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SYMMETRY ANALYSIS, CONSERVATION
LAWS OF A TIME FRACTIONAL

FIFTH-ORDER SAWADA-KOTERA EQUATION

Zheng Xiao and Long Wei†

Abstract In this paper, we intend to study the symmetry properties and con-
servation laws of a time fractional fifth-order Sawada-Kotera (S-K) equation
with Riemann-Liouville derivative. Applying the well-known Lie symmetry
method, we analysis the symmetry properties of the equation. Based on this,
we find that the S-K equation can be reduced to a fractional ordinary differ-
ential equation with Erdelyi-Kober derivative by the similarity variable and
transformation. Furthermore, we construct some conservation laws for the S-
K equation using the idea in the Ibragimov theorem on conservation laws and
the fractional generalization of the Noether operators.
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1. Introduction

In recent years, the study of fractional differential equations has attracted more
and more attention in various fields [1, 2, 19]. Not only the theoretical studies
of fractional differential equations are interesting, but also their applications are
more and more extensively, such as establishing a variety of models for the natural
sciences (see [16]). Such equations have recently been proved to be valuable tools
in the modelling of many physical phenomena [3, 13].

In this paper, we consider the following time-fractional Sawada-Kotera (S-K)
equation

Dα
t u+ 5u2ux + 5uxuxx + 5uuxxx + uxxxxx = 0, (1.1)

where Dα
t is the Riemann-Liouville fractional derivative of u with respect to t, α > 0

is the parameter of the fractional derivative.
The classical Sawada-Kotera equation is an extraordinary unidirectional nonlin-

ear evolution equation, which plays an important role in the field of mathematical
models [17], including describing motion of long waves in shallow water under gravi-
ty and one-dimensional nonlinear lattice [4]. In recent years, it has been extensively
studied [18, 20], such as its Bäcklund transformation, Darboux transformation, bi-
Hamiltonian structure, multisoliton solutions and so on. However, to the best of
our knowledge, the study of the fractional order S-K equation (1.1) is still on the
initial stage, it is meaningful to study the time fractional S-K equation. In this
paper, we will investigate the symmetries and conservation laws of (1.1).
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The remainder of this paper is organized as follows. In Section 2, we present
some basic definitions and results which will be useful in the following discusses. In
Section 3, by means of symmetry analysis, we get the symmetries of S-K equation.
As by-product, the similarity transformation and the similarity variable are also
obtained by solving a characteristic equation. Based on these, we perform the
process of the symmetry reduction. In Section 4, some conservation laws of equation
(1.1) are obtained by the idea in the Ibragimov theorem on conservation laws [11]
and the fractional generalization of the Noether operators [12].

2. Preliminaries

To begin with, we briefly present some definitions and results which will be used.
First, let us recall the definition of the Riemann-Liouville fractional derivative (see
[5, 12,21,22] and the references therein) as follows:

Dα
t u(t, x) =


∂nu

∂tn
, α = n ∈ N,
1

Γ(n− α)

∂n

∂tn

∫ t

0

u(s, x)

(t− s)α+1−n ds, n− 1 < α < n, n ∈ N,

where Γ(z) is the Euler gamma function.
The Riemann-Liouville left-sided time-fractional derivative [10] is given by

0D
α
t u = Dn

t (0I
n−α
t u),

where Dt is the operator of the derivative with respect to t, n = [α]+1, and 0I
n−α
t u

is the left-sided time-fractional integral of order n− α, it is defined as

(0I
n−α
t u)(t, x) =

1

Γ(n− α)

∫ t

0

u(s, x)

(t− s)α+1−n ds.

We denote that tI
n−α
T is the right-sided operator of n−α order fractional integration

[12], the form is given as follows:

(tI
n−α
T f)(t, x) =

1

Γ(n− α)

∫ T

t

f(s, x)

(s− t)α+1−n ds.

