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Abstract This paper studies the problem of construction of optimal quadra-
ture formulas in the sense of Sard in the Wém’mfl) [0, 1] space for calculating
Fourier coefficients. Using S. L. Sobolev’s method we obtain new optimal
quadrature formulas of such type for N +1 > m, where N + 1 is the num-
ber of the nodes. Moreover, explicit formulas for the optimal coefficients are
obtained. We investigate the order of convergence of the optimal formula for
m = 1. The obtained optimal quadrature formula in the I/V2(m‘"%1> [0, 1] space
is exact for exp(—z) and Pm—2(z), where Pr,_2(z) is a polynomial of degree
m — 2. Furthermore, we present some numerical results, which confirm the
obtained theoretical results.
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1. Introduction

Numerical calculation of integrals of highly oscillating functions is one of the more
important problems of numerical analysis, because such integrals are encountered
in applications in many branches of mathematics as well as in other science such as
quantum physics, low mechanics and electromagnetism. Main examples of strongly
oscillating integrands are encountered in different transformation, for example, the
Fourier transformation and Fourier-Bessel transformation. Standard methods of
numerical integration frequently require more computational works and they cannot
be successfully applied. The earliest formulas for numerical integration of highly
oscillatory functions were given by Filon [11] in 1928. Filon’s approach for Fourier
integrals

b
Ifiw] = / ¢ f(z) da

is based on piecewise approximation of f(z) by arcs of the parabola on the integra-
tion interval. Then finite integrals on the subintervals are exactly integrated.
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Afterwards for integrals with different type highly oscillating functions many
special effective methods such as Filon-type method, Clenshaw-Curtis-Filon type
method, Levin type methods, modified Clenshaw-Curtis method, generalized quad-
rature rule, Gauss-Laguerre quadrature are worked out (see, for example, [4,15,20,
40], for more review see, for instance, [21,23] and references therein).

In [22] the authors studied approximate computation of univariate oscillatory
integrals (Fourier coefficients) for the standard Sobolev spaces H*® of periodic and
non-periodic functions with an arbitrary integer s > 1. They found matching lower
and upper bounds on the minimal worst case error of algorithms that use n function
or derivative values. They also found sharp bounds on the information complexity
which is the minimal n for which the absolute or normalized error is at most €.

In the work [29] the weight lattice optimal cubature formulas in the periodic

Sobolev’s space E(Qm) (2) were constructed. In particular, from the result of the work
[29], in univariate case when the weight is the function exp(iox) (where x € [0, 27]
and o is an integer), the Babuska optimal quadrature formula for Fourier coefficients
was obtained [3].

Recently, some optimal quadrature formulas for Fourier coefficients in the Sobolev
space L;m) (0,1) of non-periodic functions have been constructed in [6].

This paper is devoted to construction of optimal quadrature formulas for approx-
imate calculation of Fourier integrals in a Hilbert space of non-periodic functions.
Precisely, we study the problem of construction such optimal formulas in the sense
of Sard in the Wg“"’m‘”[o, 1] space.

We consider the following quadrature formula

1 N
/ e?™WT (1) dar 2 Z Cap(hp) (1.1)
0 520
with the error functional
. N
U(x) = e e () — > Cpd(z — hp), (1.2)
B=0

where Cj are the coefficients of formula (1.1), h = 1/N, N € N, i? = -1, w € Z,
€[0,1](x) is the indicator of the interval [0,1] and d(z) is the Dirac delta-function.

(m,m—1)

Functions ¢ belong to the space W, [0, 1], where
W2(7rl’77171)[07 1] = {<p :[0,1] = C ‘ o™= e AC[0,1] and ™ e L0, 1]}

is the Hilbert space of complex valued functions and in this space the inner product
is defined by the equality

—(m-1)

(o) = / (¢ @+ V@) (B @+ @) a1

where 1) is the conjugate function to the function v and the norm of the function
 is correspondingly defined by the formula

el W™ ™[0, 1] = (p, )72
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and
/ (e @)+ o @) (77 @) + 7D @) d < .

