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Abstract This paper is concerned with the stochastic Fitzhugh-Nagumo sys-
tem with non-autonomous terms as well as Wiener type multiplicative noises.
By using the so-called notions of uniform absorption and uniformly pullback
asymptotic compactness, the existences and upper semi-continuity of pullback
attractors are proved for the generated random cocycle in Ll(RN ) × L2(RN )
for any l ∈ (2, p]. The asymptotic compactness of the first component of the
system in Lp(RN ) is proved by a new asymptotic a priori estimate technique,
by which the plus or minus sign of the nonlinearity at large values is not re-
quired. Moreover, the condition on the existence of the unique random fixed
point is obtained, in which case the influence of physical parameters on the
attractors is analysed.

Keywords Random dynamical system, non-autonomous FitzHugh-Nagumo
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1. Introduction

In this paper, we consider the random dynamics of solutions of the following non-
autonomous FitzHugh-Nagumo system defined on RN perturbed by coupled ε-
multiplicative noises:

dũ+ (λũ−∆ũ+ αṽ)dt = f(x, ũ)dt+ g(t, x)dt+ εũ ◦ dω(t), t > τ, (1.1)

dṽ + (σṽ − βũ)dt = h(t, x)dt+ εṽ ◦ dω(t), t > τ, (1.2)

with the initial values

ũ(x, τ) = ũτ (x), ṽ(x, τ) = ṽτ (x), (1.3)
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where (ũτ , ṽτ ) ∈ L2(RN )× L2(RN ), the coefficients λ, α, β and σ are positive con-
stants, the non-autonomous terms g, h ∈ L2

loc(R, L2(RN )), the nonlinearity f is a
smooth function satisfying some polynomial growth, ε is the intensity of noise with
ε ∈ (0, a], a > 0, ω(t) is a Wiener process defined on a probability space (Ω,F , P ),
where Ω = {ω ∈ C(R,R);ω(0) = 0}, and F the Borel σ-algebra induced by the
compact-open topology of Ω and P the corresponding Wiener measure on (Ω,F).

The deterministic FitzHugh-Nagumo system, which is well studied in the liter-
ature, see [21, 22, 24, 27] and the references therein, is an important mathematical
model to describe the signal transmission across axons in neurobiology [4,10,16,23].
In the random case, when g and h do not depend on the time, Wang [30] proved
the existence and uniqueness of random attractors in L2(RN ) × L2(RN ). For the
general non-autonomous forcings g and h, under additive noises, Adili and Wang [2]
obtained the pullback attractors in L2(RN ) × L2(RN ), and Bao [5] developed this
result and obtained the regularity of pullback attractors in H1(RN )×L2(RN ). For
our problem (1.1)-(1.3), i.e., under multiplicative noises, Adili and Wang [1] proved
the existence and upper semi-continuity of attractors in L2(RN )×L2(RN ) recently.
For the stochastic lattice FitzHugh-Nagumo system, the existences of random at-
tractors are widely studied in [12, 13, 15]. However, to our knowledge, there are no
literature to investigate the asymptotic high-order integrability of solutions to the
FitzHugh-Nagumo system, even for the deterministic case.

In this paper, we strengthen these results offered by [1] and devote to obtain
the asymptotic high-order integrability of solutions of problem (1.1)-(1.3). To this
end, a theory on bi-spatial random attractors developed recently by Li etc [17,
18] is extended to stochastic partial differential equations (SPDE) with both non-
autonomous terms and random noises, see Theorem 2.1 and 2.2. It is showed
that the uniform absorption and uniformly pullback asymptotic compactness are the
appropriate notions to depict the existence and upper semi-continuity of attractors
in both the initial space and the terminate space. As for the theory on the upper
semi-continuity of attractors in an initial space and its applications, we may refer
to [14,29,31,33,39] and the references cited there.

Then we apply the obtained theorems to prove that the problem (1.1)-(1.3)
admits a unique pullback attractor in Lp(RN ) × L2(RN ), with the functions f, g
and h satisfying almost the same conditions as in [1]. Furthermore, we derive
the upper semi-continuity of pullback attractors of system in Lp(RN ) × L2(RN )
as the intensity ε approaches zero. These are achieved by checking the uniform
absorption and uniformly pullback asymptotic compactness properties of random
cocycles. The uniformly pullback asymptotic compactness in Lp(RN )× L2(RN ) is
proved by estimate of the L2 and Lp-uniform boundedness and the Lp-truncation
of solutions, see Lemma 4.3 and 4.4. It seems that the estimate of L2-truncation
is unnecessary, see [17–20, 34, 36–38]. It is worth mentioning that an additional
assumption on the non-autonomous terms (see [1]) is not used in our proof, see
section 3.

The third goal is to study the stochastic fixed point or random equilibrium of
random dynamical system, see [6]. In this paper, we introduce the notion of equi-
librium for SPDE with both non-autonomous terms and white noises. It is showed
that if the physical parameters satisfy some additional conditions, then the system
admits a unique equilibrium and is attracted by a single point.

This paper is organized as follows. In the next section, we introduce some
concepts required for our further discussions and extend the results developed by
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[17,18] to the general SPDE with non-autonomous forcing. In section 3, we give the
assumptions on g, h and f , and define a family of continuous random cocycles for
problem (1.1)-(1.3). In section 4, we prove the existence and upper semi-continuity
of pullback attractors in Lp(RN )×L2(RN ). The final section is concerned with the
existence of equilibrium of the random cocycle.

2. Preliminaries and abstract results

In this section, we give the sufficient conditions for the existence and upper semi-
continuity of pullback attractors in the terminate space for random dynamical sys-
tems over two parametric spaces, which are applicable to SPDE with both non-
autonomous deterministic and random terms. The structure of the pullback at-
tractor is also presented. This is an extension of the corresponding results just
established by Li etc [17]. The reader is also referred to [31, 32, 40] for the theory
of pullback attractors and its applications in the initial space over two parametric
spaces, and to [8, 9, 11, 26] for one parametric random attractors. The reader may
also refer to [7, 25,28] for the attractor of deterministic dynamical systems.

2.1. Preliminaries

Let both (X, ‖.‖X) and (Y, ‖.‖Y ) be separable Banach spaces, where X is called an
initial space which contains all initial data of an SPDE, and Y is called a terminate
space which contains all regular solutions of an SPDE [17]. Both X and Y may not
be embedded in any direction, but we assume that they have limit-uniqueness in
the following sense:

(H1) If {xn}n ⊂ X ∩Y such that xn → x in X and xn → y in Y , respectively,
then we have x = y.

Let Q be a nonempty set and (Ω,F , P ) be a probability space. We assume that
there are two groups {σt}t∈R and {ϑt}t∈R over Q and Ω, respectively. Specifically,
the mapping σ : R×Q 7→ Q satisfies that σ0 is the identity on Q, and σs+t = σs ◦σt
for all s, t ∈ R. Similarly, ϑ : R × Ω 7→ Ω is a (B(R) × F ,F)-measurable mapping
such that ϑ0 is the identity on Ω, ϑs+t = ϑs ◦ϑt for all s, t ∈ R and ϑtP = P for all
t ∈ R. In particular, we call both (Q, {σt}t∈R) and (Ω,F , P, {ϑt}t∈R) parametric
dynamical systems. Let R+ = {x ∈ R;x ≥ 0} and 2X be the collection of all subsets
of X.

Definition 2.1. A mapping ϕ : R+ ×Q×Ω×X → X, (t, q, ω, x) 7→ ϕ(t, q, ω, x) is
called to be a random cocycle on X over (Q, {σt}t∈R) and (Ω,F , P, {ϑt}t∈R) if for
all q ∈ Q,ω ∈ Ω and s, t ∈ R+ the following statements are satisfied:

(i) ϕ(., q, ., .) is (B(R+)×F × B(X),B(X))-measurable;

(ii) ϕ(0, q, ω, .) is the identity on X;

(iii) ϕ(t+ s, q, ω, .) = ϕ(t, σsq, ϑsω, .) ◦ ϕ(s, q, ω, .).
A random cocycle ϕ is said to be continuous in X if the operator ϕ(t, q, ω, .) is
continuous in X for each q ∈ Q,ω ∈ Ω and t ∈ R+.

In particular, it is pointed out that in this paper, we need further to assume
that the random cocycle ϕ acting on X takes its values in the terminate space Y
for all t > 0 (except that t = 0), i.e.,

(H2) For every t > 0, q ∈ Q and ω ∈ Ω, ϕ(t, q, ω, .) : X → Y .
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In the sequel, we use D to denote a collection of some families of nonempty
subsets of X which is parameterized by (q, ω) ∈ (Q× Ω):

D ={D = {∅ 6= D(q, ω) ∈ 2X ; q ∈ Q,ω ∈ Ω};
fD satisfies some additional conditions}.

We further assume that D is inclusion closed, that is, for each D ∈ D,

{D̃(q, ω); D̃(q, ω) is a nonempty subset of D(q, ω),∀ q ∈ Q,ω ∈ Ω} ∈ D.

Given D1, D2 ∈ D, we say that D1 = D2 if and only if D1(q, ω) = D2(q, ω) for each
q ∈ Q and ω ∈ Ω.

Throughout this paper, all assertions about ω are assumed to hold on a ϑt-
invariant set of full measure (unless some exceptional cases claimed).

Definition 2.2. A set-valued mapping K : Q × Ω → 2X is called measurable in
X with respect to F in Ω if the mapping ω ∈ Ω 7→ distX(x,K(q, ω)) is (F ,B(R))-
measurable for every fixed x ∈ X and q ∈ Q, where distX is the Haustorff semi-
metric in X, i.e., for the two nonempty subsets A,B ∈ 2X ,

disX(A,B) = sup
a∈A

inf
b∈B
‖a− b‖X .