Now we give a brief review of the Lie symmetry analysis concerning the fractional
differential operator which is a nonlocal operator. For a time fractional differential
equations with two independent variables

F (t, x, u, ux, uxx, · · · , Dα
t u(t, x)) = 0, α > 0, (2.1)

we consider a one parameter Lie group of point transformations

t∗ = t+ ετ(x, t, u) +O(ε2),

x∗ = x+ εξ(x, t, u) +O(ε2),

u∗ = u+ εη(x, t, u) +O(ε2),

∂αu∗

∂t∗α
=
∂αu

∂tα
+ εηαt(x, t, u) +O(ε2),

∂ku∗

∂x∗k
=
∂ku

∂xk
+ εηkx(x, t, u) +O(ε2),

(2.2)
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where ε is a group parameter, ξ, τ , η are infinitesimals, ηkx, ηαt are extended
infinitesimals and the associated generator has the form:

V = τ(x, t, u)∂t + ξ(x, t, u)∂x + η(x, t, u)∂u. (2.3)

Let us illuminate the extended infinitesimals in what follows.
From the classical Lie group analysis [15], we know that ηkx (k = 1, 2, · · · ) are

given by
ηx = Dxη − uxDx(ξ)− utDt(τ),

ηxx = Dxη
x − uxxDx(ξ)− uxtDt(τ),

ηkx = Dxη
(k−1)x − ukxDx(ξ)− u(k−1)x,tDt(τ),

(2.4)

where Dx is the total derivative operator with respect to x.
For ηαt, according to [5], the α-th order extended infinitesimal has the form:

ηαt =Dα
t (η) + ξDα

t (ux)−Dα
t (ξux) +Dα

t (Dt(τ)u)

−Dα+1
t (τu) + τDα+1

t (u),
(2.5)

where Dα
t denotes the total fractional derivative operator. Recalling the generalized

Leibnitz rule [14]

Dα
t [u(t)v(t)] =

∞∑
n=0

(α
n

)
Dα−n
t u(t)Dn

t v(t), α > 0,

where (α
n

)
=

(−1)n−1αΓ(n− α)

Γ(1− α)Γ(n+ 1)
,

we find that (2.5) becomes

ηαt = Dα
t (η)− αDt(τ)

∂αu

∂tα
−
∞∑
n=1

(α
n

)
Dn
t (ξ)Dα−n

t (ux)

−
∞∑
n=1

( α

n+ 1

)
Dn+1
t (τ)Dα−n

t (u).

(2.6)

According to the chain rule for composite functions

dmf(g(t))

dtm
=

m∑
k=0

k∑
r=0

(k
r

) 1

k!
[−g(t)]r

dm

dtm
[g(t)k−r]

dkf(g)

dgk
,

and generalized Leibnitz rule, we can write

Dα
t (η) =

∂αη

∂tα
+ ηu

∂αu

∂tα
− u∂

αηu
∂tα

+

∞∑
n=1

(α
n

)∂nηu
∂tn

Dα−n
t (u) + µ, (2.7)

where

µ =

∞∑
n=2

n∑
m=2

m∑
k=2

k−1∑
r=0

(α
n

)( n
m

)(k
r

) 1

k!

tn−α(−u)r

Γ(n+ 1− α)

∂m

∂tm
(uk−r)

∂n−m+kη

∂tn−m∂uk
.
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Consequently, we obtain that

ηαt =
∂αη

∂tα
+ (ηu − αDt(τ))

∂αu

∂tα
− u∂

αηu
∂tα

+ µ−
∞∑
n=1

(α
n

)
Dn
t (ξ)Dα−n

t (ux)

+

∞∑
n=1

[(α
n

)∂αηu
∂tα

−
( α

n+ 1

)
Dn+1
t (τ)

]
Dα−n
t (u).

(2.8)

By the infinitesimal invariance criterion [5], we can see that

pr(α,t)V (F )|F=0 = 0, (2.9)

where pr(α,t)V is the prolongation of the generator V given by

pr(α,t)V = V + ∂Dαt u + ηx∂ux + ηxx∂uxx + · · ·+ ηαt.

We will analysis the symmetry properties of the time fractional S-K equation
using the above method in the next section.

