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DYNAMICS OF AN SIR EPIDEMIC MODEL
WITH HORIZONTAL AND VERTICAL
TRANSMISSIONS AND CONSTANT

TREATMENT RATES∗
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Abstract We investigate the dynamics and bifurcations of SIR epidemic
model with horizontal and vertical transmissions and constant treatment rates.
It is proved that such SIR epidemic model have up to two positive epidemic
equilibria and has no positive disease-free equilibria. We find all the ranges of
the parameters involved in the model under which the equilibria of the model
are positive. By using the qualitative theory of planar systems and the normal
form theory, the phase portraits of each equilibria are obtained. We show that
the equilibria of the epidemic system can be saddles, stable nodes, stable or
unstable focuses, weak centers or cusps. We prove that the system has the
Bogdanov-Takens bifurcations, which exhibit saddle-node bifurcations, Hopf
bifurcations and homoclinic bifurcations.
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1. Introduction

A variety of disease model have been developed by incorporating the control mea-

sures or demographic structures into the classic susceptible-infectious-recovered

(SIR) model with vital dynamics (birth and death) [7]. In the classic SIR model, the

horizontal transmissions: the diseases are transmitted through contact between the

infectives and the susceptibles, are considered, but the vertical transmissions: the

diseases are transmitted from infective parents to unborn or newly born offsprings

are not involved. Treatment including isolation or quarantine is one of control

measures for epidemic diseases such as measles, tuberculosis, AIDs, phthisis and

flu. There are many infectious diseases such as rubella, herpes simplex, hepatitis
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B, chagas disease, and AIDS can be transmitted by horizontal transmission or by

vertical transmission such as eggs of insects or seeds of plants [2, 3, 12].

In this paper, we incorporate the known constant treatment rate representing

the capacity of treatment on infectives into the SIR model with both horizontal and

vertical transmissions, and study the dynamics of the model. Under the standard

assumptions that the birth rate equals the death rate, all the unborn or newly born

offsprings of the infective parents are the susceptible or infective, and the density

of the population is 1, the model is governed by the following system
Ṡ = b− βSI − bS − qbI,
İ = βSI − bI − rI + qbI − T (I),

Ṙ = rI − bR+ T (I),

(1.1)

where S ≥ 0, I ≥ 0 and R ≥ 0 denote the densities of the populations of the

susceptible, infective and removed, respectively; b is the birth rate of susceptible

population which equals the death rate, and r ≥ 0 is the recovery rate of the infective

individuals. Note that the disease is considered as a permanent immunity. The

parameter β denotes the effective per capita contact rate of infective individuals.

The term βSI is called the incidence rate. The parameter q ∈ [0, 1] is the fraction

of unborn or newly born offsprings of the infective parents, and T (I) is the constant

treatment rate defined by

T (I) =

h for I > 0,

0 for I = 0,

and h > 0 is a constant representing the capacity of the treatment for a disease in

a community. The SIR model (1.1) with q = h = 0, q = 0 and h = 0 were studied,

respectively, in [7], [15] and [13].

Under the assumptions that the birth and death rates are equal and the density

of the population is 1, that is, S(t) + I(t) + R(t) = 1 for t ≥ 0, from which we

can see that the system (1.1) is reduced to the system of the first two equations,

namely, {
Ṡ = b− βSI − bS − qbI := f(S, I),

İ = βSI − bI − rI + qbI − h := g(S, I).
(1.2)

The system (1.2) with treatments and without vertical transmissions, that is, (1.2)

with h > 0 and q = 0, was studied by Wang and Ruan [15]. They proved that such

model undergo saddle-node bifurcation, subcritical Hopf bifurcation, and homoclinic

bifurcation, and discussed the existence and nonexistence of limit cycles of the

model. We refer to [5, 6, 8, 9, 11, 16] for other disease model with treatments and

without vertical transmissions.

The system (1.2) with vertical transmissions and without treatment, that is,

q ∈ (0, 1) and h = 0, was studied by Meng and Chen [13]. They showed that when

the basic reproductive rate R0 of the epidemic is greater that 1, (1.2) with q ∈ (0, 1)

and h = 0 has only one positive infection-free equilibrium, which is unstable, and has

only one positive interior (epidemic) equilibrium, which is locally stable. If R0 < 1,

then the infection-free equilibrium is locally stable and the interior equilibrium is

unstable.
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The dynamics of the system (1.2) with h > 0 is different from (1.2) with h = 0.

We shall show that (1.2) with h > 0 has no positive infection-free equilibria, has

two, one or no positive interior equilibria, for 0 < h < h1, h = h1 and h > h1,

respectively, where the formula of the critical treatment rate h1 will be given later.

These results are generalizations of the corresponding results obtained in [15] from

q = 0 to q ∈ [0, 1]. We shall show that the one of positive interior equilibria is

a saddle point, which generalizes the corresponding result in [15] from q = 0 to

q ∈ [0, 1], and another can be a stable focus or stable or unstable node for small

treatment rates, which generalizes the corresponding result in [15], where q = 0

and only stability of the equilibrium was obtained. When h = h1, we show that

the unique positive interior equilibrium of (1.2) is a saddle-node or a cusp with

dimension 2, and (1.2) admits Bogdanov-Takens bifurcations showing that (1.2)

can admit saddle-node bifurcations, Hopf bifurcations and homoclinic bifurcations.

2. Positive equilibria

In this section, we find all the equilibria of (1.2) and provide conditions on the pa-

rameters involved in (1.2) under which the equilibria are positive. For convenience,

we replace S and I in the system (1.2) by x and y, respectively, and obtain the

following system {
ẋ = b− βxy − bx− qby := f(x, y),

ẏ = βxy − by − ry + qby − h := g(x, y),
(2.1)

where x ≥ 0 and y ≥ 0 denote the densities of the populations of the susceptible

and infective, respectively.

System (2.1) are generalizations of some known model studied in [7,13,15]. (2.1)

with q = h = 0 is the classic SIR model studied in [7] while (2.1) with q = 0 and with

h = 0 becomes the system (1.3) with A = b studied in [15], where A represents the

recruitment rate of the population, and the system (2.3) studied in [13], respectively.

Recall that (x, y) ∈ R2 is an equilibrium of (2.1) if it satisfies f(x, y) = 0 and

g(x, y) = 0. An equilibrium point (x, y) is said to be positive if x, y ≥ 0; to be a

positive interior equilibrium if x, y > 0. Hence, to find all the equilibria of (2.1), we

consider the following system{
−βxy − bx− qby + b = 0,

βxy − ηy − h = 0,
(2.2)

where η := η(r, b, q) = r + (1− q)b > 0.