Definition 2.3. Let ϕ be a random cocycle on X and take its value in Y . A set
valued mapping A : Q× Ω→ 2X∩Y is called a (X,Y )-pullback attractor for ϕ if

(i) A is measurable in X (w.r.t F in Ω), and A(q, ω) is compact in Y for all
q ∈ Q,ω ∈ Ω,

(ii) A is invariant, that is, for every q ∈ Q,ω ∈ Ω,

ϕ(t, q, ω,A(q, ω)) = A(σtq, ϑtω),∀ t ≥ 0,

(iii) A attracts every element D ∈ D in Y , that is, for every q ∈ Q,ω ∈ Ω,

lim
t→+∞

distY (ϕ(t, σ−tq, ϑ−tω,D(σ−tq, ϑ−tω)),A(q, ω)) = 0,

where distY is the Haustorff semi-distance in Y and the set ϕ(t, q, ω,D(q, ω)) =
{ϕ(t, q, ω, x);x ∈ D(q, ω)}.

If X = Y , the above concept reduces to the well known notion of a D-pullback
attractors, which is first introduced in [32]. We also remark that the measurability
of A is assumed in the initial space X.

Definition 2.4 (see [7]). Let both Z and I be two metric spaces. A family {Aα}α∈I
of sets in Z is said to be upper semi-continuous at α0 if

lim
α→α0

distZ(Aα,Aα0) = 0.

A family Aα of set-mappings over Q and Ω is called to be upper semi-continuous if
Aα(q, ω) is upper semi-continuous for each q ∈ Q and ω ∈ Ω.

In the sequel, we need to consider a family of random cocycles {ϕα}α∈I with
I = [−a, a] \ {0}, where a > 0 and ϕ0 is a deterministic cocycle over the parametric
space (Q, {σt}t∈R).
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Definition 2.5 (see [17]). A family of random cocycles {ϕα}α∈I is said to be
convergent at the point α = α0 in X if for each q ∈ Q,ω ∈ Ω, and x, x0 ∈ X,

ϕα(t, q, ω, x)→ ϕα0
(t, q, ω, x0) in X,

whenever α → α0 and x → x0. A family of random cocycles {ϕα}α∈I is said to
be convergent in X if it is convergent at any point α. We say a family of random
cocycles ϕε(ε ∈ (0, a]) converges to a deterministic cocycle ϕ0 in X if for each q ∈ Q,
and x, x0 ∈ X,

ϕα(t, q, ω, x)→ ϕ0(t, q, x0) in X,

whenever α→ 0 and x→ x0.

Definition 2.6 (see [17]). A family of random cocycles {ϕα}α∈I is said to be
uniformly absorbing in X if each ϕα has a closed and measurable pullback absorbing
set Kα in X such that the closure K = {∪α∈IKα(q, ω); q ∈ Q,ω ∈ Ω} ∈ D and for
each q ∈ Q,ω ∈ Ω,

lim sup
α→0

‖Kα(q, ω)‖X ≤ C(q) for some deterministic constant C(q) > 0.

Here a pullback absorbing set Kα means that for each q ∈ Q,ω ∈ Ω and D ∈ D ,
there exists an absorbing time T = T (D, q, ω) > 0 such that

ϕα(t, σ−tq, ϑ−tω,D(σ−tq, ϑ−tω)) ⊆ Kα(q, ω) for all t ≥ T.

Definition 2.7. A family of random cocycles {ϕα}α∈I is said to be uniformly
pullback asymptotically compact over I in X if for each q ∈ Q,ω ∈ Ω, D ∈ D, the
sequence

{ϕαn(tn, σ−tnq, ϑ−tnω, xn)} has a convergence subsequence in X, (2.1)

whenever αn ∈ I, tn →∞, and xn ∈ D(σ−tnq, ϑ−tnω). A family of random cocycles
{ϕα}α∈I is uniformly pullback asymptotically compact in Y if the convergence in
(2.1) holds under Y -norm. A single cocycle ϕα0

is pullback asymptotically compact
in X if (2.1) holds for a single point α = α0.

Definition 2.8. Let D be a collection of some families of nonempty subsets of
X, and ϕ be a random cocycle on X over (Q, {σt}t∈R) and (Ω,F , P, {ϑt}t∈R). A
mapping ψ : R × Q × Ω → X is called a complete orbit of ϕ if for each τ ∈ R, t ∈
R+, q ∈ Q and ω ∈ Ω, there holds:

ϕ(t, στq, ϑτω, ψ(τ, q, ω)) = ψ(t+ τ, q, ω).

If in addition, there exists D = {D(q, ω); q ∈ Q,ω ∈ Ω} ∈ D such that ψ(τ, q, ω) ∈
D(στq, ϑτω), then ψ is called a D-complete orbit of ϕ.

2.2. Abstract results

We extend Theorem 3.1 in Li etc [17] to the following results, by which the stochastic
partial differential equations with non-autonomous term as well as random noises
can be coped with.
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Theorem 2.1. Let (X,Y ) be a pair of Banach spaces satisfying hypothesis (H1),
and ϕ a continuous random cocycle in X over (Q, {σt}t∈R) and (Ω,F , P, {ϑt}t∈R)
such that hypothesis (H2) holds. Assume further that

(i) ϕ has a closed and measurable (w.r.t.F in Ω) pullback absorbing set K =
{K(q, ω); q ∈ Q,ω ∈ Ω} ∈ D in X;

(ii) ϕ is pullback asymptotically compact in X;
(iii) ϕ is pullback asymptotically compact in Y . Then the random cocycle ϕ

admits a unique (X,Y)-pullback attractor A ∈ D, which is structured by

A(q, ω) = ∩τ>0∪t≥τϕ(t, σ−tq, ϑ−tω,K(σ−tq, ϑ−tω))
Y

= {ψ(0, q, ω);ψ is a D-complete orbit of the random cocycle ϕ}. (2.2)

Moreover, A = AX , where AX is the (X,X)-pullback attractor.

In the following, we will consider both the existence problem and the upper
semi-continuity of a family of the bi-spatial pullback attractors. We give a unified
result, where the concepts of uniform absorption and uniformly pullback asymptotic
compactness are used. To this end, we need to consider a family of random cocycles
{ϕα}α∈I with I = [−a, a] \ {0}, where a > 0 and ϕ0 is a deterministic cocycle over
the parametric space (Q, {σt}t∈R).

Theorem 2.2. Let D be a collection of some families of nonempty subsets of
X and (X,Y ) a pair of Banach spaces satisfying hypothesis (H1). Suppose that
{ϕα}α∈I is a family of continuous random cocycles in X over (Q, {σt}t∈R) and
(Ω,F , P, {ϑt}t∈R) such that hypothesis (H2) holds, and ϕ0 is a continuous deter-
ministic cocycle in X over (Q, {σt}t∈R) satisfying ϕ0(t, q, .) : X → Y for all t > 0
and q ∈ Q. Assume further that

(i) ϕα is convergent in X at any α ∈ [−a, a];
(ii) ϕα(α ∈ I) is uniformly absorbing in X ;
(iii) ϕα(α ∈ I) is uniformly pullback asymptotically compact in X;
(iv) ϕα(α ∈ I) is uniformly pullback asymptotically compact in Y . Then each

random cocycle ϕα(α 6= 0) admits a unique (X,Y)-pullback attractor Aα ∈ D, such
that the family Aα is upper semi-continuous at any α ∈ I in both X and Y . If
in addition, ϕ0 has an (X,Y)-attracting set A0, then the family Aα is upper semi-
continuous at α = 0 in both X and Y .

3. Non-autonomous FitzHugh-Nagumo system on
RN with multiplicative noises

For the non-autonomous FitzHugh-Nagumo system (1.1)-(1.3), the nonlinearity
f(x, s) satisfy almost the same assumptions as in [1], i.e., for x ∈ RN and s ∈ R,

f(x, s)s ≤ −α1|s|p + ψ1(x), (3.1)

|f(x, s)| ≤ α2|s|p−1 + ψ2(x), (3.2)

∂f

∂s
(x, s) ≤ α3, (3.3)∣∣∣∂f

∂x
(x, s)

∣∣∣ ≤ ψ3(x), (3.4)



Regularity of pullback attractors and random equilibrium 1291

where p > 2, αi > 0(i = 1, 2, 3) are determined constants, ψ1 ∈ L1(RN ) ∩ L
p
2 (RN ),

and ψ2, ψ3 ∈ L2(RN ). The non-autonomous terms g ∈ L2
loc(R, L2(RN )) and h ∈

L2
loc(R, L2(RN )) satisfy that for every τ ∈ R and some 0 < δ0 < δ = min{λ, σ},∫ τ

−∞
eδ0s(‖g(s, .)‖2L2(RN ) + ‖h(s.)‖2L2(RN ))ds < +∞, (3.5)

where λ and δ are as in (1.1)–(1.3). The H1-condition on the non-autonomous
term h in (3.5) is required to prove the asymptotic compactness of solutions in
L2(RN )× L2(RN ), see [1]:∫ τ

−∞
eδ0s‖h(s, .)‖2H1(RN )ds < +∞.

In order to model the random noises in system (1.1)–(1.3), we need to define a
shift operator ϑ on Ω (where Ω is defined in the introduction) by ϑtω(s) = ω(s +
t)− ω(t) for every ω ∈ Ω, t, s ∈ R. Then ϑt is a measure preserving transformation
group on (Ω,F , P ), that is, (Ω,F , P, {ϑt}t∈R) is a parametric dynamical system.
By the law of the iterated logarithm (see [8]), there exists a ϑt-invarant set Ω̃ ⊂ Ω
of full measure such that for ω ∈ Ω̃,

ω(t)

t
→ 0, as |t| → +∞. (3.6)

Put Q = R. Define a family of shift operator {σt}t∈R by σt(τ) = t + τ for all
t, τ ∈ R. Then both {R, {σt}t∈R} and (Ω,F , P, {ϑt}t∈R) are parametric dynamical
systems. We will define a continuous random cocycle for system (1.1)–(1.3) over
(Q, {σt}t∈R) and (Ω,F , P, {ϑt}t∈R).

