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Abstract In the present work, we dealt with exact solutions and conservation
laws of the Benjamin-Ono equation. We obtained exact solutions of given
equation via the exp(−Φ(ξ)) method. The obtained solutions are included the
hyperbolic functions, trigonometric functions and rational functions. By using
the multiplier approach, the conservation laws of the mentioned equation was
founded.
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1. Introduction

Many significant phenomena and dynamic processes in solid state physics, fluid
mechanics, chemical physics and plasma waves, such as water surface gravity waves,
acoustic waves in unharmonic crystal, electromagnetic radiation reactions, optical
fibers, hydro magnetic waves in cold plasma, the heat flow can be represented by
nonlinear partial differential equations (PDEs) [8]. Some of the most attractive
features of the physical systems are covert in their nonlinear treatment. These can
just be analyzed by using a proper method which is designed to handle nonlinear
problems.

The exploration of the exact solutions of nonlinear PDEs plays a vital role in
the study of nonlinear physical phenomena and becoming more and more attractive.
When we want to have information about the physical mechanism of a phenomena
in nature which is described by nonlinear PDEs, we have to explore the exact so-
lutions. Therefore, a large number of powerful methods have been proposed, such
as Hirota’s direct method [11,29], the homogeneous balance method [9], the inverse
scattering method [1], the tanh method [32], the exp-function method [18], the
exponential rational function method [4], (G′/G)-expansion method [5,20], the ex-
tended (G′/G)-expansion method [33], the (G′/G, 1/G)-expansion method [14], the
extended trial equation method [10], the first integral method [7, 28], the modified
simple equation method [15], the sine-cosine method [19,31], the auxiliary equation
method [16] and so on [34].

Conservation laws play a crucial role to find solution and reduction of PDEs.
They are used for exploring integrability and linearization mappings, for performing
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the existence and uniqueness as well as for analyzing stability and global behaviour
of solutions. A number of techniques are developed for constructing conservation
laws of differential equations, such as the characteristic method, Noether’s method,
multiplier approach, symmetry based methods partial Lagrangian and Ibragimov
method etc. [12, 13,21,22,26,30].

The Benjamin-Ono equation is used in the investigation of plenty of other phys-
ical applications, for example the percolation of water in the porous subsurface of
a horizontal layer of material and also in the analysis of long waves in shallow wa-
ter. This equation is one of the important nonlinear partial differential equation in
physics and written as

utt + β(u2)xx + γuxxxx = 0, (1.1)

where the constant coefficient β controlles the nonlinearity and the characteristic
speed of the long waves, and the other constant γ is the fluid depth. u(x, t) is the
elevation of the free surface of the fluid; the quadratic nonlinearity or the vertical
deflection accounts for the curvature of the bending beam [17].

The aim of this paper is to construct exact solutions via the exp(−Φ(ξ)) method
and the conservation laws of the Benjamin-Ono equation via the multiplier ap-
proach. The outline of the paper is as follows. In Section 2, firstly we describe the
exp(−Φ(ξ)) method step by step. Then in Section 3, we apply this method to the
Benjamin-Ono equation. In Section 4, we construct conservation laws for Eq.(1.1)
using the multiplier method. Finally some conclusions are given.

2. The exp(−Φ(ξ)) method

In the current section, we give an explanation of the exp(−Φ(ξ)) method to obtain
exact solutions of partial differential equations. Consider a general nonlinear PDE,
say in two independent variables x and t, in the following form:

F (u, ux, ut, uxx, uxt, utt, ...) = 0. (2.1)

We can summarize the basic steps of the exp(−Φ(ξ)) method as follows [25]:
Step 1: Using the travelling wave transformation

ξ = x− vt, u(x, t) = u(ξ), (2.2)

where v is the wave speed, we can rewrite Eq. (2.1) in the following form of nonlinear
ordinary differential equation:

Q(u, u′, u′′, ...) = 0. (2.3)

Here prime denotes the derivative with respect to ξ. We should integrate Eq.(2.3)
term by term as soon as possible.