The basic reproductive rate of the epidemic is defined as

R0 =
β

η
=

β

r + b− qb
.

Theorem 2.1. (1) Assume that b, r, β, η > 0 and q, h ≥ 0. If (x, y) ∈ R2 is an

equilibrium of (2.1), then y satisfies the following quadrant equation

− β(b+ r)y2 + [β(b− h)− bη]y − bh = 0. (2.3)
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(2) Assume that b, r > 0, q ∈ [0, 1] and 0 < β ≤ η. Then equation (2.1) with

h > 0 has no positive equilibria.

Proof. (1) Assume that (x, y) ∈ R2 is an equilibrium of (2.1). Then (x, y) is a

solution of the system (2.2). Adding the second equation of (2.2) to the first one,

we see that the system (2.2) is equivalent to the following system{
−bx− (b+ r)y + (b− h) = 0,

βxy − ηy − h = 0.
(2.4)

Multiplying the first equation of (2.4) by βy and the second one by b and then

adding the two resulting equations implies (2.3).

(2) The proof is by contradiction. Assume that (x, y) ∈ R2 is a positive equi-

librium of (2.1). Then y ≥ 0 and y satisfies (2.3). Since b, r > 0, q ∈ [0, 1] and

0 < β ≤ η, we have b(η − β) + βh ≥ 0. By (2.3), we have

0 = −β(b+ r)y2 + [β(b− h)− bη]y − bh
= −β(b+ r)y2 − [b(η − β) + βh]y − bh ≤ −bh < 0,

a contradiction.

Theorem 2.1 (2) is a generalization of a result given in [15, page 779], where

q = 0. Theorem 2.1 (2) shows that if the basic reproductive rate R0 is less than

or equal to 1 and the treatment is introduced, then equation (2.1) with h > 0 has

no positive equilibria. Hence, the epidemic cannot maintain itself. This result is

different from that of (2.1) with h = 0. It is known that equation (2.1) with h = 0

has a disease-free equilibrium (1, 0) for b, r, β > 0 and q ∈ [0, 1], and a positive

interior epidemic equilibrium
( η
β
,

b

b+ r

(
1 − η

β

))
for b, r > 0, q ∈ [0, 1] and η < β,

see [7, section 6], where (2.1) with h = q = 0 is considered and [13, page 584],

where (2.1) with h = 0 and q ∈ (0, 1) is considered. Hence, when R0 ≤ 1, (2.1)

with h = 0 always has a disease-free equilibrium (1, 0) and when R0 > 1, (2.1) with

h = 0 always has the disease-free equilibrium (1, 0) and a positive interior epidemic

equilibrium
( η
β
,

b

b+ r

(
1− η

β

))
.

However, when the treatment is introduced, (2.1) with h > 0 has no disease-free

equilibria and we shall show in Theorem 2.2 below that if the basic reproductive

rate R0 is greater than 1, that is, β > η, then (2.1) with h > 0 has up to two

positive interior equilibria depending on the value h, and when the treatment rate

h is greater than the value h1 to be given below, (2.1) has no positive equilibria and

the epidemic is eradicated.

Notation 1. Let

h0 =
b(β − η)

β
, h∗ = h0 +

2b(b+ r)

β
,

h1 := h1(q) = h∗ − 2b

β

√
(b+ r)(β + qb), h2 = h∗ +

2b

β

√
(b+ r)(β + qb),

∆ : = ∆(h) = [β(b− h)− bη]2 − 4bhβ(b+ r) = β2(h0 − h)2 − 4bhβ(b+ r).
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Lemma 2.1. Assume that b, r > 0, q ∈ [0, 1] and β > η. Then 0 < h1 < h0.

Proof. By the definition of h1, we have

h1 = h∗ − 2b

β

√
(b+ r)(β + qb)

=
b

β

[
(β + b+ r + qb)− 2

√
(b+ r)(β + qb)

]
=
b

β

[√
β + qb−

√
b+ r

]2
=

b(β − η)2

β
[√
β + qb+

√
b+ r

]2 > 0.

By the definition of h0 and h1, we have

h0 − h1 =
2b

β

[√
(b+ r)(β + qb)− (b+ r)

]
=

2b[(b+ r)(β + qb)− (b+ r)2]

β
[
b+ r +

√
(b+ r)(β + qb)

]
=

2b(b+ r)(β − η)

β
[
b+ r +

√
(b+ r)(β + qb)

] > 0 (2.5)

and h1 < h0.

Theorem 2.2. Assume that b, r > 0, q ∈ [0, 1] and β > η. Then the following

assertions hold.

(1) If 0 < h < h1, then system (2.1) has two positive interior equilibria (x1, y1)

and (x2, y2), where

y1 =
[β(b− h)− bη]−

√
∆

2β(b+ r)
, y2 =

[β(b− h)− bη] +
√

∆

2β(b+ r)
(2.6)

and

x1 =
ηy1 + h

βy1
, x2 =

ηy2 + h

βy2
. (2.7)

(2) If h = h1, then system (2.1) has one positive interior equilibrium (x∗, y∗),

where

x∗ =
ηy∗ + h1
βy∗

=
η

β
+

(b+ r)(β − η)

β
[
b+ r +

√
(b+ r)(β + qb)

]
and

y∗ =
b(β − η)

β
[
b+ r +

√
(b+ r)(β + qb)

] .
(3) If h > h1, then system (2.1) has no positive equilibria.

Proof. By (2.2) and (2.3), we see that if (x, y) is an equilibrium of (2.1), then y

satisfies (2.3) and if y > 0, then

x =
ηy + h

βy
. (2.8)
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We prove the following

(y − y∗(h))2 =
∆

4β2(b+ r)2
=

(h− h1)(h− h2)

4(b+ r)2
, (2.9)

where

y∗(h) =
b(β − η)− βh

2β(b+ r)
=

h0 − h
2(b+ r)

. (2.10)

Indeed, by (2.3) and the definition of ∆, we have

(y − y∗(h))2 =
∆

4β2(b+ r)2

=
1

4β2(b+ r)2

[
β2(b− h)2 − 2bβ(b− h)η + b2η2 − 4bhβ(b+ r)

]
=

1

4β2(b+ r)2

[
β2h2 − 2bβ(β − η + 2r + 2b)h+ b2(β − η)2

]
=

1

4(b+ r)2

{
(h− h∗)2 − b2[(β − η + 2r + 2b)2 − (β − η)2]

β2

}
=

1

4(b+ r)2

[
(h− h∗)2 − 4b2(b+ r)(β + qb)

β2

]
=

(h− h1)(h− h2)

4(b+ r)2
.