We note that the coefficients Cg depend on w, N and m, i.e., Cg = Cg(w, N, m).

It should be noted that for a linear differential operator of order m, L =
P,,(d/dx), Ahlberg, Nilson, and Walsh in the book [1, Chapter 6] investigated
the Hilbert spaces K5(FPy,) in the context of generalized splines. Namely, with the
inner product

(o, ) = / Lo(e) - () dz,

K5 (P,,) is a Hilbert space if we identify functions that differ by a solution of Ly = 0.
Also, such a type of spaces of periodic functions and optimal quadrature formulas
were discussed in [8].

The difference

1 N [e's)
(t,g) = / et (2) dz — 3 Cap(wp) = / Ur)p@)dz (L)
5=0 —oo

is called the error of the quadrature formula (1.1). The error of the formula (1.1) is
a linear functional in W;m’mfl)* [0, 1], where Wz(m’mfl)* [0, 1] is the conjugate space
to the space WQ(m’m_l)[O, 1].

By the Cauchy-Schwarz inequality

m,m—1 m,m—1)x*
(€ @)] < llel™ ™ V0, 1] - W™ ™" [0, 1.
So, the error (1.4) of formula (1.1) is estimated by the norm

w00, 1]]| = sup &%)
llelws™ ™ Vo,1][|=1

of the error functional (1.2).

Thus, the estimation of the error of the quadrature formula (1.1) over functions
of the space W™™ Y is reduced to finding the norm of the error functional £ in
the conjugate space Wém’mfl)*.

Clearly the norm of the error functional ¢ depends on the coefficients Cz. The
problem of finding the minimum of the norm of the error functional ¢ by coefficients
Cs when the nodes are fixed (in our case distances between neighbor nodes of
formula (1.1) are equal, ie., g = hB, § =0,1,...,N, h = 1/N) is called Sard’s
problem. And the obtained formula is called the optimal quadrature formula in the

sense of Sard. This problem was first investigated by A. Sard [24] in the space Lgm)

for some m. Here L(Qm) is the Sobolev space of functions which (m — 1)-st derivative
is absolutely continuous and m-th derivative is square integrable.

There are several methods for constructing of optimal quadrature formulas in
the sense of Sard such as the spline method, the ¢-function method (cf. [5], [25])
and Sobolev’s method. Note that Sobolev’s method is based on the construction of
a discrete analogue to a linear differential operator (cf. [37-39]). In different spaces
based on these methods, the Sard problem was investigated by many authors (see,
for example, [2,5,7,9,10, 14, 16-19, 24-28, 30, 31, 33, 36-39, 41, 42] and references
therein).
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The main aim of the present paper is to solve the Sard problem for quadrature
formulas (1.1) in the space Wém’mfl) [0, 1] using S. L. Sobolev’s method with N+1 >
m, i.e., to look for the coefficients C's that satisfy the following equality

w500, 1] = inf[le Wz [0,1]]. (1.5)
8

Thus, to construct Sard’s optimal quadrature formula of the form (1.1) in the
space Wém’m_l)[(), 1], we need to solve the following problems.

Problem 1. Find the norm of the error functional ¢ of quadrature formulas (1.1)
in the space W5™™ V%[0, 1].
Problem 2. Find the coefficients Cs that satisfy equality (1.5).

It should be noted that Problems 1 and 2 were solved in [34] for the case w = 0,
i.e., in the work [34] the optimal quadrature formulas of the form

1 N
/0 (@) de = 3 Cap(nB)

B=0

in the sense of Sard were constructed. In the sequel we will solve Problems 1 and 2
in the cases when w € Z and w # 0.