Given ω ∈ Ω, put z(t, ω) = zε(t, ω) = e−εω(t). Then we have dz+ εz ◦dω(t) = 0.
Let (ũ, ṽ) satisfy problem (1.1)–(1.3) and write

u(t, τ, ω, uτ ) = z(t, ω)ũ(t, τ, ω, ũτ ) and v(t, τ, ω, vτ ) = z(t, ω)ṽ(t, τ, ω, ṽτ ). (3.7)

Then (u, v) solves the follow system

du

dt
+ λu−∆u+ αv = z(t, ω)f(x, z−1(t, ω)u) + z(t, ω)g(t, x), (3.8)

dv

dt
+ σv − βu = z(t, ω)h(t, x), (3.9)

with the initial conditions uτ = z(τ, ω)ũτ and vτ = z(τ, ω)ṽτ .
It is known (see [1]) that for every (uτ , vτ ) ∈ L2(RN ) × L2(RN ) the problem

(3.8)-(3.9) possesses a unique solution (u, v) such that u ∈ C([τ,+∞), L2(RN )) ∩
L2(τ, T,H1(RN ))∩Lp(τ, T, Lp(RN )) and v ∈ C([0,+∞), L2(RN )). In addition, the
solution (u, v) is continuous in L2(RN ) × L2(RN ) with respect to the initial value
(uτ , vτ ) . Then formally (ũ, ṽ) = (z−1(t, ω)u, z−1(t, ω)v) is the solution to problem
(1.1)–(1.3) with the initial value ũτ = z−1(τ, ω)uτ and ṽτ = z−1(τ, ω)vτ .

We are at the position to give the continuous random cocycle ϕ associated with
problem (1.1)–(1.3) over (Q, {σt}t∈R) and (Ω,F , P, {ϑt}t∈R). Define

ϕ(t, τ, ω, (ũτ , ṽτ )) = (ũ(t+ τ, τ, ϑ−τω, ũτ ), ṽ(t+ τ, τ, ϑ−τω, ṽτ ))

= (z−1(t+ τ, ϑ−τω)u(t+ τ, τ, ϑ−τω, uτ ), z−1(t+ τ, ϑ−τω)v(t+ τ, τ, ϑ−τω, vτ )),
(3.10)
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where uτ = z(τ, ω)ũτ and vτ = z(τ, ω)ṽτ .
Suppose that for every τ ∈ R and ω ∈ Ω.

lim
t→+∞

e−δtz2(−t, ω)‖D(τ − t, ϑ−tω)‖2L2(RN )×L2(RN ) = 0, (3.11)

where 0 < δ = min{λ, σ}. Denote by Dδ the collection of all families of nonempty
subsets of L2(RN )× L2(RN ) such that (3.11) holds. Then it is obvious that Dδ is
inclusion closed.

We emphasize that the modest choices of the constants δ and δ0 in (3.11) and
(3.5) respectively are different from the ones used in [1]. It makes us omit the
additional assumption: for some δ1 < δ,

lim
t→−∞

eδ1t
∫ 0

−∞
eδs(‖g(s+ t, .)‖2L2(RN ) + ‖h(s+ t, .)‖2L2(RN ))ds = 0, (3.12)

which is intrinsically used in [1], see the detailed proof of Lemma 4.1 in the following
section.

Note that Adili and Wang [1] established the existence and upper semi-continuity
of pullback attractors for problem (1.1)–(1.3) in L2(RN )×L2(RN ). In this paper, we
obtain an identical result in Lp(RN )× L2(RN ), without increasing the restrictions
(except that ψ1 ∈ Lp/2(RN ) as in (3.1)) on the nonlinearity f . On the contrary, the
restrictive assumption (3.12) on the non-autonomous terms g and h given in [1] is
omitted. Furthermore, we construct a unique random equilibrium for this system
when some additional assumptions on the physical parameters are added.

4. Existence and upper semi-continuity of pullback
attractors in Lp × L2

From now on, we assume without loss of generality that ε ∈ (0, a] for any a >
0. Consider that e−a|ω(s)| ≤ zε(s, ω) = e−εω(s) ≤ ea|ω(s)| for ε ∈ I, and ω(.) is
continuous on [−2, 0]. Then there exist two positive random constants E = E(ω)
and F = F (ω) such that for each ω ∈ Ω,

E ≤ zε(s, ω) ≤ F for all s ∈ [−2, 0] and ε ∈ (0, a]. (4.1)

Hereafter, we denote by ‖.‖ and ‖.‖p the norms in L2(RN ) and Lp(RN )(p > 2),
respectively. Throughout this paper, the number c is a generic positive constant
independent of τ, ω,D and ε in any place, which may vary its values in the different
places. We also use C(τ, ω) to denote a random constant depending only on τ, ω.

4.1. Uniform absorption and uniformly asymptotic compact-
ness in L2 × L2

This subsection is concern with some uniform estimates of solutions on a certain
compact interval [τ − 1, τ ] for τ ∈ R. The uniform absorption of the family of
random cocycles ϕε is proved. Note that the notations (u, v), (ũ, ṽ), and ϕ are the
abbreviations of (uε, vε), (ũε, ṽε) and ϕε respectively, where the later implies the
dependence of solutions on ε. We omit the subscript ε if there is no confusion.
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Lemma 4.1. Assume that (3.1)–(3.5) holds and a > 0. Given τ ∈ R, ω ∈ Ω and
D = {D(τ, ω); τ ∈ R, ω ∈ Ω} ∈ Dδ, then there exists a constant T = T (τ, ω,D(τ, ω))
> 1 such that for all t ≥ T , ε ∈ (0, a], and (ũτ−t, ṽτ−t) ∈ D(τ−t, ϑ−tω), the solution
(uε, vε) of problem (3.8)–(3.9) satisfies that for each ξ ∈ [τ − 1, τ ],

‖(uε(ξ, τ − t, ϑ−τω, uτ−t), vε(ξ, τ − t, ϑ−τω, vτ−t))‖2 ≤ ce2εω(−τ)(1 + Lε(τ, ω)),
(4.2)

‖(ũε(τ, τ − t, ϑ−τω, ũτ−t), ṽε(τ, τ − t, ϑ−τω, ṽτ−t))‖2 ≤ c(1 + Lε(τ, ω)), (4.3)

and ∫ ξ

τ−t
eδ(s−τ)

(
‖vε(τ, τ − t, ϑ−τω, vτ−t)‖2 + z2−pε (s, ϑ−τω)

×‖uε(s, τ − t, ϑ−τω, uτ−t)‖pp
)
ds ≤ ce2εω(−τ)(1 + Lε(τ, ω)), (4.4)

where (uτ−t, vτ−t) = zε(τ − t, ϑ−τω)(ũτ−t, ṽτ−t) and Lε(τ, ω) is given by

Lε(τ, ω) =

∫ 0

−∞
eδs+2ε|ω(s)|

(
‖g(s+ τ, .)‖2 + ‖h(s+ τ, .)‖2 + 1

)
ds, (4.5)

such that ε→ Lε(τ, ω) is an increasing function on (0,+∞), where δ = min{λ, σ}.
In particular, the family of random cocycles ϕε(ε ∈ (0, a]) defined by (3.10) is

uniformly absorbing on (0, a] for any a > 0 in the sense of Definition 2.6.

Proof. Taking the inner products of (3.8) and (3.9) with u and v, respectively, by
using (3.1), we have

d

dt
(β‖u‖2 + α‖v‖2) + δ(β‖u‖2 + α‖v‖2) +

δ

2
(β‖u‖2 + α‖v‖2) + 2α1βz

2−p(t, ω)‖u‖pp
≤ cz2(t, ω)(‖g(t, .)‖2 + ‖h(t, .)‖2 + ‖ψ1‖1). (4.6)

By applying the Gronwall lemma over the interval [τ − t, ξ] with ξ ∈ [τ − 1, τ ] and
t > 1, along with ω being replaced by ϑ−τω, we get that

‖u(ξ, τ − t, ϑ−τω, uτ−t)‖2 + ‖v(ξ, τ − t, ϑ−τω, vτ−t)‖2

+

∫ ξ

τ−t
e−δ(ξ−s)(‖v(s, τ − t, ϑ−τω, vτ−t)‖2

+ z2−p(s, ϑ−τω)‖u(s, τ − t, ϑ−τω, uτ−t)‖pp)ds

≤ce−δ(ξ−τ+t)(‖uτ−t‖2 + ‖vτ−t‖2)

+ c

∫ ξ

τ−t
e−δ(ξ−s)z2(s, ϑ−τω)(‖g(s, .)‖2 + ‖h(s, .)‖2 + 1)ds

≤ ce2εω(−τ)
(
e−δtz2(−t, ω)(‖ũτ−t‖2 + ‖ṽτ−t‖2)

+

∫ τ

τ−t
e−δ(τ−s)−2εω(s−τ)(‖g(s, .)‖2 + ‖h(s, .)‖2 + 1)ds

)
≤ce2εω(−τ)

(
e−δtz2(−t, ω)(‖ũτ−t‖2 + ‖ṽτ−t‖2)

+

∫ 0

−t
eδs−2εω(s)(‖g(s+ τ, .)‖2 + ‖h(s+ τ, .)‖2 + 1)ds

)
, (4.7)
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where δ = min{λ, σ}. From the property of Dδ in (3.11), it follows that

lim
t→+∞

e−δtz2(−t, ω)(‖ũτ−t‖2 + ‖ṽτ−t‖2) = 0. (4.8)

Thus (4.7) and (4.8) together implies that there exists a random constant T =
T (τ, ω,D(τ, ω)) > 1 such that for each ε ∈ (0, a] and all t ≥ T , (4.2) and (4.4) hold.
By (3.7) and (4.2) it is showed that (4.3) hold true for all t ≥ T .

