄(x, ·) ∈
C([0, T )). Furthermore, we have

lim
ε→0

ϕ̄(x, t+ ε)− ϕ̄(x, t)

ε

= lim
ε→0

1

ε

∫ t+ε

t

[D [ϕ̄](x, s) + ϕ̄(x, s)(f(x, s, ϕ̄)− δG ∗ ϕ̄(x, s))]ds

= lim
ε→0

[D [ϕ̄](x, t+ ε) + ϕ̄(x, t+ ε)(f(x, t+ ε, ϕ̄)− δG ∗ ϕ̄(x, t+ ε))]

=D [ϕ̄](x, t) + ϕ̄(x, t)(f(x, t, ϕ̄)− δG ∗ ϕ̄(x, t)).

Thus ϕ̄(x, ·) ∈ C1((0, T )).
Step 5. We give the uniqueness by comparison argument. Assume that v1(x, t)

and v2(x, t) are two bounded solutions to (2.1). Let ψ(x, t) = v1(x, t) − v2(x, t),
then we get

ψt =

∫
RN

[J(x, y) + δv2G(x− y)]ψ(y, t)dy − δψ(x, t)G ∗ v1(x, s)

+ (f(v̂) + v̂f ′(v̂))ψ(x, t),

where v̂ is between v1(x, t) and v2(x, t). But ψ(x, 0) = 0, thus we have ψ ≡ 0 and
this gives the uniqueness of the solution.
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Remark 2.1. In Definition 2.1, the upper-lower solutions satisfy the inequalities
(2.2) and (2.3), respectively. We shall point out that (2.2)-(2.3) can be replaced by

ωt(x, t) ≥ D [ω](x, t) + ω(x, t)f(ω)− δϕ(x, t)G ∗ ϕ,

and
ϕt(x, t) ≤ D [ϕ](x, t) + ϕ(x, t)f(ϕ)− δω(x, t)G ∗ ω.

In this case, the conclusion of Theorem 2.2 still holds.

Now we give the main result of this section.

Theorem 2.3. Assume that there exists P > 0 such that f(s) ≤ 0 for s ≥ P . Then
(2.1) admits a unique solution v(x, t) in RN × [0,∞).

Proof. We can see that ω = P + ∥v0∥∞ and ϕ = 0 are a pair of upper-lower
solutions of (2.1). It follows from Theorem 2.2 that (2.1) admits a unique solution.

3. Stability of stationary solution

In this section, we establish the long time dynamic behavior of the nonlocal dispersal
equation (1.1). In view of Theorem 2.3, we have the following result.

Theorem 3.1. Assume that (A1)−(A3) hold. Then (1.1) admits a unique solution
u ∈ C1((0,∞);L∞(RN )) ∩ C([0,∞);L∞(RN )) in RN × [0,∞).

We can see that u∗ = 1 is a constant stationary solution of (1.1). Set d =
α+

√
α2+4β

2β , we know that d > 0 and 1+αd−βd2 = 0. Let F (s) = 1+αs−βs2− δs
for s ∈ [0,∞), then we have F (0) > 0 and F (d) < 0. Thus we get u∗ < d. Assume
that δd < 1. We can choose d∗ > d such that δd∗ < 1. Then we have the following
technical lemma, see [8].

Lemma 3.1. Assume that δd < 1. For any fixed l ∈ [0, d∗], there exists ω∗ =
ω∗(l) ∈ (α/2β, d] such that 1 + αω∗ − β[ω∗]2 − δl = 0. Furthermore, ω∗(l) is
continuous with respect to l and strictly decreasing on [0, d∗]. Let ω be the unique
solution of {

ωt(t) = ω(t)(1 + αω(t)− β[ω(t)]2 − δl),

ω(0) = 1/ϵ+ α/2β.
(3.1)

Then
lim
t→∞

ω(t) = ω∗(l).

At the end of this section, we prove the global stability of the constant stationary
solution u∗ of (1.1).

Theorem 3.2. Assume that δd < 1. Let u(x, t) be the unique global solution of
(1.1). Then

lim
t→∞

u(x, t) = u∗ uniformly in RN .

Proof. Denote

h(t) = inf
x∈RN

u(x, t) and H(t) = sup
x∈RN

u(x, t),
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and I = [lim inft→∞ h(t), lim supt→∞H(t)]. Note ϕ0 = 0 and ω0 = d + 1/ϵ are a
pair of upper-lower solutions of (1.1), by Theorem 2.3, we have 0 ≤ u(x, t) ≤ d+1/ϵ
and so I is a subset of [0, d+ 1/ϵ]. Let ψ(x, t) be the unique solution of{

ψt(x, t) = D [ψ](x, t) + ϕ0(1− β[ϕ0]2)− δψG ∗ ω0 − L(ψ − ϕ0),

ψ(x, 0) = u0(x),

here L given in Thoerem 2.1. By the iteration equation (2.4), we have

u(x, t) ≥ ψ(x, t) ≥ 0

for (x, t) ∈ RN × [0,∞). But

ψt(x, t) ≥ −(L+ δω0 + 1)ψ(x, t) and u0(x) ≥ ϵ,

we get

h(t) = inf
x∈RN

u(x, t) ≥ inf
x∈RN

ψ(x, t) ≥ ϵe−(L+δω0+1)t (3.2)

for t ≥ 0.
Let ϕ1 = 0 and ω1 be the unique solution of{

ω1
t (t) = ω1(t)(1 + αω1(t)− β[ω1(t)]2),

ω1(0) = 1/ϵ+ α/2β,

a simple computation gives that ϕ1 and ω1 are a pair of lower-upper solutions of
(1.1). From Theorem 2.1 we know that

0 ≤ u(x, t) ≤ ω1(t).