Step 2: According to the exp(−Φ(ξ)) method, we suppose that the exact solu-
tion of Eq.(2.3) can be expressed in the following form:

u (ξ) =

m∑
n=0

an(exp(−Φ(ξ)))n, (2.4)

where an’s (n = 0, 1, ...m) are constants to be determined later, such that am 6= 0,
and Φ(ξ) satisfies the following auxiliary ordinary differential equation:

Φ′(ξ) = exp(−Φ(ξ)) + µ exp(Φ(ξ)) + λ (2.5)
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By the generalized solutions of the auxiliary equation Eq.(2.5), we have the
following cases.

Case 1 (Hyperbolic function solutions): When λ2 − 4µ > 0 and µ 6= 0,

Φ1(ξ) = ln(
−
√
λ2 − 4µ tanh(

√
λ2−4µ
2 (ξ + C))− λ

2µ
). (2.6)

Case 2 (Trigonometric function solutions): When λ2 − 4µ < 0 and µ 6= 0,

Φ2(ξ) = ln(

√
4µ− λ2 tan(

√
4µ−λ2

2 (ξ + C))− λ
2µ

). (2.7)

Case 3 (Hyperbolic function solutions): When λ2 − 4µ > 0, µ = 0 and λ 6= 0,

Φ3(ξ) = − ln(
λ

cosh(λ(ξ + C)) + sinh(λ(ξ + C))− 1
). (2.8)

Case 4 (Rational function solutions): When λ2 − 4µ = 0, µ 6= 0 and λ 6= 0,

Φ4(ξ) = ln(−2(λ(ξ + C) + 2)

λ2(ξ + C)
). (2.9)

Case 5: When λ2 − 4µ = 0, µ = 0 and λ = 0,

Φ5(ξ) = ln(ξ + C). (2.10)

Here C is the integration constant and m is a positive integer which is determined
by considering the homogeneous balance principle. Namely, we balance the highest
order derivative term and nonlinear term in Eq. (2.3).

Step 3: By substituting Eq. (2.4) into Eq. (2.3) along with Eq.(2.5) and then
collecting all the coefficients of exp(−Φ(ξ)) together, Eq. (2.3) is converted into
another polynomial in exp(−Φ(ξ)). Afterwards we equate each coefficient of this
polynomial to zero and we find a set of algebraic equations for an(n = 0, 1, 2, ...), v,
λ, µ.

Step 4: Solving the system of algebraic equations obtained in Step 3 and sub-
sequently substituting the constants an(n = 0, 1, 2, ...,m), v, λ and µ, and also so-
lutions of Eq. (2.5) into Eq. (2.4), we can get the exact solutions of Eq. (2.1) in
terms of trigonometric, hyperbolic and rational functions.

3. Exact Solutions

By considering the traveling wave transformation Eq.(2.2), the Benjamin-Ono e-
quation (1.1) can be reduced to following ODE:

v2u′′ + 2β((u′)2 + uu′′) + γu′′′′ = 0, (3.1)

where β and γ are constants and prime denotes the derivation with respect to ξ.
Considering the homogeneous balance principle, we get the balancing number as
m = 2. By the way, we can seek the exact solutions as:

u(ξ) = a0 + a1 exp(−Φ(ξ)) + a2(exp(−Φ(ξ)))2. (3.2)
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We substitute Eq.(3.2) into Eq.(3.1), then we collect all terms with the same order of
exp(−Φ(ξ))n together, Eq.(3.1) converts into another polynomial in exp(−Φ(ξ))n(n =
0, 1, ..., 6). Then we equate each coefficient of this polynomial to zero and we get a
set of algebraic equations of v, β, γ, a0, a1, a2, λ and µ as follows:

e6ξ : 16γa2µ
3 + v2a1µλ+ 2βa21µ

2 + 14γa2µ
2λ2 + 2v2a2µ

2

+ 8γa1µ
2λ+ 2βa0a1µλ+ γa1µλ

3 + 4βa0a2µ
2 = 0,

e5ξ : v2a1λ
2 + 2v2a1µ+ 2βa0a1λ

2 + 6βa21µλ+ 6v2a2µλ

+ 22γa1µλ
2 + 4βa0a1µ+ 12βa0a2µλ+ 12βa1µ

2a2

+ 120γa2µ
2λ+ 16γa1µ

2 + 30γa2µλ
3 + γa1λ

4 = 0,

e4ξ : 15γa1λ
3 + 8βa21µ+ 4βa21λ

2 + 4v2a2λ
2 + 16γa2λ

4 + 8v2a2µ

+ 232γa2µλ
2 + 3v2a1λ+ 30βa1µa2λ+ 12βa22µ

2 + 16βa0a2µ

+ 136γa2µ
2 + 60γa1µλ+ 6βa0a1λ

4 + 8βa0a2λ
2 = 0,

e3ξ : 50γa1λ
2 + 10v2a2λ+ 40γa1µ+ 28βa22µλ+ 10βa21λ

+ 20βa0a2λ+ 4βa0a1 + 130γa2λ
3

+ 18βa1λ
2a2 + 2v2a1 + 440γa2µλ+ 36βa1a2µ = 0,

e2ξ : 32βa22µ+ 42βa1a2λ+ 60γa1λ+ 12βa0a2 + 240γa2µ

+ 16βa22λ
2 + 6v2a2 + 330γa2λ

2 + 6βa21 = 0,

eξ : 36βa22λ+ 24βa1a2 + 24γa1 + 336γa2λ = 0,

e0ξ : 120γa2 + 20βa22 = 0.

Solving the above system with the help of Maple, we obtain:

a0 = −v
2 + γλ2 + 8γµ

2β
, a1 = −6γλ

β
, a2 = −6γ

β
.

Consequently, we have the following different cases for the exact solutions of Benjamin-
Ono equation:

Case 1 (Hyperbolic function solutions): When λ2 − 4µ > 0 and µ 6= 0,

u1(ξ) = −v
2 + γλ2 + 8γµ

2β
+

12µγλ

β

(√
λ2 − 4µ tanh(

√
λ2−4µ
2 (ξ + C)) + λ

)
− 24µ2γ

β

(√
λ2 − 4µ tanh(

√
λ2−4µ
2 (ξ + C)) + λ

)2 .

Case 2 (Trigonometric function solutions): When λ2 − 4µ < 0 and µ 6= 0,

u2(ξ) = −v
2 + γλ2 + 8γµ

2β
+

12µγλ

β

(
−
√

4µ− λ2 tan(

√
4µ−λ2

2 (ξ + C)) + λ

)
− 24µ2γ

β

(√
4µ− λ2 tan(

√
4µ−λ2

2 (ξ + C))− λ
)2 .
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Case 3 (Hyperbolic function solutions): When λ2 − 4µ > 0, µ = 0 and λ 6= 0,

u3(ξ) = −v
2 + γλ2 + 8γµ

2β
−
(

6γλ2

β(cosh(λ(ξ + C)) + sinh(λ(ξ + C))− 1)

)
− 6γλ2

β(cosh(λ(ξ + C)) + sinh(λ(ξ + C))− 1)2
.

Case 4 (Rational function solutions): When λ2 − 4µ = 0, µ 6= 0 and λ 6= 0,

u4(ξ) = −v
2 + γλ2 + 8γµ

2β
+

3γλ3(ξ + C)

β(λ(ξ + C) + 2)
− 6γ

β

(
λ2(ξ + C)

2(λ(ξ + C) + 2)

)2

.