The paper is organized as follows. In the second section the extremal function,
which corresponds to the error functional ¢, is given and, with its help, a repre-
sentation of the norm of the error functional (1.2) is calculated, i.e., Problem 1 is
solved. In Section 3 we obtain the system of linear equations for coefficients of the
optimal quadrature formulas in the space ng’m*”[o, 1]. Moreover, the existence
and uniqueness of the solution of this system are discussed. In Section 4, in the
cases m > 2, the explicit formulas for the coefficients of the optimal quadrature
formulas of the form (1.1) are found, i.e., Problem 2 is solved in the cases m > 2.
The obtained optimal quadrature formulas are exact for any polynomial of order
< m—2 and for the exponential function exp(—z). In Section 5 we solve Problem 2
in the case m = 1 and we calculate the norm of the error functional of the optimal
quadrature formula in the WQ(LO) [0, 1] space. The obtained explicit formula for the
norm of the error functional shows dependence on w and h of the error of the optimal
quadrature formula of the form (1.1) in WQ(I’O) [0, 1] space. Finally, in Section 6 we
present some numerical results which are confirm the obtained theoretical results
of the present work.

2. Extremal function and norm of the error func-
tional

To solve Problem 1, i.e., to get the explicit expression for the norm of the error

functional (1.2) in the space ngfm*”*[o, 1], we use the concept of the extremal

function. The function 1, is called the extremal function for the functional ¢ (see,
[37]), if the following equality holds

(&, e) = [|€| W™ ™% (0,1 - [[obe | W™ V0, 1] (2.1)
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Since W:E’”’m‘”[o, 1] is a Hilbert space, then the extremal function ) in this
space, is found with the help of the general form of a linear continuous functional
on Hilbert spaces given by the Riesz theorem. Then for the functional ¢ and for
any ¢ € WQ(m’m_l)[O, 1] there exists the function ¢, € WQ(m’m_l) [0, 1] for which the
following equation holds

(4, 0) = (e, 0}, (2.2)

where

—(m—1)

o= [ (@E @+ @) () e @) de (23

is the inner product defined in the space W™ 10, 1].
From (2.2) taking into account (2.3) for the extremal function 1, we get the
following boundary value problem

G @) " @) = (-1 @), (24)
(wéers) (l‘) _ w(ngrsz) (x)) iz(l) =0, s= m7 (25)
(W@ +ui"@)| 7 =0 29)

where £ is the conjugate to /.

Theorem 2.1. The solution of the boundary value problem (2.4)—(2.6) is the ex-
tremal function 1y of the error functional £ and has the following form

Yo(x) = (=1)"(z) * G (x) + Pp_o(x) +de™ %,

where

sgnz [ e¥ —e @ 1 g2k
Gm(z) = D) (2 - Z (2/{—)') (2.7)

k=1

s a solution of the equation
G () = GE™ D (x) = 6(x), (2.8)

d is any complex number and Py, _2(x) is a polynomial of degree m —2 with complex
coefficients, and * is the operation of convolution.

Theorem 2.1 can be proved as Theorem 2.1 in [34].

For the error functional (1.2) to be defined on the space I/[/2(7'1’7T”71)(()7 1) it is
necessary to impose the following conditions
(6,2®) =0, a=0,1,2,....m—2,  (£,e=%)=0. (2.9)

Hence, it is clear that for existence of the quadrature formulas of the form (1.1) the

condition N + 1 > m has to be met.

The equalities (2.9) mean that our quadrature formula is exact for the function
and for any polynomial of degree < m — 2.

Now, using Theorem 2.1 we will get the representation of the square of the norm

of the error functional (1.2).

e—x
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We recall that a convolution of two functions is defined by the formula

p(x) *Y(z) = /OO o —y)Y(y)dy = /OO o(y)Y(z —y)dy.