On the other hand, from (3.5) and (3.6) it is easy to show that the integral
in the formula Lε(τ, ω) is meaningful and thus Lε(τ, ω) is finite. Furthermore, for

some δ̂ ∈ (δ0, δ) we have

Lε(τ − t, ϑ−tω)

≤
∫ 0

−∞
eδ̂s+2ε|ϑ−tω(s)|

(
‖g(s+ τ − t, .)‖2 + ‖h(s+ τ − t, .)‖2 + 1

)
ds

(letting s− t = s′)

≤eδ̂t+2ε|ω(−t)|
∫ −t
−∞

eδ̂s+2ε|ω(s)|
(
‖g(s+ τ, .)‖2 + ‖h(s+ τ, .)‖2 + 1

)
. (4.9)

We see from (3.6) and the relation δ0 < δ̂ that lim
s→−∞

e(δ̂−δ0)s+2ε|ω(s)| = 0, so that

there exists a positive variable a(ω) such that

0 < e(δ̂−δ0)s+2ε|ω(s)| ≤ a(ω), s ∈ (−∞, 0],

from which and (4.9) it follows that

Lε(τ − t, ϑ−tω) ≤ a(ω)eδ̂t+2ε|ω(−t)|
∫ −t
−∞

eδ0s
(
‖g(s+ τ, .)‖2 + ‖h(s+ τ, .)‖2 + 1

)
ds.

Using (3.5) and (3.6) again, we find that

lim
t→∞

e−δtz2(−t, ω)Lε(τ − t, ϑ−tω)

≤ lim
t→∞

a(ω)e(δ̂−δ)t+4ε|ω(−t)|
∫ −t
−∞

eδ0s
(
‖g(s+ τ, .)‖2 + ‖h(s+ τ, .)‖2 + 1

)
ds

=0. (4.10)

From (4.10) and (3.11) we immediately deduce that

Kε = {Kε(τ, ω) ={(ũ, ṽ) ∈ (L2(R))2;

‖(ũ, ṽ)‖2 ≤ c(1 + Lε(τ, ω))}; τ ∈ R, ω ∈ Ω} ∈ Dδ,

and further the union ∪ε∈(0,a]Kε(τ, ω) ⊂ Ka(τ, ω). Thus K = {∪ε∈(0,a]Kε(τ, ω); τ ∈
R, ω ∈ Ω} ∈ Dδ. The measurability of the absorbing set Kε(τ, ω) follows from the
measurability of the variable Lε(τ, ω). Finally since by (4.5) and (3.5),

lim sup
ε→0

‖Kε(τ, ω)‖ ≤ c(1 + L0(τ, ω)) < +∞,

where L0(τ, ω) is independent of ω, then we have showed the uniformly absorbing
of ϕε(ε ∈ (0, a]) for any a > 0.

In fact, the uniformly asymptotic compactness in L2×L2 has been proved in [1].

Lemma 4.2. Assume that (3.1)–(3.5) hold. Then the family of random cocycles
ϕε defined by (3.10) is uniformly pullback asymptotically compact for ε over (0, a]
in L2(RN )× L2(RN ).
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4.2. Uniformly asymptotic compactness in Lp × L2

In this subsection, we prove that the family of random cocycles ϕε(ε(0, a]) is u-
niformly asymptotically compact in Lp × L2. We need to prove the Lp-uniform
boundedness of the first component of solution uε as well as the uniform smallness
of truncation of uε in Lp norm.

Lemma 4.3. Assume that (3.1)–(3.5) hold. Given τ ∈ R, ω ∈ Ω and D = {D(τ, ω);
τ ∈ R, ω ∈ Ω} ∈ Dδ, then there exist some random constants C = C(τ, ω) and T =
T (τ, ω,D) ≥ 2 such that for all (ũτ−t, ṽτ−t) ∈ D(τ − t, ϑ−tω), the first component
of the solution (uε, vε) of problem (3.8)–(3.9) satisfies

sup
t≥T

sup
ξ∈[τ−1,τ ]

sup
ε∈(0,a]

‖uε(ξ, τ − t, ϑ−τω, uτ−t)‖pp ≤ C(τ, ω), (4.11)

where C(τ, ω) is independent ε.

Proof. Multiplying (3.8) by |u|p−2u and then integrating over RN , we have

1

p

d

dt
‖u‖pp + λ‖u‖pp ≤α

∫
RN

v|u|p−1dx+ z(t, ω)

∫
RN

f(x, z−1(t, ω)u)|u|p−2udx

+ z(t, ω)

∫
RN

g(t, x)|u|p−2udx. (4.12)

From (3.1) and ψ ∈ Lp/2, by applying the Young inequality

|ab| ≤ k|a|p + k−q/p|b|q (4.13)

for k > 0, p > 1 and q = p
p−1 , we obtain that

z(t, ω)

∫
RN

f(x, z−1(t, ω)u)|u|p−2udx ≤− α1z
2−p(t, ω)‖u‖2p−22p−2

+
λ

4
‖u‖pp + czp(t, ω)‖ψ1‖p/2p/2. (4.14)

On the other hand,

α

∫
RN

v|u|p−1dx ≤ 1

4
α1z

2−p(t, ω)‖u‖2p−22p−2 + czp−2(t, ω)‖v‖2, (4.15)

and

z(t, ω)

∫
RN

g(t, x)|u|p−2udx ≤ 1

4
α1z

2−p(t, ω)‖u‖2p−22p−2 + czp(t, ω)‖g(t, .)‖2. (4.16)

Then by a combination of (4.12)–(4.16), it gives that

d

dt
‖u‖pp + δ‖u‖pp ≤ czp−2(t, ω)‖v‖2 + czp(t, ω)(‖g(t, .)‖2 + ‖ψ1‖p/2p/2), (4.17)

where δ = min{λ, σ}. Note that 1
ξ−τ+2 ≤ 1 for ξ ∈ [τ−1, τ ]. Applying the Gronwall

lemma (see also Lemma 5.1 in [35]) over the interval [τ − 2, ξ], along with ω being
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replaced by ϑ−τω, we deduce that

‖u(ξ, τ − t, ϑ−τω, uτ−t)‖pp ≤c
∫ τ

τ−2
eδ(s−τ)‖u(s, τ − t, ϑ−τω, uτ−t)‖ppds

+ c

∫ τ

τ−2
eδ(s−τ)zp−2(s, ϑ−τ )‖v(s, τ − t, ϑ−τω, vτ−t)‖2ds

+ c

∫ τ

τ−2
eδ(s−τ)zp(s, ϑ−τ )(‖g(s, .)‖2 + 1)ds. (4.18)

We now estimate every term on the right hand side of (4.18). First from (4.1) it
follows that for all s ∈ [τ−2, τ ] and ε ∈ (0, a], z2−p(s, ϑ−τω) = eε(2−p)ω(−τ)z2−p(s−
τ, ω) ≥ eε(2−p)ω(−τ)F 2−p. Then from (4.4), there exists T = T (τ, ω,D) ≥ 2, such
that for all ε ∈ (0, a] and t ≥ T ,∫ τ

τ−2
eδ(s−τ)‖u(s, τ − t, ϑ−τω, uτ−t)‖ppds ≤ cF p−2eap|ω(−τ)|(1 + La(τ, ω)). (4.19)

Notice that zp−2(s, ϑ−τ ) ≤ e(p−2)εω(−τ)F p−2 for s ∈ [τ − 2, τ ]. Then from (4.4)
again we see that∫ τ

τ−2
eδ(s−τ)zp−2(s, ϑ−τ )‖v(s, τ − t, ϑ−τω, vτ−t)‖2ds

≤cF p−2eap|ω(−τ)|(1 + La(τ, ω)). (4.20)

On the other hand, by (3.5),∫ τ

τ−2
eδ(s−τ)zp(s, ϑ−τ )(‖g(s, .)‖2 + 1)ds ≤ F peap|ω(−τ)|

∫ 0

−2
eδs(‖g(s+ τ, .)‖2 + 1)ds

< +∞. (4.21)

Hence (4.18)–(4.21) together imply the desired.
Let M = M(τ, ω) > 0. Denote by (u−M)+ the positive part of u−M , i.e.,

(u−M)+ =

u−M, if u > M ;

0, if u ≤M.

The next lemma will show that the unbounded part of the absolute value |u| ap-
proaches zero in Lp-norm on the state domain RN (|u(τ, τ − t, ϑ−τω, uτ−t)| ≥ M)
for M large enough, where

RN (|u(τ, τ − t, ϑ−τω, uτ−t)| ≥M) = {x ∈ RN ; |u(τ, τ − t, ϑ−τω, uτ−t)| ≥M |}.

Note that we need not to prove some auxiliary lemmas except Lemma 4.1 and
Lemma 4.3, see [17–20,36,37].

Lemma 4.4. Assume that (3.1)–(3.5) hold. Given τ ∈ R, ω ∈ Ω and D = {D(τ, ω);
τ ∈ R, ω ∈ Ω} ∈ Dδ, then for any η > 0, there exist random constants M̃ =
M̃(τ, ω, η,D) > 1 and T = T (τ, ω, η,D) ≥ 2 such that for all (ũτ−t, ṽτ−t) ∈ D(τ −
t, ϑ−tω), the first component ũε of solutions (ũε, ṽε) of problem (1.1)–(1.3) satisfies

sup
t≥T

sup
ε∈(0,a]

∫
RN (|ũε|≥M̃)

|ũε(τ, τ − t, ϑ−τω, ũτ−t)|pdx ≤ η,
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where RN (|ũε| ≥ M̃) = RN (|ũε(τ, τ − t, ϑ−τω, ũτ−t)| ≥ M̃), and M̃, T are indepen-
dent of ε.