Case 5: When λ2 − 4µ = 0, µ = 0 and λ = 0,

u5(ξ) = −v
2 + γλ2 + 8γµ

2β
− 6γλ(ξ + C + γ)

β(ξ + C)2
,

where ξ = x− vt and C is the integration constant.
Note that, we have compared our solutions with the other solutions in literature.

We can state that; whereas our solutions are different from the given ones in [35],
they are similar to founded in [27].

4. Conservation Laws

Conservation laws play a significant roles to understanding physical properties and
interpretations about the assorted systems. The presence of a number of conserva-
tion laws of a system of partial differential equations (PDEs) is a strong evidence
of its integrability [2]. They have been utilized for the development of convenient
numerical methods and construction of exact solutions of partial differential equa-
tions.

In this section adopting the multiplier approach (also known characteristic method),
we construct local conservation laws for Eq(1.1). Consider the kth order system of
PDEs of n independent variables x = (x1, x2, ..., xn) and m dependent variables
u = (u1, u2, ..., um)

Eα
(
x, u, u(1), ..., u(k)

)
= 0, α = 1, ...,m, (4.1)

where u(i) is the collection of i th-order partial derivatives, uαi = Di(u
α), uαij =

DjDi(u
α), . . . , respectively, with the total differentiation operator with respect to

xi given by

Di =
∂

∂xi
+ uαi

∂

∂uα
+ uαij

∂

∂uαj
+ ..., i = 1, ..., n, (4.2)

in which the summation convention is used.
δ

δu
is the variational derivative operator

and given by

δ

δuα
=

∂

∂uα
+

∞∑
s≥1

(−1)
s
Di1 . . . Dis

∂

∂uαi1...is
, α = 1, ...,m. (4.3)
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Definition 4.1. The conserved vector of (4.1), where each T iεA, A is the space of
all differential functions, satisfies the equation

DiT
i
|(4.1) = 0 (4.4)

along the solution of (4.1).

A multiplier Λα(x, u, u1, ...) has the property that

ΛαE
α = DiT

i (4.5)

satisfies identically. Here we will consider multipliers of zeroth, that is Λα =
Λα(x, t, u). The right side of (4.5) is a divergence condition. To find multipliers,
we construct determining equation for the multiplier Λα is

δ(ΛαE
α)

δuα
= 0. (4.6)

All the corresponding multipliers can be found with the aid of (4.6) for which the
equation can be expressed as a local conserved vector. [3, 6, 23,24].

The determining equation for the zeroth order multiplier Λ(x, t, u) is

δ

δu

[
Λ
(
utt + β(u2)xx + γuxxxx

)]
= 0. (4.7)

Expanding and then separating (4.7) with respect to different combinations of
derivatives of u yields the following overdetermined system for the multipliers:

Λtt = 0, Λxx = 0, Λu = 0.

After solving this system we get the multipliers

Λ = (c3x+ c2)t+ c1x+ c4, (4.8)

where c1, c2, c3 and c4 are constants. Corresponding to the above multipliers, we
have the following conserved vectors of (1.1):

Λ1 = x,

T t = xut,

T x = 2βxuxu− βu2 − γuxx + γxuxxx,

Λ2 = t,

T t = −u+ tut,

T x = 2uβtux + γtuxxx,

Λ3 = xt,

T t = −xu+ xtut,

T x = 2βtxuxu− βtu2 − γtuxx + γtxuxxx,

Λ4 = 1,

T t = ut,

T x = 2βuxu+ γuxxx.
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5. Conclusion

In this work, we gave the decription of the the exp(−Φ(ξ)) method. Then we gave an
implementation of this method on the Benjamin-Ono equation. We have obtained
the exact solutions of this equation in terms of hyperbolic functions, trigonometric
functions and rational functions. Also via the multiplier approach, we have found
the three nontrivial and one trivial conservation laws of this equation. We foresee
that, the obtained results can be found potentially advantageous for applications in
mathematical physics and engineering. All results in this paper found and checked
by putting them in to the original equations with the help of Maple software.
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