(1) If 0 < h < h1, then by Lemma 2.1, h < h0 < h2 and ∆(h) > 0. Solving (2.9)

gets the two solutions y1 and y2 given in (2.6). Substituting y1 and y2 in (2.6) into

(2.8) obtains x1 and x2 given in (2.7). By (2.9) and the definition of ∆, we have

y1 = y∗(h)−
√

∆

2β(b+ r)
=
β(h0 − h)−

√
β2(h− h0)2 − 4bhβ(b+ r)

2β(b+ r)

=
4bhβ(b+ r)

2β(b+ r)[β(h0 − h) +
√
β2(h0 − h)2 − 4bhβ(b+ r)]

> 0.

Since y1 < y2, we have y2 > 0. By (2.7), we see that x1, x2 > 0. Hence, (x1, y1)

and (x2, y2) are two positive interior equilibria of equation (2.1).

(2) If h = h1, then by (2.5), (2.9) and (2.10), we have ∆(h1) = 0 and

y∗ = y∗(h1) =
b(β − η)− βh1

2β(b+ r)
=

1

2(b+ r)
(h0 − h1)

=
1

2(b+ r)

2b(b+ r)(β − η)

β
[
b+ r +

√
(b+ r)(β + qb)

]
=

b(β − η)

β
[
b+ r +

√
(b+ r)(β + qb)

] > 0. (2.11)
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Using the above formulas for h1 and y∗, we have

x∗ =
ηy∗ + h1
βy∗

=
η

β
+

h1
βy∗

=
η

β
+
b(β − η) + 2b[b+ r −

√
(b+ r)(β + qb)]

β2y∗

=
η

β
+

(β − η)[b+ r +
√

(b+ r)(β + qb)] + 2[(b+ r)2 − (b+ r)(β + qb)]

β(β − η)

=
η

β
+

(β − η)[b+ r +
√

(b+ r)(β + qb)]− 2(b+ r)(β − η)

β(β − η)

=
η

β
+
−(b+ r) +

√
(b+ r)(β + qb)

β

=
η

β
+

(b+ r)(β − η)

β[b+ r +
√

(b+ r)(β + qb)]
.

(3) We consider the following three cases.

(i) If h1 < h < h2, then (h−h1)(h−h2) < 0 and by (2.9), (2.3) has no solutions.

Hence, (2.1) has no positive equilibria.

(ii) If h = h2, then by (2.9) and y∗, we have

y = y∗(h2) =
1

2(b+ r)
(h0 − h2)

=
b

2β(b+ r)

[
−2(b+ r)− 2

√
(b+ r)(β + qb)

]
< 0

and (2.1) has no positive equilibria.

(iii) If h > h2, then by (2.9) and y∗, we have

y2 = y∗(h) +

√
∆

2(b+ r)

=
β(h0 − h) +

√
β2(h− h0)2 − 4bhβ(b+ r)

2β(b+ r)

=
−4bhβ(b+ r)

2β(b+ r)[β(h− h0) +
√
β2(h− h0)2 − 4bhβ(b+ r)]

< 0.

Hence, y1 ≤ y2 < 0 and (2.1) has no positive equilibria.

Theorem 2.2 generalizes the corresponding results given in [15, page 778] from

q = 0 to q ∈ [0, 1]. Note that the conditions 0 < h < h1(0), h = h1(0) and h > h1(0))

in Theorem 2.2 with q = 0 are equivalent to the conditions 0 < H < (
√
R0 − 1)2,

H = (
√
R0−1)2 and H > (

√
R0−1)2 in [15, page 778], where we let the recruitment

rate A of the population used in [15] be the birth rate b. As mentioned above, if

b, r > 0, q ∈ [0, 1] and β > η, then system (2.1) with h = 0 has only one interior

equilibrium, see [13, page 584] while Theorem 2.2 shows that system (2.1) with

h > 0 has up to two interior equilibria.

Corollary 2.1. Assume that b, r > 0, q ∈ [0, 1] and β > η. Then equation (2.1)

has no positive equilibria for h > b.

Proof. By Lemma 2.1, 0 < h1 < h0 < b and by Theorem 2.2 (3), we see that

equation (2.1) has no positive equilibria for h > b.
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Corollary 2.1 shows that if the treatment rate is greater that the death rate,

then the epidemic can be eradicated.

3. The phase portraits of the equilibria

In this section, we study the phase portraits of each positive equilibrium of (2.1).

We recall some results on phase portraits of planar systems near equilibria in the

qualitative theory [1, 14]. We consider the following planar system{
ẋ = f(x, y),

ẏ = g(x, y),
(3.1)

where f, g : X → R are functions having continuous first partial derivatives and X

is an open subset in R2. We denote by A(x, y) the Jacobian matrix of f and g at

(x, y), that is,

A(x, y) =


∂f

∂x

∂f

∂y
∂g

∂x

∂g

∂y

 (3.2)

and by |A(x, y)| and Tr(A(x, y)) the determinant and the trace of A(x, y), respec-

tively. Recall that a map T : X → Y defined by T (x, y) = (f(x, y), g(x, y)) is said to

be regular if T is one to one and onto, T and T−1 are continuous and |A(x, y)| 6= 0

on X (see [1]). If T is regular, then the following transformation{
u = f(x, y),

v = g(x, y)
(3.3)

is said to be a regular transformation. If (3.1) is changed into another system under

suitable regular transformations, then the two systems are said to be equivalent. It is

known that the topological structures of solutions of a planar system near equilibria

including a variety of dynamics like saddles, topological saddles, nodes, saddle-

nodes, foci, centers, or cusps remain unchanged under regular transformations.

It is well known that the topological structures of solutions of a planar system

near its equilibria (x0, y0) can be studied by the eigenvalues of A(x0, y0), which are

essentially determined by |A(x0, y0)| and Tr(A(x0, y0)).

The following results can be found in [14] and have been used, for example

in [10,19].

Lemma 3.1. If (x0, y0) is an equilibrium of (3.1), then the following assertions

hold.

(i) If |A(x0, y0)| < 0, then (x0, y0) is a saddle of (3.1).

(ii) If |A(x0, y0)| > 0, (Tr(A(x0, y0)))2 − 4|A(x0, y0)| ≥ 0, Tr(A(x0, y0)) 6= 0,

then (x0, y0) is a node of (3.1); it is stable if Tr(A(x0, y0)) < 0 and unstable if

Tr(A(x0, y0)) > 0.