Proof. Let s ∈ [τ − 1, τ ] and t ≥ T ≥ 2, where T is determined by Lemma 4.1
and Lemma 4.3. Replacing ω by ϑ−τω in (3.8)–(3.9), we see that (u = u(s, τ −
t, ϑ−τω, uτ−t), v = v(s, τ − t, ϑ−τω, vτ−t)) is a solution of the following system

du

ds
+ λu−∆u+ αv =

z(s− τ, ω)

z(−τ, ω)
f(x, ũ) +

z(s− τ, ω)

z(−τ, ω)
g(s, x), (4.22)

dv

ds
+ σv − βu =

z(s− τ, ω)

z(−τ, ω)
h(s, x). (4.23)

For fixed τ ∈ R and ω ∈ Ω, we assume that M = M(τ, ω) > 1. We multiply (4.22)
by (u−M)p−1+ and integrate over RN to yield that

1

p

d

ds

∫
RN

(u−M)p+dx+ λ

∫
RN

u(u−M)p−1+ dx−
∫
RN

∆u(u−M)p−1+ dx

=− α
∫
RN

v(u−M)p−1+ dx+
z(s− τ, ω)

z(−τ, ω)

∫
RN

f(x, ũ)(u−M)p−1+ dx

+
z(s− τ, ω)

z(−τ, ω)

∫
RN

g(s, x)(u−M)p−1+ dx. (4.24)

We now have to estimate every term in (4.24). First, it is obvious that

−
∫
RN

∆u(u−M)p−1+ dx = (p− 1)

∫
RN

(u−M)p−2+ |∇u|2dx ≥ 0, (4.25)

λ

∫
RN

u(u−M)p−1+ dx ≥ λ
∫
RN

(u−M)p+dx. (4.26)

The most involved work is to calculate the nonlinearity in (4.24). Consider that for

u(s) > M for s ∈ [τ − 1, τ ], we have ũ(s) = z−1(s, ϑ−τω)u(s) = z(−τ,ω)
z(s−τ,ω)u(s) > 0,

and thus by (3.1), we find that for every s ∈ [τ − 1, τ ],

f(x, ũ)

≤− α1|ũ|p−1 +
1

ũ
ψ1(x)

=− α1

(z(s− τ, ω)

z(−τ, ω)

)1−p
|u|p−1 +

z(s− τ, ω)

z(−τ, ω)

ψ1(x)

u

≤− 1

2
α1

(z(s− τ, ω)

z(−τ, ω)

)1−p
Mp−2(u−M)− 1

2
α1

(z(s− τ, ω)

z(−τ, ω)

)1−p
(u−M)p−1

+
z(s− τ, ω)

z(−τ, ω)
|ψ1(x)|(u−M)−1,

from which and (4.1) it follows that

z(s− τ, ω)

z(−τ, ω)

∫
RN

f(x, ũ)(u−M)p−1+ dx

≤− 1

2
α1

(z(s− τ, ω)

z(−τ, ω)

)2−p
Mp−2

∫
RN

(u−M)pdx
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− 1

2
α1

(z(s− τ, ω)

z(−τ, ω)

)2−p ∫
RN

(u−M)2p−2dx

+
(z(s− τ, ω)

z(−τ, ω)

)2 ∫
RN
|ψ1(x)|(u−M)p−2dx

≤− α1z
p−2(−τ, ω)

2F p−2
Mp−2

∫
RN

(u−M)p+dx

− α1z
p−2(−τ, ω)

2F p−2

∫
RN

(u−M)2p−2+ dx

+
λ

2

∫
RN

(u−M)p+dx+
c0F

p

zp(−τ, ω)

∫
RN (u≥M)

|ψ1(x)|p/2dx, (4.27)

in which we have used the Young inequality (4.13) in the last term, and here c0 =
( 2
λ )p−2/2. On the other hand by using the Young inequality (4.13) again, we get

that for s ∈ [τ − 1, τ ],∣∣∣z(s− τ, ω)

z(−τ, ω)

∫
RN

g(s, x)(u−M)p−1+ dx
∣∣∣ ≤ F

z(−τ, ω)

∣∣∣ ∫
RN

g(s, x)(u(s)−M)p−1+ dx
∣∣∣

≤α1z
p−2(−τ, ω)

4F p−2

∫
RN

(u−M)2p−2+ dx

+
4F p

α1zp(−τ, ω)

∫
RN (u(s)≥M)

g2(s, x)dx,

(4.28)

and ∣∣∣− α ∫
RN

v(u−M)p−1+ dx
∣∣∣ ≤α1z

p−2(−τ, ω)

4F p−2

∫
RN

(u−M)2p−2+ dx

+
4α2F p−2

α1zp−2(−τ, ω)

∫
RN (u(s)≥M)

v2dx. (4.29)

For convenience of calculations, we introduce the following notations:

k = k(τ, ω,M) =
α1e
−(p−2)a|ω(−τ)|

2F p−2
Mp−2, (4.30)

which is increasing to infinite in M for p > 2, and

G(τ, ω) = max
{4F peap|ω(−τ)|

α1
;

4α2F p−2ea(p−2)|ω(−τ)|

α1
; c0F

pzap|ω(−τ)|
}
, (4.31)

which is a nonnegative random constant depending only on τ, ω. By a combination
of (4.24)-(4.29) and using the notations (4.30)–(4.31), we deduce that

d

ds

∫
RN

(u(s)−M)p+dx+ k

∫
RN

(u(s)−M)p+dx

≤G(τ, ω)(‖g(s, .)‖2 + ‖v‖2 + ‖ψ1‖p/2p/2), (4.32)

where s ∈ [τ − 1, τ ]. Applying the Gronwall lemma (also see Lemma 5.1 in [35] )
over [τ − 1, τ ], by Lemma 4.1 and Lemma 4.3, we find that for all t ≥ T > 2 and
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ε ∈ (0, a], ∫
RN

(
u(τ, τ − t, ϑ−τω, uτ−t)−M

)p
+
dx

≤
∫ τ

τ−1
ek(s−τ)‖u(s, τ − t, ϑ−τω, uτ−t)‖ppds

+G(τ, ω)
(∫ τ

τ−1
ek(s−τ)‖v(s, τ − t, ϑ−τω, vτ−t)‖2ds

+

∫ τ

τ−1
ek(s−τ)(‖g(s, .)‖2 + ‖ψ1‖p/2p/2)ds

)
≤C(τ, ω)

k
+G(τ, ω)

ce2a|ω(−τ)|(1 + La(τ, ω)) + ‖ψ1‖p/2p/2

k

+G(τ, ω)

∫ τ

τ−1
ek(s−τ)‖g(s, .)‖2ds, (4.33)

where La(τ, ω) is as in Lemma 4.1. For fixed τ ∈ R and ω ∈ Ω, the first two terms
in the last inequality of (4.33) vary only with the number k, but k is a large number
as M → +∞. Therefore, we get that they converge to zero when M goes to infinite.
It remains to prove that the third term vanishes for M large enough. To prove this,
first choosing a large M such that k = k(τ, ω,M) > δ0 (δ0 is as in (3.5)) and taking
ς ∈ (0, 1), we have∫ τ

τ−1
ek(s−τ)‖g(s, .)‖2ds

=

∫ τ−ς

τ−1
ek(s−τ)‖g(s, .)‖2ds+

∫ τ

τ−ς
ek(s−τ)‖g(s, .)‖2ds

=e−kτ
∫ τ−ς

τ−1
e(k−δ0)seδ0s‖g(s, .)‖2ds+ e−kτ

∫ τ

τ−ς
eks‖g(s, .)‖2ds

≤e−kςeδ0(ς−τ)
∫ τ

−∞
eδ0s‖g(s, .)‖2ds+

∫ τ

τ−ς
‖g(s, .)‖2ds. (4.34)

By (3.5), the first term above vanishes as k → +∞, and by g ∈ L2
loc(R, L2(RN )) we

can choose ς small enough such that the second term in (4.34) is small. In terms of
these arguments, from (4.33)and (4.34) we have proved that

sup
t≥T

sup
ε∈(0,a]

∫
RN

(
u(τ, τ − t, ϑ−τω, uτ−t)−M

)p
+
dx→ 0, (4.35)

when M → +∞. Therefore, for any η > 0, there exists M1 = M1(τ, ω, η,D) > 1
large enough such that

sup
t≥T

sup
ε∈(0,a]

∫
RN

(
u(τ, τ − t, ϑ−τω, uτ−t)−M1

)p
+
dx ≤ e−ap|ω(−τ)| η

2p+1
. (4.36)

If u(τ, τ−t, ϑ−τω, uτ−t) ≥ 2M1, then u(τ, τ−t, ϑ−τω, uτ−t)−M1 ≥ u(τ,τ−t,ϑ−τω,uτ−t)
2 ,

so by (4.36) it infers us that

sup
t≥T

sup
ε∈(0,a]

∫
RN (u(τ)≥2M1)

|u(τ, τ − t, ϑ−τω, uτ−t)|pdx ≤ e−ap|ω(−τ)|
η

2
. (4.37)
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We see from (3.7) that ũ(τ, τ − t, ϑ−τω, ũτ−t) = z(−τ, ω)u(τ, τ − t, ϑ−τω, uτ−t).
Then in terms of the fact that e−a|ω(−τ)| ≤ z(−τ, ω) = e−εω(−τ) ≤ ea|ω(−τ)| for all
ε ∈ (0, a], it induces that RN (ũ(τ, τ− t, ϑ−τω, ũτ−t) ≥ 2M1e

a|ω(−τ)|) ⊆ RN (u(τ, τ−
t, ϑ−τω, uτ−t) ≥ 2M1). This along with (4.37) implies that

sup
t≥T

sup
ε∈(0,a]

∫
RN (ũ(τ)≥2M1ea|ω(−τ)|)

|ũ(τ, τ − t, ϑ−τω, ũτ−t)|pdx

≤ sup
t≥T

sup
ε∈(0,a]

eap|ω(−τ)|
∫
RN (u(τ)≥2M1)

|u(τ, τ − t, ϑ−τω, uτ−t)|pdx ≤
η

2
. (4.38)

Similarly, we can deduce that there exists M2 = M2(τ, ω, η,D) > 0 large enough
such that

sup
t≥T

sup
ε∈(0,1]

∫
RN (ũ(τ)≤−2M2ea|ω(−τ)|)

|ũ(τ, τ − t, ϑ−τω, ũτ−t)|pdx ≤
η

2
. (4.39)

Put M̃ = max{M1,M2} × ea|ω(−τ)|. Then (4.38) and (4.39) together imply the
desired.

Lemma 4.5. Assume that (3.1)-(3.5) hold. Then for every τ ∈ R, ω ∈ Ω, {ũεn(τ, τ−
tn, ϑ−tnω, ũ0,n)} has a convergent subsequence in Lp(RN ) whenever εn ∈ (0, a],
tn → +∞ and (ũ0,n, ṽ0,n) ∈ D(τ − tn, ϑ−tnω) ∈ Dδ.