— 00 —00

Taking into account the definition of convolution and equality (1.2) we calculate
the convolution £(z) * G, (z), i.e.,

1
/ 0(y) G (z— y)dy—/ e PTG, (z—y) dy— ZCﬁ (z—hp),
0

=0

where ¢ and C’g are conjugates to ¢ and Cj, respectively. Then keeping in mind
(2.2), (2.3) and Theorem 2.1, we have

o0 o0

112 = (6, ) = {abe, be) = / Uw)bela) da = (1) / U()-(B(x) * G (2)) de,

— 00 — 00

ie.,

1e|12 = (_1)mL (e2wiwz€[ o.1] 2055 T — hﬂ))
1
X (/ e PTG, (x —y) dy — Z C,G(x — hv)) dz.
0

=0
Hence we obtain

||€|| {ZZCﬁC G (hB — h)

B=0~v=0

N 1
_ Z/ (6ﬁe27riwx + Cﬁe—2ﬂ'iww) Gm(m o hﬁ) dz
#=0""

1
+/ / eImwTe MY (1 — ) dx dy}. (2.10)
0o Jo

Now we show that the right hand side of (2.10) is real. Really, let Cz = C’g +iC1,

i2 = —1, where Cg and C’é are real. Using Euler’s formula e?™“* = cos2mwz +
isin 2wz, we get the following equalities

N N N N

DN CuCGm(hB—hy) =D (CECE + C4CL) Gr(hB — hy),

B=0~v=0 B=0~v=0

Cpe®™“? 4 Cge™ > = 20 cos 2mwa + 2C§ sin 2nwa,

1 1 1 1
/ / eImiwre=2miwy (1 — ) dady = / / cos[2rw(z — )]G (z — y) da dy.
0 Jo o Jo
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Keeping in mind the last three equalities, from (2.10) for the norm of the error
functional we have

1e)? = Z Z (CECE +CECL) Gr(hB — 1)

B=0~=0

N 1
) Z C’é%/ cos 2rwz Gy (x — hB) dx
B=0 0

N 1
-2 Z Cé/ sin 2nwx G (z — hB) dx
p=0 70

—I—/O /0 cos2rw(z — y)] Gm(x —y) dedy]|, (2.11)

and from (2.9), we have the following equalities

N 1
Z Cg(hﬁ)“ = / % cos2mwrdr, a=0,1,2,...,m—2, (2.12)

0

N 1
ZCg”e_hﬁ :/ e” ¥ cos 2mwx d, (2.13)

0

N 1
Ch(hB)™ = / x%sin2nwrdr, a=0,1,2,...,m—2, (2.14)

8=0 0

N 1
ZCée*hﬁ :/ e ¥sin2rwz dz, (2.15)

B=0 0

Thus, Problem 1 is solved. Further in Sections 3 and 4 we solve Problem 2.

3. The system for coefficients of optimal quadrature
formulas (1.1) in the space W™ V[0, 1]
To find the minimum of the expression (2.11) under the conditions (2.12)—(2.15) we

apply the Lagrange method.
Consider the function

vk, ... .ok .ct ... 0k el . . al L al, .. al ,, dR dY)
= [|e)* — 2( Z / xacos27rwxdx—ZC§”(hﬁ)a
a=0 B=0
m— 1
Z / x &n?wwxdx—ZCﬁ hpB)*
- 0 520

N
—2(=1)mak /0 ¥ cos 2mwx dr — Z Cge*hﬁ
8=0
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1 N
—2(—1)md* / e ¥ sin 2rwx dz — Z C’ée_hﬁ
0 520
Equating to 0 the partial derivatives of ¥ with respect to C'%, Cé, (B=0,N), al,
al, (a =0,m —2), d¥, and d!, we get the following system of linear equations, for
a=0,1,....m—2and 8 =0,1,...,N,

m—2

N 1
> CEG(hB—hy)+ Y all(nB)* + de " = / cos 2mwz G, (z — hB) dz, (3.1)
0

~=0 a=0

N 1
Z C,}f(h'y)"‘ :/ % cos 2wz d, (3.2)
v=0 0
N 1
Z C’ffe_hv :/ e ¥ cos 2mwzx d, (3.3)
=0 0