Then by Lemma 3.1 we have

lim
t→∞

ω1(t) = ω∗(0) = d

and I is a subset of [0, d].
Take ε0 > 0 such that d∗ > d + ε0. Since lim supt→∞H(t) ≤ d, we can find

t2 > 0 such that
u(x, t) ≤ H(t) ≤ d+ ε0

for (x, t) ∈ RN × [t2,∞). By (3.2), we have h(t2) > 0. Let ϕ2 be the unique solution
of {

ϕ2t (t) = ϕ2(t)(1 + αϕ2(t)− β[ϕ2(t)]2 − δ(d+ ε)),

ϕ2(t2) = h(t2).

We can see that ϕ2(t) > 0 for t ≥ t2. Take ω
2(x, t) = d+ ε0, we can check that ω2

and ϕ2 are a pair of upper-lower solutions of (1.1) and so

ϕ2(x, t) ≤ u(x, t) ≤ ω2(x, t)

for (x, t) ∈ RN × [t2,∞). Again by Lemma 3.1, we have

lim
t→∞

ϕ2(t) = ω∗(d+ ε0)
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and I is a subset of [ω∗(d+ ε0), d]. Letting ε0 → 0, we get I ⊂ [ω∗(d), d].
Since ω∗(d) ∈ (α/2β, d], we can find θ ∈ (0, 1) such that λ3 = θω∗(d) ≥ α/2β.

Set µ3 = d, we define

λk = ω∗(µk−1) and µk = ω∗(λk−1), (3.3)

where k > 3. We know that

0 < λ3 = θω∗(d) < λ4 = ω∗(d) < ω∗(0) = d = µ3.

Since ω∗(u∗) = u∗ < d and ω∗ is decreasing, then

λ4 = ω∗(d) < ω∗(u∗) = u∗.

Similarly, we have
λ3 = θω∗(d) < ω∗(u∗) = u∗

and so
u∗ = ω∗(u∗) < µ4 = ω∗(λ3) < ω∗(0) = d = µ3.

Thus we obtain that

0 < λ3 < λ4 < u∗ < µ4 < µ3 = d.

Inductively, we know that

0 < λk < λk+1 < u∗ < µk+1 < µk (3.4)

for k > 3.
Note that I ⊂ [ω∗(d), d], we have I ⊂ [λ3, µ3]. Assume that I ⊂ [λk−1, µk−1] for

some k > 4. We show that I ⊂ [λk, µk]. By (3.3) and (3.4), we can choose ε > 0
small such that

λk−1 ≤ ω∗(µk−1 + ε) ≤ ω∗(λk−1 − ε) ≤ µk−1. (3.5)

Since I ⊂ [λk−1, µk−1], we can find tk > 0 such that

λk−1 − ε ≤ h(t) ≤ H(t) ≤ µk−1 + ε

for t ≥ tk. Let ϕ
k and ωk satisfy{

ϕkt (t) = ϕk(t)(1− β[ϕk(t)]2 − δ(µk−1 + ε)),

ϕk(tk) = λk−1 − ε

and {
ωk
t (t) = ωk(t)(1− β[ωk(t)]2 − δ(λk−1 − ε)),

ωk(t2) = µk−1 + ε,

respectively. Since

lim
t→∞

ϕk(t) = ω∗(µk−1 + ε) and lim
t→∞

ωk(t) = ω∗(λk−1 − ε), (3.6)

it follows from (3.5) that

ϕk(t) ≥ λk−1 − ε and ωk(t) ≤ µk−1 + ε, (3.7)
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provided t is sufficiently large, say t ≥ t∗k. By (3.7), we know that ϕk and ωk are a
pair of lower-upper solutions to (1.1) and so

ϕk(t) ≤ u(x, t) ≤ ωk(t)

for (x, t) ∈ RN × [t∗k,∞). Letting ε→ 0, by (3.6) we get

I ⊂ [ω∗(µk−1), ω
∗(µk−1)] = [λk, µk].

On the other hand, it follows from (3.4) that there exist λ and µ such that λk → λ
and µk → µ as k → ∞. Since ω∗ is continuous, we get

ω∗(λ) = µ and ω∗(µ) = λ.

and so
1 + αλ− βλ2 − δµ = 1 + αµ− βµ2 − δλ = 0.

But δd < 1, we know that λ = µ = u∗, (see [8]). Thus I = u∗.
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