Proof. Denote by ũn(τ) = ũεn(τ, τ − tn, ϑ−τω, ũ0,n). From Lemma 4.4, for any
η > 0, there exist random constants M = M(τ, ω, η,D) > 1 and Z1 = Z1(τ, ω,D) ∈
Z+ such that the solution ũn(τ) satisfies that for all n ≥ Z1,∫

RN (|ũn(τ)|≥M)

|ũn(τ)|pdx ≤ ηp

2p+2
. (4.40)

On the other hand, Lemma 4.2 implies that there exists a Z2 = Z1(τ, ω,B) ∈ Z+

such that for all n,m ≥ Z2,∫
RN
|ũn(τ)− ũm(τ)|2dx ≤ 1

(2M)p−2
ηp

4
, (4.41)

whenever εn, εm ∈ (0, a]. Here M is as in (4.40). We then decompose the entire
space RN by RN = O1 ∪ O2 ∪ O3 ∪ O4, where

O1 = RN (|ũn(τ)| ≤M) ∩ ON (|ũm(τ)| ≤M);

O2 = RN (|un(τ)| ≥M) ∩ RN (|ũm(τ)| ≤M);

O3 = RN (|ũn(τ)| ≤M) ∩ RN (|ũm(τ)| ≥M);

O4 = RN (|ũn(τ)| ≥M) ∩ RN (|ũm(τ)| ≥M).

We now put Z = max{Z1,Z2}. Then for all n,m ≥ Z, (4.40) and (4.41) hold true.
By (4.41), we have∫

O1

|ũn(τ)− ũm(τ)|pdx ≤
∫
RN (|ũn(τ)−ũm(τ)|≤2M)

|ũn(τ)− ũm(τ)|pdx

≤ (2M)p−2‖ũn(τ)− ũm(τ)‖2

≤ (2M)p−2.(2M)2−p(
ηp

4
) =

ηp

4
. (4.42)
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On the other hand, according to (4.40),∫
O2

|ũn(τ)− ũm(τ)|pdx ≤ 2p
∫
RN (|ũn(τ)|≥M)

|ũn(τ)|pdx ≤ ηp

4
; (4.43)

∫
O3

|ũn(τ)− ũm(τ)|pdx ≤ 2p
∫
RN (|ũm(τ)|≥M)

|ũm(τ)|pdx ≤ ηp

4
; (4.44)

∫
O4

|ũn(τ)− ũm(τ)|pdx ≤ 2p−1
(∫

RN (|u(τ)|≥M)

|ũn(τ)|pdx

+

∫
RN (|ũm(τ)|≥M)

|ũm(τ)|pdx
)
≤ ηp

4
. (4.45)

It follows form (4.42)-(4.45) that

‖ũn(τ)− ũm(τ)‖p ≤ η for all n,m ≥ Z,
whenever εn, εm ∈ (0, a], which shows that {ũn(τ)} also has a convergent subse-
quence in Lp(RN ). Then the proof is concluded.

By Lemma 4.1, Lemma 4.2 and Lemma 4.5 we immediately have

Lemma 4.6. Assume that (3.1)-(3.5) hold. Then the family of random cocycles
ϕε defined by (3.10) is uniformly pullback asymptotically compact over ε ∈ (0, a] in
Lp(RN )×L2(RN ). In particular, each ϕε has a unique (L2(RN )×L2(RN ), Lp(RN )×
L2(RN ))-pullback attractor Aε for each ε ∈ (0, a].

Proof. The uniformly pullback asymptotic compactness is followed from Lem-
ma 4.2 and Lemma 4.5. Then the existence and uniqueness of bi-spatial pullback
attractor are from Lemma 4.1, Lemma 4.2, Lemma 4.5 and Theorem 2.1.

4.3. Convergence of the family ϕε on (0, a] in L2 × L2

This subsection deals with the convergence of solutions at any intension ε of noise.
The convergence at zero has been shown by [1]. Here we need to prove it also
converges at any ε > 0. To this end, the following assumption on the nonlinearity
f as in [2] is also required. That is, for all x ∈ RN and s ∈ R,∣∣∣∂f

∂s
(x, s)

∣∣∣ ≤ α4|s|p−2 + ψ4(x), (4.46)

where α4 > 0, ψ4 ∈ L∞(RN ) if p = 2 and ψ4 ∈ L
p
p−2 (RN ) if p > 2. We need further

to assume that ψ2 ∈ Lq(RN ), where ψ2 is as in (3.2) and q = p
p−1 is conjugation of

p.
To begin with, from (4.6) it is very easy to derive the following inequality.

Lemma 4.7. Assume that (3.1)–(3.5) hold. Then for each τ ∈ R, ω ∈ Ω and
(ũε(τ), ṽε(τ)) ∈ L2(RN )×L2(RN ), the solution (u, v) of problem (3.8)–(3.9) satisfies
for all t ≥ τ ,

‖uε(t, τ, ω, u(τ))‖2 + ‖vε(t, τ, ω, v(τ))‖2

+

∫ t

τ

(
‖vε(s, τ, ω, vε(τ))‖2 + z2ε(s, ω)‖ũε(s, τ, ω, ũε(τ))‖pp

)
ds

≤cz2ε(τ, ω)(‖ũε(τ)‖2 + ‖ṽε(τ)‖2) + c

∫ t

τ

z2ε(s, ω)(‖g(s, .)‖2 + ‖h(s, .)‖2 + 1)ds.
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Then by applying Lemma 4.7 we have

Lemma 4.8. Assume that (3.1)–(3.5) and (4.46) hold. Let (ũε, ṽε) be the solu-
tion of problem (3.8)-(3.9) with initial data (ũε,τ , ṽε,τ ). Assume that ε → ε0 and
‖(ũε,τ , ṽε,τ )−(ũε0,τ , ṽε0,τ )‖ → 0 for ε, ε0 ∈ (0, a]. Then for each τ ∈ R, ω ∈ Ω, T > 0
and every t ∈ [τ, τ + T ],

lim
ε→ε0

‖(ũε(t, τ, ω, ũε,τ ), ṽε(t, τ, ω, ṽε,τ ))− (ũε0(t, τ, ω, ũε0,τ ), ṽε0(t, τ, ω, ṽε0,τ ))‖ = 0.

(4.47)

In particular, let (ũ, ṽ) be the solution of problem (3.8)–(3.9) for ε = 0 with initial
data (ũτ , ṽτ ). Assume that ε→ 0 and ‖(ũε,τ , ṽε,τ ))− (ũτ , ṽτ )‖ → 0. Then for each
τ ∈ R, ω ∈ Ω and T > 0,

lim
ε→0
‖(ũε(t, τ, ω, ũε,τ ), ṽε(t, τ, ω, ṽε,τ ))− (ũ(t, τ, ũτ ), ṽ(t, τ, ṽτ ))‖ = 0. (4.48)

Proof. Put U = U(t) = uε(t, τ, ω, uε,τ ) − uε0(t, τ, ω, uε0,τ ) and V = V (t) =
vε(t, τ, ω, vε,τ )− vε0(t, τ, ω, vε0,τ ). Then we get the following system:

dU
dt + λU −∆U + αV = e−εω(t)f(x, eεω(t)uε)− e−ε0ω(t)f(x, eε0ω(t)uε0)

+ (e−εω(t) − e−ε0ω(t))g(t, x),
dV
dt + σV − βU = (e−εω(t) − e−ε0ω(t))h(t, x),

(4.49)

where uε = uε(t) = uε(t, τ, ω, uε,τ ). Let η be a small positive number. Since ω
is continuous on R, then there exists an χ = χ(τ, ω, η, T ) > 0 such that for every
ε ∈ (ε0 − χ, ε0 + χ) ⊂ (0, a] and t ∈ [τ, τ + T ],

|eεω(t) − eε0ω(t)|+ |e−εω(t) − e−ε0ω(t)| ≤ η. (4.50)

By (4.49), we deduce that

1

2

d

dt
(β‖U‖2 + α‖V ‖2) + λβ‖U‖2 + σα‖V ‖2

≤β
∫
RN

(
e−εω(t)f(x, eεω(t)uε)− e−ε0ω(t)f(x, eε0ω(t)uε0)

)
Udx

+ β(e−εω(t) − e−ε0ω(t))
∫
RN

g(t, x)Udx

+ α(e−εω(t) − e−ε0ω(t))
∫
RN

h(t, x)V dx. (4.51)

The first term on the right hand side of (4.51) is rewritten as∫
RN

(
e−εω(t)f(x, eεω(t)uε)− e−ε0ω(t)f(x, eε0ω(t)uε0)

)
Udx

=e−εω(t)
∫
RN

(
f(x, eεω(t)uε)− f(x, eε0ω(t)uε0)

)
Udx

+ (e−εω(t) − e−ε0ω(t))
∫
RN

f(x, eε0ω(t)uε0)Udx

=e−εω(t)
∫
RN

∂

∂s
f(x, s)(eεω(t)uε − eε0ω(t)uε0)Udx
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+ (e−εω(t) − e−ε0ω(t))
∫
RN

f(x, eε0ω(t)uε0)Udx

=

∫
RN

∂

∂s
f(x, s)U2dx+ (e−ε0ω(t) − e−εω(t))

∫
RN

∂

∂s
f(x, s)ũε0Udx

+ (e−εω(t) − e−ε0ω(t))
∫
RN

f(x, eε0ω(t)uε0)Udx. (4.52)

By (4.46) and (4.50), the second term on the right hand side of (4.52) is bounded
by

(e−ε0ω(t) − e−εω(t))
∫
RN

∂

∂s
f(x, s)ũε0Udx

≤|e−ε0ω(t) − e−εω(t)|
∫
RN

(
α4(|ũε|+ |ũε0 |)p−2|ũε0 ||U |+ |ũε0 ||U ||ψ4|

)
dx

≤cη
(
‖ũε‖pp + ‖ũε0‖pp + ‖U‖pp + ‖ψ4‖

p
p−2
p
p−2

)
. (4.53)

By (3.2) and (4.50), along with ψ2 ∈ Lq, the third term on the right hand side of
(4.52) is bounded by