(iii) If |A(x0, y0)| > 0, (Tr(A(x0, y0)))2 − 4|A(x0, y0)| < 0, Tr(A(x0, y0)) 6= 0,

then (x0, y0) is a focus of (3.1); it is stable if Tr(A(x0, y0)) < 0 and unstable if

Tr(A(x0, y0)) > 0.
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Lemma 3.2 ( [10]). Assume (x0, y0) is an equilibrium of (3.1), |A(x0, y0)| = 0,

Tr(A(x0, y0)) 6= 0 and (3.1) is equivalent to the following system{
u̇ = p(u, v),

v̇ = %v + q(u, v)
(3.4)

with an equilibrium (0, 0), where % 6= 0, p(u, v) =
∑∞
i+j=2,i,j≥0 aiju

ivj and q(u, v) =∑∞
i+j=2,i,j≥0 biju

ivj are convergent power series. If a20 6= 0, then (x0, y0) is a

saddle-node of (3.1).

Recall that f : Ω ⊂ R2 → R is said to be analytic in an open set Ω ⊂ R2 if f has

a convergent Taylor series in some neighborhood of every point in Ω (see [14, page

69]).

When |A(x0, y0)| = 0, Tr(A(x0, y0)) = 0 and A(x0, y0) 6= 0, under suitable

regular transformations, (3.1) is equivalent to the following form{
ẋ = y,

ẏ = akx
k[1 + h(x)] + bnx

ny[1 + g(x)] + y2R(x, y)
(3.5)

with an equilibrium point (0, 0), where h, g and R are analytic in a neighborhood

of (0, 0), h(0) = g(0) = 0, k ≥ 2, ak 6= 0 and n ≥ 1.

The following well-known result from [1,14] has been used in [10,19].

Lemma 3.3. Assume that (x0, y0) is an equilibrium of (3.1),

|A(x0, y0)| = Tr(A(x0, y0)) = 0, A(x0, y0) 6= 0

and (3.1) is equivalent to (3.5). If k = 2m ∈ N and n ≥ m, then (x0, y0) is a cusp

of (3.1).

It is known that if the equilibrium (x0, y0) of (3.1) satisfies all the conditions

of Lemma 3.3, then A(x0, y0) has two zero eigenvalues. We refer to [14, page 456,

Section 4.12] or [4, page 229, Section 4.1] for the study of bifurcations of systems

having double-zero eigenvalues.

Now, we use the theory mentioned above to study the phase portraits of (2.1)

near its positive equilibria. Assume that (x, y) is an equilibrium of (2.1). Then by

(3.2) and (2.1), we have

A(x, y) =

−b− βy −βx− qb
βy βx− η

.
It follows that

|A(x, y)| = β(b+ r)y − bβx+ bη (3.6)

and

Tr(A(x, y)) = β(x− y)− (b+ η). (3.7)
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Lemma 3.4. Assume that b, r > 0, q ∈ [0, 1] and η < β. Then the following

assertions hold.

(1) If 0 < h < h1, then |A(x1, y1)| = −
√

∆ and |A(x2, y2)| =
√

∆.

(2) If h = h1, then |A(x∗, y∗)| = 0.

(3) If 0 < h < h1, then

Tr(A(x2, y2)) =
−(2b+ r)

√
∆ + r[β(b− h)− bη]− 2b2(b+ r)

2b(b+ r)
.

(4) If h = h1, then

Tr(A(x2, y2)) = Tr(A(x∗, y∗)) =
r2(β − β0)[

r
√

(b+ r)(β + qb) + (b+ r)2
] ,

where

β0 := β0(b, r, q) = η +
b(b+ r)(b+ 2r)

r2
. (3.8)

Proof. (1) By the formulas of y1 and ∆, we have

β(b+ r)y1 =
β(b− h)− bη −

√
∆

2

and

1

y1
=

2β(b+ r)

[β(b− h)− bη]−
√

∆

=
2β(b+ r)[β(b− h)− bη +

√
∆]

[β(b− h)− bη]2 −∆

=
2β(b+ r)[β(b− h)− bη +

√
∆]

4bhβ(b+ r)

=
β(b− h)− bη +

√
∆

2bh
.

By (2.6), (2.7) and (3.6), we have

|A(x1, y1)| =β(b+ r)y1 − bβx1 + bη

=β(b+ r)y1 − bβ
[ηy1 + h

βy1

]
+ bη

=β(b+ r)y1 −
bh

y1

=
β(b− h)− bη −

√
∆

2
− β(b− h)− bη +

√
∆

2

=−
√

∆ < 0.

Similarly, we can show |A(x2, y2)| =
√

∆.

(2) Since h = h1, by (2.9), ∆(h1) = 0. A computation similar to |A(x1, y1)|
shows |A(x∗, y∗)| =

√
∆(h1) = 0.
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(3) By (2.6), (2.7) and (3.7), we have

Tr(A(x2, y2)) =
β(b− h)− bη −

√
∆

2b
− β(b− h)− bη +

√
∆

2(b+ r)
− b

=
(b+ r)[β(b− h)− bη −

√
∆]− b[β(b− h)− bη +

√
∆]− 2b2(b+ r)

2b(b+ r)

=
−(2b+ r)

√
∆ + r[β(b− h)− bη]− 2b2(b+ r)

2b(b+ r)
.

(4) Let ν = r[β(b− h1)− bη]− 2b2(b+ r). Then by the definition of h1, we have

ν =r
{
β
[
b− b(β − η + 2b+ 2r)

β
+

2b
√

(b+ r)(β + qb)

β

]
− bη

}
− 2b2(b+ r) = 2br

[√
(b+ r)(β + qb)− (b+ r)

]
− 2b2(b+ r)

=2b
[
r
√

(b+ r)(β + qb)− (b+ r)2
]

=
2b(b+ r)

[
r2(β + qb)− (b+ r)3

]
[
r
√

(b+ r)(β + qb) + (b+ r)2
]

=
2b(b+ r)r2

[
(β − η + b+ r)− (b+ r)3

r2

]
[
r
√

(b+ r)(β + qb) + (b+ r)2
]

=
2b(b+ r)r2

[
β − η − b(b+ r)(b+ 2r)

r2

]
[
rξ + (b+ r)2

]
=

2b(b+ r)r2(β − β0)[
rξ + (b+ r)2

] ,

where ξ =
√

(b+ r)(β + qb). This, together with the above formula for Tr(A(x2, y2))

with ∆ = 0, implies

Tr(A(x2, y2))
∣∣
h=h1

=
ν

2b(b+ r)
=

r2(β − β0)[
r
√

(b+ r)(β + qb) + (b+ r)2
] .