3. Lie symmetries of S-K equation (1.1)

We assume that the time fractional S-K equation (1.1) is invariant under the one
parameter Lie group of point transformations (2.2), and the associated generator
has the form (2.3). The fifth order prolongation of the generator V is

pr(α,t)V = V + ηαt∂Dαt u + ηx∂ux + ηxx∂uxx + η3x∂u3x

+η4x∂u4x + η5x∂u5x .
(3.1)

For the S-K equation, one inserts (3.1) into (2.9) and gets

ηαt + 10ηuux + 5u2ηx + 5ηxuxx + 5ηxxux + 5ηuxxx + 5uηxxx + ηxxxxx = 0. (3.2)

Substituting (2.4), (2.8) into (3.2), separating with respect to derivatives of u and
equating the coefficients of various powers of partial derivatives of u to zero we
obtain the following linear over-determined system of differential equations

ξu = τu = ξt = τx = ηuu = 0,

Dα
t η − uDα

t ηu + 5u2ηx + 5uηxxx + ηxxxxx = 0,

10ηu+ 5u2(ατt − ξx) + 5ηxx + 5u(3ηxxu − ξxxx) + 5ηxxxxu − ξxxxxx = 0,

5η + 5u(ατt − 3ξx)− 3τxxu + 10ηxxu − 10ξxxx = 0,

ατt − 5ξx = 0, ηxu − 2ξxx = 0,(α
n

)
Dα
t ηu −

( α

n+ 1

)
Dn+1
t τ = 0, n = 1, 2, . . . .

(3.3)

With the help of Maple, after some tedious and lengthy calculations, we can find
some solutions of the above system as follows:

ξ = c1x+ c2, τ =
5c1t

α
, η = −2c1u,



A time fractional fifth-order Sawada-Kotera equation 1279

where c1, c2 are arbitrary constants. So we obtain the symmetry generator admitted
by (1.1)

V = (c1x+ c2)
∂

∂x
+

5c1t

α

∂

∂t
− 2c1u

∂

∂u
.

This implies that (1.1) has two Lie point symmetry operators

V1 =
∂

∂x
, V2 = x

∂

∂x
+

5t

α

∂

∂t
− 2u

∂

∂u
. (3.4)

In particular, for the symmetry operator V2, the corresponding characteristic
equation is

dx

x
=
αdt

5t
=

du

−2u
.

Solving it gives the similarity variable and transformation

ρ = xt−
α
5 , u = t−

2α
5 g(ρ), (3.5)

where g(ρ) is an arbitrary differential function of ρ. Therefore, we have the following
result.

Theorem 3.1. Upon the similarity transformation u = t−
2α
5 g(ρ) with ρ = xt−

α
5 ,

S-K equation (1.1) can be reduced to a fractional ordinary differential equation as
follows (

P
1− 7α

5 ,α
5
α

g
)

(ρ) + 5g2gρ + 5gρgρρ + 5ggρρρ + gρρρρρ = 0, (3.6)

with the Erdelyi-Kober fraction differential operator

(P τ,αβ g)(ρ) :=

n−1∏
j=0

(τ + j − 1

β
ρ
d

dρ
)(Kτ+α,n−α

β g)(ρ), n =

 [α] + 1, α /∈ N,

α, α ∈ N,

where

(Kτ,α
β g)(ρ) :=


1

Γ(α)

∫ ∞
1

(v − 1)
α−1

v−(τ+α)g(ρv
1
β )dv, α > 0,

g(ρ), α = 0.

is the Erdelyi-Kober fractional integral operator.

Proof. According to the Riemann-Liouville fractional derivative and the similarity
transformation, we get

∂αu

∂tα
=

∂n

∂tn

[
1

Γ(n− α)

∫ t

0

(t− s)n−α−1s− 2α
5 g(xs−

α
5 )ds

]
. (3.7)

Let v = t
s , then we have ds = − t

v2 dv. Then, (3.7) can be transformed to

∂αu

∂tα
=

∂n

∂tn

[
tn−

7α
5

1

Γ(n− α)

∫ ∞
1

(v − 1)n−α−1v−(n− 7α
5 +1)g

(
ρv

α
5

)
dv
]

=
∂n

∂tn

[
tn−

7α
5 (K

1− 2α
5 ,n−α

5
α

g)(ρ)
]
.