(e−εω(t)−e−ε0ω(t))
∫
RN

f(x, ũε0)Udx ≤ |e−εω(t)−e−ε0ω(t)|
∫
RN

(α2|ũε0 |p−1+ψ2)|U |dx

≤ cη
(
‖ũε0‖pp + ‖U‖pp + ‖ψ2‖qq

)
, (4.54)

where q = p
p−1 . Then by a combination of (4.52)-(4.54), we find that for every

ε ∈ (ε0 − χ, ε0 + χ) and t ∈ [τ, τ + T ],∫
RN

(
e−εω(t)f(x, ũε)− e−ε0ω(t)f(x, ũε0)

)
Udx

≤α3‖U‖2 + cη + cη
(
‖ũε‖pp + ‖ũε0‖pp + ‖U‖pp

)
≤α3‖U‖2 + c0η

(
‖ũε‖pp + ‖ũε0‖pp + ‖U‖pp + 1

)
. (4.55)

For the last two terms on the right hand side of (4.52), by (4.50), we have for every
ε ∈ (ε0 − χ, ε0 + χ) and t ∈ [τ, τ + T ],

(e−εω(t) − e−ε0ω(t))
∫
RN

g(t, x)Udx ≤ η‖U‖2 + η‖g(t, .)‖2, (4.56)

(e−εω(t) − e−ε0ω(t))
∫
RN

h(t, x)V dx ≤ η‖V ‖2 + η‖h(t, .)‖2. (4.57)

Then by (4.51) and (4.55)–(4.57), we get that for every ε ∈ (ε0 − χ, ε0 + χ) and
t ∈ [τ, τ + T ],

d

dt
(β‖U‖2 + α‖V ‖2) ≤c1(β‖U‖2 + α‖V ‖2) + c2η

(
‖ũε‖pp + ‖ũε0‖pp

+ ‖uε0‖pp + ‖|uε‖pp + ‖g(t, .)‖2 + ‖h(t, .)‖2 + 1
)
, (4.58)
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where c1 and c2 are positive constants independent of τ, ω and ε. By (4.58) we
immediately have for every ε ∈ (ε0 − χ, ε0 + χ) and t ∈ [τ, τ + T ],

‖U(t)‖2 + ‖V (t)‖2 ≤c3ec1(t−τ)(‖U(τ)‖2 + ‖V (τ)‖2)

+ c4ηe
c1(t−τ)

∫ t

τ

(
‖ũε(s)‖pp + ‖ũε0(s)‖pp

+ ‖uε(s)‖pp + ‖uε0(s)‖pp + ‖g(s, .)‖2 + ‖h(s, .)‖2 + 1
)
ds.

(4.59)

Since e−εω(s) is continuous on R, then for every fixed τ ∈ R and ω ∈ Ω, and
s ∈ [τ, τ + T ], there exist µ = µ(τ, ω, T ) and ν = ν(τ, ω, T ) such that for all
ε ∈ (0, a], µ ≤ zε(s, ω) ≤ ν for all s ∈ [τ, τ + T ]. Therefor by Lemma 4.7, it follows
that for all t ∈ [τ, τ + T ],∫ t

τ

‖ũε(s, τ, ω, uε(τ))‖ppds

≤µ−2
∫ t

τ

z2ε(s, ω)‖ũε(s, τ, ω, uε(τ))‖ppds

≤µ−2
(
z2ε(τ, ω)(‖ũε(τ)‖2 + ‖ṽε(τ)‖2) + cν2

∫ t

τ

(‖g(s, .)‖2 + ‖h(s, .)‖2 + 1)ds
)

≤µ−2
(
e2a|ω(τ)|(‖ũε(τ)‖2 + ‖ṽε(τ)‖2) + cν2

∫ t

τ

(‖g(s, .)‖2 + ‖h(s, .)‖2 + 1)ds
)
.

(4.60)

By a similar technique we can calculate that for all t ∈ [τ, τ + T ],∫ t

τ

‖uε(s, τ, ω, uε(τ))‖ppds ≤ µp−2
(
e2a|ω(τ)|(‖ũε(τ)‖2 + ‖ṽε(τ)‖2)

+ cν2
∫ t

τ

(‖g(s, .)‖2 + ‖h(s, .)‖2 + 1)ds
)
. (4.61)

Then by (4.59)–(4.61) it gives that

‖U(t)‖2 + ‖V (t)‖2 ≤ c3ec1(t−τ)(‖U(τ)‖2 + ‖V (τ)‖2)

+ c5ηe
c1(t−τ)

(
e2a|ω(τ)|(µ−2 + µp−2)(‖ũε(τ)‖2 + ‖ũε0,τ‖2

+ ‖ṽε(τ)‖2 + ‖ṽε0,τ‖2)

+ ν2(µ−2 + µp−2)

∫ t

τ

(‖g(s, .)‖2 + ‖h(s, .)‖2 + 1)ds

+

∫ t

τ

(‖g(s, .)‖2 + ‖h(s, .)‖2)ds
)
. (4.62)

On the other hand, by (4.50) it follows that for every ε ∈ (ε0 − χ, ε0 + χ) ⊂ (0, a],

‖U(τ)‖2 = ‖e−εω(τ)ũε(τ)− e−ε0ω(τ)ũε0,τ‖2

≤ 2e−2εω(τ)‖ũε(τ)− ũε0,τ‖2 + 2|e−εω(τ) − e−ε0ω(τ)|2‖ũε0,τ‖2

≤ 2e2a|ω(τ)|‖ũε(τ)− ũε0,τ‖2 + 2η2‖ũε0,τ‖2. (4.63)
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Similarly,

‖V (τ)‖2 ≤ 2e2a|ω(τ)|‖ṽε(τ)− ṽε0,τ‖2 + 2η2‖ṽε0,τ‖2. (4.64)

We now let ε → ε0 and ‖uε,τ − uε0,τ‖ → 0. Then by (4.62)–(4.64) we obtain that
for all t ∈ [τ, τ + T ],

‖U(t)‖2 + ‖V (t)‖2 =‖uε(t, τ, ω, uε,τ )− uε0(t, τ, ω, uε0,τ )‖2

+ ‖vε(t, τ, ω, vε,τ )− vε0(t, τ, ω, vε0,τ )‖2 → 0. (4.65)

Notice that by (4.50) we also have for every ε ∈ (ε0 − χ, ε0 + χ) and t ∈ [τ, τ + T ],

‖ũε(t, τ, ω, ũε(τ))− ũε0(t, τ, ω, ũε0,τ )‖2

≤ 2e2a|ω(t)|‖uε(t)− uε0(t)‖2 + 2η2‖uε0(t)‖2, (4.66)

‖ṽε(t, τ, ω, ṽε(τ))− ṽε0(t, τ, ω, ṽε0,τ )‖2

≤ 2e2a|ω(t)|‖vε(t)− vε0(t)‖2 + 2η2‖vε0(t)‖2. (4.67)

Then by (4.65)–(4.67) we get (4.47). Repeating the same arguments we can derive
(4.48).

4.4. Main results

We are now at the point to present the main results in this paper.

Theorem 4.1. Suppose ε ∈ (0, a] and (3.1)-(3.5) hold true. Then
(i) each random cocycle ϕε generated by (1.1)-(1.3) has a unique pullback at-

tractor Aε and the corresponding deterministic cocycle ϕ0 has a unique pullback
attractor A0 in L2(RN ) × L2(RN ). Furthermore both Aε and A0 are (L2(RN ) ×
L2(RN ), Ll(RN )× L2(RN ))-pullback attractors.

(ii) If further (4.46) holds true, then the family Aε is upper semi-continuous
under the Hausdorff semi-distance of Ll(RN ) × L2(RN ) at any ε0 ∈ (0, a] and in
particular at ε = 0. Here l ∈ (2, p], p > 2.

Proof. Let X = L2(RN ) × L2(RN ) and Y = Ll(RN ) × L2(RN ). Then it is
known that the hypothesises (H1 )) and (H2 )) (see Lemma 2.7 in [36]) hold true.
By the Sobolev interpolation and association with Lemma 4.2 and Lemma 4.6, we
immediately obtain the uniformly pullback asymptotic compactness in Ll(RN ) ×
L2(RN ) for any 2 < l < p. Then along with uniform absorption (see Lemma
4.1) and convergence property (see Lemma 4.8), all conditions of Theorem 2.2 are
satisfied.

5. Existence of random equilibria for the generated
random cocycle

Random equilibrium is a special case of omega-limit sets. We can refer to [3, 6]
for the definitions and applications to monotone random dynamical system. The
problem of the construction of equilibria for a general random dynamical system
is rather complicate [6]. Recently, Gu [13] proved that the stochastic FitzHugh-
Nagumo lattice equations driven by fractional Brownian motions possess a unique
equilibrium. However, we here introduce the random equilibrium in the case of
non-autonomous stochastic dynamical system. Specifically, we have
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Definition 5.1. Let (Q, {σt}R) and (Ω,F , P, {ϑt}t∈R) be parametric dynamical
systems. A random variable u∗ : Q× Ω 7→ X is said to be an equilibrium (or fixed
point, or stationary solution) of random cocycle ϕ if it is invariant under ϕ, i.e., if

ϕ(t, q, ω, u∗(q, ω)) = u∗(σtq, ϑtω) for all t ≥ 0, q ∈ Q, ω ∈ Ω.

In this section, the parametric systems (Q, {σt}R) and (Ω,F , P, {ϑt}t∈R) are
the same as in section 3. We will prove the existence of equilibrium for problem
(1.1)–(1.3) on the whole space RN . To this end, we need to assume that

δ = min{λ, σ} > α3, (5.1)

where α3 is as in (3.3) and λ, σ are as in the FitzHugh-Nagumo system (1.1)–(1.2).
Suppose that for every τ ∈ R and ω ∈ Ω.

lim
t→+∞

e−b0tz2(−t, ω)‖D(τ − t, ϑ−tω)‖2L2(RN )×L2(RN ) = 0, (5.2)

where δ0 < b0 < λ−α3 and δ0 is the same as in (3.5). Denote by Db0 the collection
of all families of nonempty subsets of L2(RN )×L2(RN ) such that (5.2) holds. Then
it is obvious that Db0 is inclusion closed.