It is clear that Tr(A(x2, y2))
∣∣
h=h1

= Tr(A(x∗, y∗)) since when h = h1, ∆(h1) = 0

and x2 = x∗ and y2 = y∗.

By Lemma 3.1 (1) and Lemma 3.4 (1), we obtain the following result.

Theorem 3.1. Assume that b, r > 0, q ∈ [0, 1], η < β and 0 < h < h1. Then

(x1, y1) is a saddle of (2.1).

Remark 3.1. Theorem 3.1 generalizes the result given in [15, page 779], where

q = 0.
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Let

β1 = η +
(b+ r)

[
(b+ 2r)− 2

√
(2b+ r)(b+ r)

]
b

and β2 = η +
(b+ r)

[
(b+ 2r) + 2

√
(2b+ r)(b+ r)

]
b

.

It is easy to show β1 < η. Indeed, β1 < η if and only if (b+2r) < 2
√

(2b+ r)(b+ r)

if and only if b2 + 4br + 4r2 < 4(2b2 + 3br + r2) if and only if 7b2 + 8br > 0.

Theorem 3.2. Let b, r > 0 and q ∈ [0, 1]. Then the following assertions hold.

(i) If η < β < β2, then there exists h1 ∈ (0, h1) such that (x2, y2) is a stable

focus for 0 ≤ h < h1.

(ii) If β > β2, then there exists h2 ∈ (0, h1) such that (x2, y2) is a stable node

for 0 ≤ h < h2.

(iii) If η < β < β0, then there exists h̄3 ∈ (0, h1) such that (x2, y2) is a stable

node for h ∈ (h̄3, h1).

(iv) If β > β0, then there exists h̄4 ∈ (0, h1) such that (x2, y2) is an unstable

node for h ∈ (h̄4, h1).

Proof. By Lemma 3.4, we have

|A(x2, y2)| =
√

∆(h) > 0 for 0 < h < h1. (3.9)

If h = 0, then |A(x2, y2)| =
√

∆(0) = b(β − η) and by Lemma 3.4 (3), we have

Tr(A(x2, y2))
∣∣
h=0

=
−b(2b+ r)(β − η) + rb(β − η)− 2b2(b+ r)

2b(b+ r)

=
−2b(β − η)− 2b(b+ r)

2(b+ r)

= −b(β − η + b+ r)

b+ r
< 0.

Hence, there exists h∗ ∈ (0, h1) such that

Tr(A(x2, y2)) < 0 for h ∈ (0, h∗). (3.10)

Let

ζ(h) = [Tr(A(x2, y2))]2 − 4|A(x2, y2)|. (3.11)

We prove the following assertion.

(H) ζ(0) < 0 if and only if β1 < β < β2.

Indeed, ζ(0) =
b2(β − η − b− r)2

(b+ r)2
− 4b(β − η) < 0 if and only if

b(β − η − b− r)2 < 4(β − η)(b+ r)2

if and only if

(β − η)2 − 2
(b+ r)(3b+ 2r)

b
(β − η) < −(b+ r)2
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if and only if

[
β − η − (b+ r)(3b+ 2r)

b

]2
<

4(b+ r)3(2b+ r)

b2

if and only if

∣∣∣β − η − (b+ r)(b+ 2r)

b

∣∣∣< 2(b+ r)
√

(b+ r)(2b+ r)

b

if and only if β1 < β < β2.

(i) Note that β1 < η. Hence, η < β < β2. By (H), ζ(0) < 0. It follows from

the continuity of ζ that there exists h1 ∈ (0, h∗) such that ζ(h) < 0 for 0 < h < h1.

The result follows from Lemma 3.1 (iii).

(ii) When β > β2, by (H), we have ζ(0) > 0. It follows from the continuity of ζ

that there exists h2 ∈ (0, h∗) such that ζ(h) > 0 for 0 < h < h2. The result follows

from Lemma 3.1 (ii).

(iii) By Lemma 3.4 (4), we see that if η < β < β0, then Tr(A(x2, y2))
∣∣
h=h1

< 0.

By Lemma 3.4, |A(x2, y2)|)|h=h1 = 0. It follows that

ζ(h1) = ([Tr(A(x2, y2)]2 − 4|A(x2, y2)|)|h=h1
= (Tr(A(x2, y2))|h=h1

)2 > 0.

Hence, there exists h̄3 ∈ (0, h1) such that for h ∈ (h̄3, h1), Tr(A(x2, y2)) < 0

and ζ(h) > 0. It follows from Lemma 3.1 (ii) that (x2, y2) is a stable node for

h ∈ (h̄3, h1).

(iv) By Lemma 3.4 (4), we see that if β > β0, then Tr(A(x2, y2))
∣∣
h=h1

>

0 and ζ(h1) > 0. Hence, there exists h̄4 ∈ (0, h1) such that for h ∈ (h̄4, h1),

Tr(A(x2, y2)) > 0 and ζ(h) > 0. It follows from Lemma 3.1 (ii) that (x2, y2) is an

unstable node for h ∈ (h̄4, h1).

Remark 3.2. Theorem 3.2 not only obtains the stability of the interior equilibrium

(x2, y2), but also determines that (x2, y2) is a stable focus or stable or unstable node.

Hence, Theorem 3.2 improves Theorem 2.1 in [15], where q = 0 and only stability

of (x2, y2) is determined.

Now, we consider bifurcations of the equilibrium (x∗, y∗).

Theorem 3.3. Let b, r > 0 and q ∈ [0, 1]. Then the following assertions hold.

(1) If β > η, β 6= β0 and h = h1, then (x∗, y∗) is a saddle-node of (2.1).

(2) If β = β0 and h = h1, then (x∗, y∗) is a cusp of (2.1) with codimension 2.

Proof. Since β > η, by Lemma 3.4 (2), we have |A(x∗, y∗)| = 0. By Lem-

ma 3.4 (4), if η < β and β 6= β0, then Tr(A(x∗, y∗)) 6= 0 and if β = β0, then

Tr(A(x∗, y∗)) = 0.

(1) We change the equilibrium (x∗, y∗) to the origin (0, 0) by the change of
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variables: u = x− x∗, v = y − y∗. Then the system (2.1) becomes

u̇ = ẋ = −β(u+ x∗)(v + y∗)− b(u+ x∗)− qd(v + y∗) + b

= −(βy∗ + b)u− (βx∗ + qb)v − βuv
v̇ = ẏ = β(u+ x∗)(v + y∗)− η(v + y∗)− h1

= β(uv + x∗v + v∗u)− ηv
= βy∗u+ (βx∗ − η)v + βuv.