(3.8)
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Taking advantage of the relation ρ = xt−
α
5 and supposing that φ is an arbitrary

differential function of ρ, we obtain that

t
∂

∂t
φ(ρ) = tx

(
− α

5

)
t−

α
5−1φ

′
(ρ) = −α

5
ρ
d

dρ
φ(ρ).

Note that

∂n

∂tn

[
tn−

7α
5

(
K

1− 2α
5 ,n−α

5
α

g
)

(ρ)
]

=
∂n−1

∂tn−1

[ ∂
∂t

(
tn−

7α
5

(
K

1− 2α
5 ,n−α

5
α

g
)

(ρ)
)]

=
∂n−1

∂tn−1

[
tn−

7α
5 −1

(
n− 7α

5
− α

5
ρ
d

dρ

)(
K

1− 2α
5 ,n−α

5
α

g
)

(ρ)
]
,

then repeating above ways n− 1 times yields that

∂n

∂tn

[
tn−

7α
5

(
K

1− 2α
5 ,n−α

5
α

g
)

(ρ)
]

= tn−
7α
5

∏n−1

j=0

(
1− 7α

5
+ j − α

5
ρ
d

dρ

)(
K

1− 2α
5 ,n−α

5
α

g
)

(ρ).
(3.9)

Consequently, we arrive at

∂αu

∂tα
= t−

7α
5

(
P

1− 7α
5 ,α

5
α

g
)

(ρ).

Thus, we get the following fractional order ordinary differential S-K equation(
P

1− 7α
5 ,α

5
α

g
)

(ρ) + 5g2gρ + 5gρgρρ + 5ggρρρ + gρρρρρ = 0.

This completes the proof.

4. Conservation laws

In this section, we construct conservation laws of (1.1) by Ibragimov theorem [11].
This theorem is usually applied to integer order differential equations, see [7,9] and
the references therein. Moreover, it is also applicable for some fractional differential
equations [12,21].

The formal Lagrangian function for (1.1) is given by

L = v(x, t)(Dα
t u+ 5u2ux + 5uxuxx + 5uuxxx + uxxxxx), (4.1)

where v(x, t) is a new dependent variable. Now, let us recall the form of the Euler-
Lagrange operator

δ

δu
= ∂u+(Dα

t )
∗
∂Dαt −Dx∂ux +D2

x∂uxx−D3
x∂uxxx +D4

x∂uxxxx−D5
x∂uxxxxx , (4.2)

where (Dα
t )∗ is the adjoint operator of Dα

t and it has the form:

(Dα
t )
∗

= (−1)ntI
n−α
T (Dn

t ).
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So, we get the adjoint equation to (1.1) as the Euler-Lagrange equation

δL

δu
= (Dα

t )
∗
v − 5u2vx − 10uxxvx − 10uxvxx − 5uvxxx − vxxxxx = 0. (4.3)

Nonlinear self-adjointness of differential equations was presented in [8,11] and the
references therein for constructing conservation laws. This concept can be extended
to fractional differential equations. We say that S-K equation (1.1) is nonlinearly
self-adjoint if (4.3) is satisfied for all solutions u of S-K equation (1.1) upon a
substitution v = ϕ(t, x, u), and ϕ(t, x, u) 6= 0 [6].

Let us substitute the function v = ϕ(t, x, u) and its derivatives into (4.3) and
take into account the self-adjoint condition

δL

δu
|v=ϕ(x,t,u) = λE,

for a certain function λ, where E = Dα
t u+5u2ux+5uxuxx+5uuxxx+uxxxxx. Then

it is not difficult to find that

ϕ(x, t, u) = cψ(x) (4.4)

is a substitution function of the adjointed system (1.1) and (4.3), where c is arbitrary
constant except zero and ψ(x) satisfies

ψ(5) + 5uψ(3) + 10uxψ
′′

+ 10uxxψ
′
+ 5u2ψ

′
= 0.