For convenience, here we write ε = 1. First, we have

Lemma 5.1. Suppose that g and h satisfy (3.5) and f satisfies (3.1) and (3.3) such
that (5.1) holds. Then the solutions of problem (1.1)–(1.3) with the initial values
(ũτ−ti , ṽτ−ti)(i = 1, 2), t1 < t2 satisfy the following decay property:

‖ũ(τ, τ − t1, ϑ−τω, ũτ−t1)− ũ(τ, τ − t2, ϑ−τω, ũτ−t2)‖2

+ ‖ṽ(τ, τ − t1, ϑ−τω, ṽτ−t1)− ṽ(τ, τ − t2, ϑ−τω, ṽτ−t2)‖2

≤c
(
e−b0t1z2(−t1, ω)(‖ũτ−t1‖2 + ‖ṽτ−t1‖2) + e−b0t2z2(−t2, ω)(‖ũτ−t2‖2

+ ‖ṽτ−t2‖2)
)

+ ce(b0−b)t1
∫ 0

−∞
eb0sz2(s, ω)(‖g(s+ τ, .)‖2 + ‖h(s+ τ, .)‖2 + 1)ds,

where c is a deterministic non-random constant.

Proof. Put ū = u(t, τ − t1, ϑ−τω, uτ−t1)− u(t, τ − t2, ϑ−τω, uτ−t2) and

v̄ = v(t, τ − t1, ϑ−τω, vτ−t1)− v(t, τ − t2, ϑ−τω, vτ−t2).

Then from (3.8)–(3.9), along with (5.1), we have

d

dt
(β‖ū‖2 + α‖v̄‖2) + b(β‖ū‖2 + α‖v̄‖2) ≤ 0, (5.3)

where b = δ − α3. By applying the Gronwall lemma to (5.3) over the interval
[τ − t1, τ ], we immediately get

‖ū(τ)‖2 + ‖v̄(τ)‖2 ≤ ce−bt1(‖u(τ − t1, τ − t2, ϑ−τω, uτ−t2)− uτ−t1‖2

+ ‖v(τ − t1, τ − t2, ϑ−τω, vτ−t2)− vτ−t1‖2)

≤ ce−bt1(‖u(τ − t1, τ − t2, ϑ−τω, uτ−t2)‖2

+ ‖v(τ − t1, τ − t2, ϑ−τω, vτ−t2)‖2)

+ ce−bt1(‖uτ−t1‖2 + ‖vτ−t1‖2), (5.4)



Regularity of pullback attractors and random equilibrium 1307

where c = c(α, β) is a positive deterministic constant. Note that

0 < δ0 < b0 < b = δ − α3, (5.5)

where δ0 is as in (3.5). From (4.6) and using (5.5), we have

d

dt
(β‖u‖2 + α‖v‖2) + b0(β‖u‖2 + α‖v‖2) ≤ cz2(t, ω)(‖g(t, .)‖2 + ‖h(t, .)‖2 + 1).

(5.6)

Then by the Gronwall lemma again over the interval [τ − t2, τ − t1], we find that

‖u(τ − t1, τ − t2, ϑ−τω, uτ−t2)‖2 + ‖v(τ − t1, τ − t2, ϑ−τω, vτ−t2)‖2

≤ceb0(t1−t2)(‖uτ−t2‖2 + ‖vτ−t2‖2)

+ c

∫ τ−t1

τ−t2
e−b0(τ−t1−s)z2(s, ϑ−τω)(‖g(s, .)‖2 + ‖h(s, .)‖2 + 1)ds

≤ceb0(t1−t2)(‖uτ−t2‖2 + ‖vτ−t2‖2)

+ ceb0t1e2ω(−τ)
∫ 0

−∞
eb0sz2(s, ω)(‖g(s+ τ, .)‖2 + ‖h(s+ τ, .)‖2 + 1)ds, (5.7)

where c = c(α, β) is a positive deterministic constant. Then by a combination of
(5.7) and (5.4) we have

‖ū(τ)‖2 + ‖v̄(τ)‖2

≤ce−bt1(‖uτ−t1‖2 + ‖vτ−t1‖2) + ce(b0−b)t1e−b0t2(‖uτ−t2‖2 + ‖vτ−t2‖2)

+ ce(b0−b)t1e2ω(−τ)
∫ 0

−∞
eb0sz2(s, ω)(‖g(s+ τ, .)‖2 + ‖h(s+ τ, .)‖2 + 1)ds

≤ce−b0t1(‖uτ−t1‖2 + ‖vτ−t1‖2) + e−b0t2(‖uτ−t2‖2 + ‖vτ−t2‖2)

+ ce(b0−b)t1e2ω(−τ)
∫ 0

−∞
eb0sz2(s, ω)(‖g(s+ τ, .)‖2 + ‖h(s+ τ, .)‖2 + 1)ds, (5.8)

where we have used e(b0−b)t1 ≤ 1 for b0 < b. In terms of the relation (3.7), we get

‖¯̃u(τ)‖2 + ‖¯̃v(τ)‖2 = e−2ω(−τ)‖ū(τ)‖2 + ‖v̄(τ)‖2

≤ce−2ω(−τ)
(
e−b0t1(‖uτ−t1‖2 + ‖vτ−t1‖2) + e−b0t2(‖uτ−t2‖2 + ‖vτ−t2‖2)

)
+ ce(b0−b)t1

∫ 0

−∞
eb0sz2(s, ω)(‖g(s+ τ, .)‖2 + ‖h(s+ τ, .)‖2 + 1)ds

=ce−2ω(−τ)
(
e−b0t1z2(τ − t1, ϑ−τω)(‖ũτ−t1‖2 + ‖ṽτ−t1‖2)

+ e−b0t2z2(τ − t2, ϑ−τω)(‖ũτ−t2‖2 + ‖ṽτ−t2‖2)
)

+ ce(b0−b)t1
∫ 0

−∞
eb0sz2(s, ω)(‖g(s+ τ, .)‖2 + ‖h(s+ τ, .)‖2 + 1)ds

=c
(
e−b0t1z2(−t1, ω)(‖ũτ−t1‖2 + ‖ṽτ−t1‖2)

+ e−b0t2z2(−t2, ω)(‖ũτ−t2‖2 + ‖ṽτ−t2‖2)
)

+ ce(b0−b)t1
∫ 0

−∞
eb0sz2(s, ω)(‖g(s+ τ, .)‖2 + ‖h(s+ τ, .)‖2 + 1)ds,
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which finishes the proof.

Lemma 5.2. Suppose that g and h satisfy (3.5), f satisfies (3.1) and (3.3) such
that (5.1) holds. Let D = {D(τ, ω); τ ∈ R, ω ∈ Ω} ∈ Db0 where Db0 is defined as
in (5.2). Then for τ ∈ R, ω ∈ Ω, there exists a unique element u∗ = u∗(τ, ω) ∈
L2(RN )× L2(RN ) such that

lim
t→+∞

(ũ(τ, τ − t, ϑ−τω, ũτ−t), ṽ(τ, τ − t, ϑ−τω, ṽτ−t)) = u∗(τ, ω)

in L2(RN ) × L2(RN ), where (ũτ−t, ṽτ−t) ∈ D(τ − t, ϑ−tω). Furthermore, the con-
vergence is uniform (w.r.t. (ũτ−t, ṽτ−t) ∈ D(τ − t, ϑ−tω)).

Proof. It is derived directly from Lemma 5.1.

Theorem 5.1. Suppose that g and h satisfies (3.5), f satisfies (3.1) and (3.3)
such that (5.1) holds. Then for τ ∈ R, ω ∈ Ω, the element u∗ = u∗(τ, ω) defined in
Lemma 5.2 is a unique random equilibrium for the cocycle ϕ defined by (3.10) in
L2(RN )× L2(RN ), i.e.,

ϕ(t, τ, ω, u∗(τ, ω)) = u∗(τ + t, ϑtω), for every t ≥ 0, τ ∈ R, ω ∈ Ω.

Furthermore, the random equilibrium {u∗(τ, ω), τ ∈ R, ω ∈ Ω} is the unique element
of the pullback attractor A = {A(τ, ω); τ ∈ R, ω ∈ Ω} for the random cocycle ϕ,
i.e., for every τ ∈ R, ω ∈ Ω, A(τ, ω) = {u∗(τ, ω)}.

Proof. From the definition of random cocycle,

ϕ(t, τ − t, ϑ−tω, (ũτ−t, ṽτ−t)) = (ũ(τ, τ − t, ϑ−τω, ũτ−t), ṽ(τ, τ − t, ϑ−τω, ṽτ−t)),

then for for every τ ∈ R, ω ∈ Ω, we see from Lemma 5.3 that

u∗(τ, ω) = lim
t→+∞

ϕ(t, τ − t, ϑ−tω, (ũτ−t, ṽτ−t)), (5.9)

where (ũτ−t, ṽτ−t) ∈ D(τ − t, ϑ−tω). Thus by the continuity and the cocycle prop-
erty of ϕ and (5.9), we find that for every t ≥ 0, τ ∈ R, ω ∈ Ω,

ϕ(t, τ, ω, u∗(τ, ω)) = ϕ(t, τ, ω, .) ◦ lim
s→+∞

ϕ(s, τ − s, ϑ−sω, (ũτ−t, ṽτ−t))

= lim
s→+∞

ϕ(t, τ, ω, .) ◦ ϕ(s, τ − s, ϑ−sω, (ũτ−t, ṽτ−t))

= lim
s→+∞

ϕ(t+ s, τ − s, ϑ−sω, (ũτ−t, ṽτ−t))

= lim
s→+∞

ϕ(t+ s, (τ + t)− t− s, ϑ−s−tϑtω, (ũτ−t, ṽτ−t))

= u∗(τ + t, ϑtω),

which also implies the invariance of A, that is, ϕ(t, τ, ω,A(τ, ω)) = A(τ + t, ϑtω).
The compactness of A(τ, ω) is obvious and the attracting property follows from
(5.9).
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