Let u1 = u, v1 = (βx∗ − η)u+ (βx∗ + qb)v. Then u = u1 and

v =
v1 − (βx∗ − η)u1

βx∗ + qb
=

1

(b+ r)y∗ + h1
(y∗v1 − h1u1),

where we have used x∗ = (ηy∗ + h1)/(βy∗). Hence

u̇1 =u̇ = −(βy∗ + b)u− (βx∗ + qb)v − βuv

=− (βy∗ + b)u1 − v1 + (βx∗ − η)u1 −
β

(b+ r)y∗ + h1
(y∗v1u1 − h1u21)

=− Tr(A(x∗, y∗))u1 − v1 +
βh1

(b+ r)y∗ + h1
u21 −

βy∗

(b+ r)y∗ + h1
v1u1,

v̇1 =(βx∗ − η)u̇+ (βx∗ + qb)v̇

=(βx∗ − η)[−(βy∗ + b)u− (βx∗ + qb)v − βuv]

+ (βx∗ + qb)[βy∗u+ (βx∗ − η)v + βuv]

=β(η + qb)uv

=β(b+ r)uv

=− β(b+ r)h1
(b+ r)y∗ + h1

u21 +
β(b+ r)y∗

(b+ r)y∗ + h1
u1v1.

If β 6= β0, we let u2 = −Tr(A(x∗, y∗))u1 − v1, v2 = v1.Then u1 = −(u2 +

v2)/Tr(A(x∗, y∗)), v1 = v2. Hence we have

u̇2 =− Tr(A(x∗, y∗))u̇1 − v̇1

=− Tr(A(x∗, y∗))
[
−Tr(A(x∗, y∗))u1 − v1 +

βh1
(b+ r)y∗ + h1

u21

− βy∗

(b+ r)y∗ + h1
v1u1

]
− β(b+ r)h1

(b+ r)y∗ + h1
u21 +

β(b+ r)y∗

(b+ r)y∗ + h1
u1v1

=− Tr(A(x∗, y∗))u2 −
βh1

(
b+ r + Tr(A(x∗, y∗))

)
(b+ r)y∗ + h1

u22 + 2u2v2 + v22
Tr(A(x∗, y∗))2

+
βy∗

(
b+ r + Tr(A(x∗, y∗))

)
(b+ r)y∗ + h1

u2v2 + v22
Tr(A(x∗, y∗))

=− Tr(A(x∗, y∗))u2 + a1u
2
2 + a2u2v2 + a3v

2
2 ,

v̇2 =v̇1 = −βh1
y∗

u21 + βu1v1

=− βh1
y∗

y∗2

(h1 − by∗)2
(u2 + v2)2 + β

y∗(u2 + v2)v2
(h1 − by∗)
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=− βh1y
∗

(h1 − by∗)2
(u22 + 2u2v2 + v22) +

βy∗(u2v2 + v22)

(h1 − by∗)
=b1u

2
2 + b2u2v2 + b3v

2
2 ,

where

ã1 =

(
b+ r + Tr(A(x∗, y∗))

)(
(b+ r)y∗ + h1

) ,

a1 = − βh1ã1
Tr(A(x∗, y∗))2

,

a2 = − 2βh1ã1
Tr(A(x∗, y∗))2

+
βy∗ã1

Tr(A(x∗, y∗))
,

a3 = − βh1ã1
Tr(A(x∗, y∗))2

+
βy∗ã1

Tr(A(x∗, y∗))
;

b1 = − βh1y
∗

(h1 − by∗)2
,

b2 = −βy
∗(h1 + by∗)

(h1 − by∗)2
,

b3 = − βby∗

(h1 − by∗)2
.

It follows that {
u̇2 = −Tr(A(x∗, y∗))u2 + a1u

2
2 + a2u2v2 + a3v

2
2 ,

v̇2 = b1u
2
2 + b2u2v2 + b3v

2
2 .

By Lemma 3.2 with % = −Tr(A(x∗, y∗)) and a20 = b3 6= 0, (x∗, y∗) is a saddle-node

of (2.1).

(2) If β = β0, then Tr(A(x∗, y∗)) = 0. From the proof of (1), we have
u̇1 = −v1 +

β0h1
(b+ r)y∗ + h1

u21 −
β0y
∗

(b+ r)y∗ + h1
v1u1 := −v1 + f1(u1, v1),

v̇1 = − β0(b+ r)h1
(b+ r)y∗ + h1

u21 +
β0(b+ r)y∗

(b+ r)y∗ + h1
u1v1 := f2(u1, v1),

(3.12)

where f1, f2 are polynomials of degree 2. Let u2 = u1, v2 = −v1 + f1(u1, v1). Then

u̇2 = u̇1 = v2 and

v̇2 =− v̇1 +
2β0h1

(b+ r)y∗ + h1
u1u̇1 −

β0y
∗

(b+ r)y∗ + h1
u1v̇1 −

β0y
∗

(b+ r)y∗ + h1
v1u̇1

=− f2(u1, v1) +
2β0h1

(b+ r)y∗ + h1
u1[−v1 + f1(u1, v1)]

− β0y
∗

(b+ r)y∗ + h1
u1f2(u1, v1)− β0y

∗

(b+ r)y∗ + h1
v1[−v1 + f1(u1, v1)]

=− f2(u1, v1)− 2β0h1
(b+ r)y∗ + h1

u1v1 +
β0y
∗

(b+ r)y∗ + h1
v21 + f3(u1, v1)

=
β0(b+ r)h1

(b+ r)y∗ + h1
u22 +

β0y
∗

(b+ r)y∗ + h1
v21
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−
β0
(
(b+ r)y∗ + 2h1

)
(b+ r)y∗ + h1

u2
(
−v2 − f1(u1, v1)

)
+ f3(u1, v1)

=b1u
2
2 + b2u2v2 + b3v

2
2 + f4(u2, v2),

where b0 = (b + r)y∗ + h1, f3(u1, v1) = 2β0h1

b0
u1f1(u1, v1) − β0y

∗

b0
u1f2(u1, v1) −

β0y
∗

b0
v1f1(u1, v1) is a polynomial of degree 3 in u1 and v1, b1 = β0(b+r)h1

b0
, b2 =

β0((b+r)y
∗+2h1)

b0
, b3 = β0y

∗

(b+r)y∗+h1
, and f4(u2, v2) = b2u2f1(u1, v1)) + f3(u1, v1). By

Lemma 3.3 with m = 1 and n = 1, (x∗, y∗) is a cusp of (2.1).