N m—2 1
> CLGm(hB —hy) + Y al(hp)* +d'e™ = / sin 2rwz G, (z — h3) dz, (3.4)
=0 a=0 0
N 1
Z C’f/(hv)o‘ :/ 2% sin 2wz d, (3.5)
b 0
N 1
Z C’,{e*}W :/ e ¥sin2rwzx dx. (3.6)
v=0 0

Now, multiplying both sides of (3.4), (3.5), and (3.6) by i and adding to both
sides of (3.1), (3.2), and (3.3), respectively, using notations Cs = C +iC} (8 =
0,N), ag = af +ial (o = 0,m —2), and d = d¥ + id!, for the coefficients of
the optimal quadrature formulas of the form (1.1) we get the following system of

N + m + 1 linear equations, for « =0,1,...,.m —2 and 8 =0,1,..., N,
N m—2
ST CGhB—hy) + Y aa(hB)* +de™ = f.(hp), (3.7)
~v=0 a=0
N 1 )
ZCV(hfy)O‘ = / eXMT % g, (3.8)
v=0 0

N 1 )
Z Ce™ ™ = / 2T g (3.9
=0 0

where G,,(z) is defined by equality (2.7),

Fn(hB) = /0 LG (o hB)de. (3.10)

We note that the system (3.7)—(3.9) has a unique solution when N +1 > m and
this solution gives the minimum to ||||* under the conditions (3.8) and (3.9). The

uniqueness of the solution of this system is obtained from Theorems 3.1 and 3.2
of [34].
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From (2.11) and these theorems from [34], it follows that the square of the norm
of the error functional ¢, being a quadratic functions of the coefficients Cg has a
unique minimum in some concrete value of Cg = CD’B.

As it was said in the first section, the quadrature formula with the coefficients
Co'ﬂ (8 = 0,N), corresponding to this minimum, is called the optimal quadrature
formula in the sense of Sard, and é’g (8=0,N) are called the optimal coefficients.

Below, for the purposes of convenience, the optimal coefficients Co‘g will be de-
noted as Cp.

4. Coefficients of optimal quadrature formulas (1.1)

In the present section we solve the system (3.7)-(3.9) and we find the explicit
formulas for the optimal coefficients C3. Here we use a similar method to the one
suggested by S. L. Sobolev [38] for finding the coefficients of optimal quadrature

formulas in the space L(Qm) (0,1). Here the main concept used is that of functions of
discrete argument and operations on them. Theory of discrete argument functions
is given in [37,39]. For the purposes of completeness we give some definitions about
functions of discrete argument.

Suppose that ¢(x) and 1 (x) are real-valued functions of real variable and are
defined in real line R.

Definition 4.1. A function ¢(hS) is called function of discrete argument if it is
defined on some set of integer values of 5.

Definition 4.2. We define the inner product of two discrete functions ¢(hf) and
¥(hpB) as the following number

oo

lo(hB), v (hB)] = > @(hB) - (hB),

B=—00
if the series on the right hand side of the last equality converges absolutely.

Definition 4.3. We define convolution of two discrete functions ¢(hfS) and ¥(hp)
as the inner product

oo

p(hB3) * Y(hB) = [p(hy), (B —hy)] = D @(h) - $(hB — ).

y=—00

Now, we return to our problem.
Suppose that Cg = 0 when 8 < 0 and f > N. Using the above mentioned
definitions, we rewrite the system (3.7)—(3.9) in the following convolution form

Gm(hB) % Cs 4 Pp_o(hB) +de " = f,.(hB), B=0,1,...,N, (4.1)

N
> Cs- (hB)* =ga, a=0,1,...,m—2, (4.2)
B=0

N |
Coo-hs_ ¢ =1 43
> Cse riw — 17 (4.3)
5=0
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where P,,_2(hf3) = ZZ:OQ aq(hB)% is a polynomial of degree m — 2,