This tells us S-K equation (1.1) is nonlinear self-adjoint with the substitution (4.4).
Note that the S-K equation does not involve fractional derivatives with respect

to x, so the x-component of conserved vector can be given by the formula for
differential equations of integer orders [11], that is

Cxi = ξL+Wi

(
∂L

∂ux
−Dx

∂L

∂uxx
+D2

x

∂L

∂uxxx
−D3

x

∂L

∂uxxxx
+D4

x

∂L

∂uxxxxx

)
+Dx (Wi)

(
∂L

∂uxx
−Dx

∂L

∂uxxx
+D2

x

∂L

∂uxxxx
−D3

x

∂L

∂uxxxxx

)
+D2

x (Wi)

(
∂L

∂uxxx
−Dx

∂L

∂uxxxx
+D2

x

∂L

∂uxxxxx

)
+D3

x (Wi)

(
∂L

∂uxxxx
−Dx

∂L

∂uxxxxx

)
+D4

x (Wi)
∂L

∂uxxxxx
,

where Wi = ηi − τiut − ξiux (i = 1, 2) are the Lie characteristic functions corre-
sponding to the Lie symmetries V1 and V2. In view of (4.1) and (4.4), we can reduce
the component Cxi to

Cxi = cWi

(
5ψu2 + 5ψ

′′
u+ 5ψ

′
ux + 5ψuxx + ψ(4)

)
− cDx (Wi)

(
5ψ

′
u+ ψ(3)

)
+cD2

x (Wi)×
(

5ψu+ ψ
′′
)
− cD3

x (Wi)ψ
′
+ cD4

x (Wi)ψ.

(4.5)
By the fractional generalizations of the Noether operators (see [12] for the de-

tails), the t-component of conserved vector can be given by

Cti =

n−1∑
k=0

(−1)k(0D
α−1−k
t ) (Wi)D

k
t

∂L

∂(0Dα
t u)
− (−1)nJ

(
Wi, D

n
t

∂L

∂(0Dα
t u)

)
,
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where n = [α] + 1, i = 1, 2 and J is the integral

J(f, g) =
1

Γ(n− α)

∫ t

0

∫ T

t

f(s, x)g(µ, x)

(µ− s)α+1−n dµds.

For S-K equation (1.1), using (4.1) and (4.4), the component Cti can be reduced to

Cti = τL+ (−1)0 0D
α−1
t (Wi)D

0
t

∂L

∂0Dα
t u
− (−1)1J

(
Wi, D

1
t

∂L

∂0Dα
t u

)
= c(0D

α−1
t ) (Wi)ψ.

(4.6)

Recalling Lie point symmetries (3.4), Wi can be expressed as

W1 = −ux, W2 = −2u− 5t

α
ut − xux.

Therefore, for Lie point symmetry V1 = ∂
∂x

, substituting W1 into (4.5) and (4.6),
one can easily get the components of conservation law for (1.1) as follows:

Cx1 = −ux(5ψu2 + 5ψ
′′
u+ 5ψ

′
ux + 5ψuxx + ψ(4)) + uxx(5ψ

′
u+ ψ(3))

−uxxx × (5ψu+ ψ
′′
) + uxxxxψ

′
+ uxxxxxψ,

Ct1 = −ψ 0D
α−1
t ux.

Similarly, for the symmetry operator V2, the components Cx2 , C
t
2 of conservation

law for (1.1) can be obtained by the same way, we omit the details.

5. Conclusions

In this paper, we extend the classical Lie symmetry analysis method to fractional
differential equations and investigate the symmetry properties, conservation laws
for the time-fractional fifth-order Sawada-Kotera with Riemann-Liouville derivative.
By the symmetries of (1.1), we reduce this fractional partial differential equation
to a fractional ordinary differential equation, and construct some conservation laws
using the idea from the Ibragimov theorem on conservation laws and the fractional
generalization of the Noether operators. The obtained results may be useful to
our further study on fractional differential equations. Although there are more and
more works on the study of fractional differential equations, we still have very little
knowledge about these equations. Basically, we don’t know whether the methods
adopted in study of partial differential equations can be extended to fractional ones,
so there are several issues which need to be pursued in the future.
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