Remark 3.3. Theorem 3.3 (1) is new, which provides the conditions under which

(2.1) has a saddle-node. By (3.8), we see that if q = 0, then β0 = (b + r)3r−2.

Hence, it is easy to verify that when q = 0, the condition β = β0 in Theorem 3.3

(2) is equivalent to the condition (H3) with A = b in [15, page 783]. This shows

that Theorem 3.3 (2) generalizes Theorem 2.3 in [15].

4. Bogdanov-Takens bifurcations

In this section, we use Lemma 4.1 to study existence of Bogdanov-Takens bifurca-

tions of (2.1) at the cusp (x∗, y∗) given in Theorem 3.3 (2). We denote by Br(x, y)

the ball in R2 centered at (x, y) with radius r. We outline part of the theory of

Bogdanov-Takens bifurcations which we need below. To study Bogdanov-Takens

bifurcations, one needs to consider suitable small perturbations of systems involv-

ing suitable parameters. Here, we consider the system (3.1) with five parameters

b, r, β, η, h used in section 2. Therefore, we can rewrite (3.1) as follows:{
ẋ = f(x, y) := f∗(x, y, b, r, β),

ẏ = g(x, y) := g∗(x, y, b, r, β, η, h).
(4.1)

For each fixed set of parameters (b, r, β, η, h), if (x0, y0) is an equilibrium of (4.1)

and satisfies all the conditions of Lemma 3.3, then we consider the following per-

turbations of (4.1): {
ẋ = f∗(x, y, b, r, β),

ẏ = g∗(x, y, b, r, β, η + ρ1, h+ ρ2),
(4.2)

where only the two parameters β and η in the second equation of (4.1) are replaced

by β+ρ1 and η+ρ2, respectively and (ρ1, ρ2) ∈ Br(0), the open ball in R2 centered

at origin with radius r. From the analysis given in [4, pages 229–252, Section 4.1],

we see that under suitable regular transformations, (4.2) can be transformed into

the following equivalent system{
u̇ = v,

v̇ = λ1(ρ1, ρ2) + λ2(ρ1, ρ2)v + u2 + uvφ(u, ρ1, ρ2) + v2ψ(u, v, ρ1, ρ2),
(4.3)

where λ1, λ2, φ, ψ are C∞ functions satisfying the following conditions

λ1(0, 0) = λ2(0, 0) = 0 and φ(0, 0, 0) = 1.
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The further analysis given in [4, pages 252–259, Section 4.1] shows that the following

result holds.

Lemma 4.1. Let (x0, y0) is an equilibrium of (3.1). Assume that (x0, y0) satis-

fies all the conditions of Lemma 3.3. If
∣∣∣∂(λ1, λ2)

∂(ρ1, ρ2)

∣∣∣
(0,0)

6= 0, then (4.2) undergos

Bogdanov-Takens bifurcations.

By [14, Section 4.12], we see that if the system (4.2) exhibits Bogdanov-Takens

bifurcations, then it has saddle-node bifurcations, Hopf bifurcations and homoclinic-

loop bifurcations depending on the choices of the parameters (ρ1, ρ2) in different

regions near the origin (0, 0).

The definition of the value h1 is given in section. Here, we write h1 = h1(b, r, β, q)

as a function of b, r, β, q.

Theorem 4.1. If b∗, r∗ > 0 q∗ ≥ 0, β∗0 = β0(b∗, r∗, q∗), h∗1 = h1(b∗, r∗, β∗, q∗) and

η∗ = r∗+b∗−q∗d∗, then there exists ρ0 > 0 such that (2.1) with (η, h) ∈ Bρ0(η∗, h∗1)

and (b, r, q, β) = (b∗, r∗, q∗, β∗0) admits a Bogdanov-Takens bifurcation.

Proof. We consider the following perturbed system:{
ẋ = −β∗0yx− b∗x− q∗d∗y + b∗,

ẏ = β∗0xy − (η∗ + ρ1)y − (h∗1 + ρ2),
(4.4)

where ρ1, ρ2 ∈ R. Now, we make regular transformations to change (4.4) into the

form of (4.3). Note that (x∗, y∗) is an equilibrium of (4.4) with (ρ1, ρ2) = (0, 0).

Let u = x− x∗ and v = y − y∗. Then (4.4) becomes{
u̇ = −β∗0(u+ x∗)(v + y∗)− b∗(u+ x∗)− q∗d∗(v + y∗) + b∗,

v̇ = β∗0(u+ x∗)(v + y∗)− (η∗ + ρ1)(v + y∗)− (h∗1 + ρ2).
(4.5)

Hence,

u̇ =(−β∗0x∗y∗ − b∗x∗ − q∗d∗y∗ + b∗)− b∗u− q∗d∗v − β∗0y∗u− β∗0x∗v − β∗0uv
=− (b∗ + β∗0y

∗)u− (β∗0x
∗ + q∗d∗)v − β∗0uvv̇

=β∗0(uv + vx∗ + uy∗ + x∗y∗)− (η∗ + ρ1)(v + y∗)− (h∗1 + ρ2)

=
(
(β∗0x

∗y∗ − η∗y∗ − h∗1)− (ρ1y
∗ + ρ2)

)
+ β∗0x

∗v + β∗0y
∗u− (η∗ + ρ1)v + β∗0uv

=− (ρ1y
∗ + ρ2) + (β∗0x

∗ − η∗ − ρ1)v + β∗0y
∗u+ β∗0uv

=− (ρ1y
∗ + ρ2) + β∗0y

∗u+ (β∗0x
∗ − η∗ − ρ1)v + β∗0uv.

Let u1 = u, v1 = −(b∗ + β∗0y
∗)u− (β∗0x

∗ + q∗d∗)v. Since

Tr(A(x∗, y∗)) = −(b∗ + β∗0y
∗) + (β∗0x

∗ − η∗) = 0

and η∗ = r∗ + b∗ − q∗d∗,−(β∗0x
∗ + q∗d∗) < 0 and

u = u1, v = ((b∗ + β∗0y
∗)u1 + v1)/(β∗0x

∗ + q∗d∗).
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Hence,

u̇1 =u̇ = v1 − β∗0u1
1

β∗0x
∗ + q∗d∗

(
(b∗ + β∗0y

∗)u1 + v1
)

=v1 + a1u
2
1 + a2u1v1,

v̇1 =− (b∗ + β∗0y
∗)u̇− (β∗0x

∗ + q∗d∗)v̇

=− (b∗ + β∗0y
∗)[−(b∗ + β∗0y

∗)u− (β∗0x
∗ + q∗d∗)v − β∗0uv]

− (β∗0x
∗ + q∗d∗)[−(ρ1y

∗ + ρ2) + β∗0y
∗u+ (β∗0x

∗ − η∗ − ρ1)v + β∗0uv]

=(β∗0x
∗ + q∗d∗)(ρ1y

∗ + ρ2) + (β∗0x
∗ + q∗d∗)ρ1v −(β∗0x

∗−β∗0y∗ −(1− q∗)b∗)β∗0uv
=(β∗0x

∗ + q∗d∗)(ρ1y
∗ + ρ2) + ρ1((b∗ + β∗0y

∗)u1 + v1)

− (β∗0x
∗ − β∗0y∗ − (1− q∗)b∗)β∗0u1

(
(b∗ + β∗0y

∗)u1 + v1
)

(β∗0x
∗ + q∗d∗)

=(β∗0x
∗ + q∗d∗)(ρ1y

∗ + ρ2) + ρ1(b∗ + β∗0y
∗)u1 + ρ1v1 + b1u

2
1 + b2u1v1,

where

a1 = −β
∗
0(b∗ + β∗0y

∗)

β∗0x
∗ + q∗d∗

, a2 = − β∗0
β∗0x

∗ + q∗d∗
,

b1 = −β∗0(b∗ + β∗0y
∗)(β∗0x

∗ − β∗0y∗ − (1− q∗)b∗)/(β∗0x∗ + q∗d∗),

b2 = −β∗0(β∗0x
∗ − β∗0y∗ − (1− q∗)b∗)/(β∗0x∗ + q∗d∗).

Let u2 = u1, v2 = v1 + a1u
2
1 + a2u1v1. Then the last system becomes

u̇2 =u̇1 = v2,

v̇2 =v̇1 + 2a1u1u̇1 + a2u̇1v1 + a2u1v̇1

=(1 + a2u1)v̇1 + (2a1u1 + a2v1)u̇1

=(1 + a2u1)[(β∗0x
∗ + q∗d∗)(ρ1y

∗ + ρ2) + ρ1(b∗ + β∗0y
∗)u1 + ρ1v1

+ b1u
2
1 + b2u1v1] + (2a1u1 + a2v1)[v1 + a1u

2
1 + a2u1v1]

=(β∗0x
∗ + q∗d∗)(ρ1y

∗ + ρ2) + ρ1(b∗ + β∗0y
∗)u1 + ρ1v1 + b1u

2
1

+ b2u1v1 + a2u1[(β∗0x
∗ + q∗d∗)(ρ1y

∗ + ρ2) + u1 + ρ1v1] + f1(u1, v1)

=ã0 + a3u1 + ρ1v1 + b3u
2
1 + (b2 + a2ρ1)u1v1 + f1(u1, v1)

=ã0 + a3u2 + ρ1v2 + b3u
2
2 + (b2 + a2ρ1)u2v2 + f2(u2, v2),

where f1(u1, v1) = a2u1[b1u
2
1 + b2u1v1] + (2a1u1 + a2v1)[a1u

2
1 + a2u1v1],

f2(u2, v2) = −(b2 + a2ρ1)u2(a1u
2
1 + a2u1v1) + f1(u1, v1),

ã0 = (β∗0x
∗ + q∗d∗)(ρ1y

∗ + ρ2),

a3 = ρ1(b∗ + β∗0y
∗) + a2ã0,

b3 = b1 + a2ρ1(b∗ + β∗0y
∗).

Let u3 = u2 + a3
2b3
, v3 = v2. Then u̇3 = u̇2 = v3 and

v̇3 = v̇2 = ã0 + a3u2 + ρ1v2 + b3u
2
2 + (b2 + a2ρ1)u2v2 + f2(u2, v2)

= µ1(ρ1, ρ2) + µ1(ρ1, ρ2)ρ1v3 + b3u
2
2 + (b2 + a2ρ1)u3v3 + f2(u3 −

a3
2b3

, v3),
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where µ1(ρ1, ρ2) = ã0 +
a23
4b3

and µ2(ρ1, ρ2) = ρ1 − a3
2b3

(b2 + a2ρ1). Hence,
u̇3 = v3,

v̇3 = µ1(ρ1, ρ2) + µ1(ρ1, ρ2)ρ1v3 + b3u
2
2

+ (b2 + a2ρ1)u3v3 + f2(u3 − a3
2b3
, v3).

By the formulas of µ1, µ2, we have

∣∣∣∂(µ1, µ2)

∂(ρ1, ρ2)

∣∣∣ =

∣∣∣∣∣∣ (β
∗
0x
∗ + q∗d∗)y∗ β∗0x

∗ + q∗d∗

1 + b∗

b∗+β∗
0y

∗ − β∗
0

b∗+β∗
0y

∗

∣∣∣∣∣∣ = −2(β∗0x
∗ + q∗d∗) 6= 0.

By Lemma 4.1, (2.1) undergos Bogdanov-Takens bifurcations.

5. Discussion

We investigate the dynamics and bifurcations of SIR epidemic model with trans-

missions and treatments. The transmissions contains the horizontal transmissions:

the diseases are transmitted through contact between the infectives and the sus-

ceptibles and the vertical transmissions: the diseases are transmitted from infective

parents to unborn or newly born offsprings. The treatment includes isolation or

quarantine. In this paper we consider the constant treatment rate and the horizon-

tal transmissions and the vertical transmissions. It is proved that such SIR epidemic

model have up to two positive epidemic equilibria and has no positive disease-free

equilibria. And the equilibria of the epidemic system can be saddles, stable nodes,

stable or unstable focuses, weak centers or cusps. We prove that the system has the

Bogdanov-Takens bifurcations, which exhibit saddle-node bifurcations, Hopf bifur-

cations and homoclinic bifurcations. Without the treatment, Meng and Chen [13]

considered the dynamics of an epidemic model with vertical transmissions. They

showed that when the basic reproductive rate R0 of the epidemic is greater that

1, (1.2) with q ∈ (0, 1) and h = 0 has only one positive infection-free equilibrium,

which is unstable, and has only one positive interior (epidemic) equilibrium, which

is locally stable. If R0 < 1, then the infection-free equilibrium is locally stable and

the interior equilibrium is unstable. This shows that the system has richer dynamics

when the constant treatment rate is introduced.
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