1 .
Fuh®) = [ 406 (o = 1) da (1.4)
Yoo 1 = ala—1)---(a—k+1)
_ 2miwe o _ _1\k
Ja _/0 eratdr = ot kz:l( 1 (27iw)E 1 (4.5)

fora=1,2,...,m—2, go =0, d is a constant, and G,,,(z) is defined by (2.7).
Consider the following problem:

Problem 3. Find a discrete function Cj, a polynomial P,,_2(h3) of degree m — 2
and a constant d which satisfy the system (4.1)—(4.3) for the given f,,(hg).

Further we investigate Problem 3 and instead of Cz we introduce the functions
v(hfB) = Gp(hB) xCs  and  u(hB) = v (hB) + Pp_o(hB) +de . (4.6)

In this statement it is necessary to express the coefficients C by the function u(hj).
For this, we need such an operator D, (hf3) which satisfies the equality

Dy (h3) * G (hB) = da(hB), (4.7)

where dq(hf) is equal to 0 when 8 # 0 and is equal to 1 when 8 = 0, i.e., d4(hp) is

the discrete delta-function.
2m d2m72

d
In [32,35] the discrete analogue D,,(hf) of the operator T g which

satisfies equation (4.7) is constructed and its some properties are investigated.
The following results are proved in [32,35].

2m d2m—2

Theorem 4.1. The discrete analogues to the differential operator Qo2 Qe 2

satisfying the equation (4.7) has the form

m—1
) AN > 2,

1 h m—1
Dm(hﬁ) = m _26 + kgl Akn |/6| = 17 (48)
2m—2 1 Ak
20 + N 0 5 = 07
k=1 Mk

where

h, (2m—2)

€ " Pom—3
2m—2) ’
2m—2

Q
|

14 (2m — 2)el 42" +

4y = 202 AP 1) — e OF + Dl
' N Ph—2() |
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and

2m—2

Pam-2(\) = Y pPm2ae (4.9)
s=0

= (1 -1 = N2 2\ +1) —e"(A\2+1)]

h3(1 — )\)2m_6E2()\) h2m_3E2m,4()\)
3! (2m — 3)! }

X [h(l — A2y

Here, pgf:?:;) and péi;n_?) are the coefficients of the polynomial Popm—2(X) defined

by equality (4.9), Mg are roots of the polynomial Popm—2(N), | M| < 1, and Ex(N) is
the Euler-Frobenius polynomial of degree k (see [39]).

Theorem 4.2. The discrete analogue D,,(hf3) of the differential operator

d2m d2m72

dz2m ~ Jqg2m—2

satisfies the following equalities
1) D,,(hB) xe"? =0,
2) D,,(hB) xe™" =0,
3) Dy (hfB) x ()" =0, n < 2m — 3,
1) Dy (hB) % G (hB) = da(hB).

Here, G, (hB) is the function of discrete argument corresponding to the function
Gn(z), defined by equality (2.7) and d4(hB) is the discrete delta function.

Then taking into account (4.6), (4.7) and Theorems 4.1 and 4.2, for the optimal
coefficients we have

Cs = Dy (hB) * u(hB). (4.10)

Thus, if we find the function u(h3), then the optimal coefficients can be obtained
from equality (4.10).

To calculate this convolution, it is required to find the representation of the
function u(hp) for all integer values of 5. From equality (4.1), we get that u(hf3) =
fm(hB) when hB € [0,1]. Now we need to find the representation of the function
u(hB) when 8 < 0 and 8 > N.

Since Cg = 0 when hp ¢ [0, 1] then Cs = D,,,(hB) *u(hB) =0, h3 ¢ [0,1].

Now, we calculate the convolution v(h8) = G, (h3) * Cg when hf ¢ [0, 1].

Suppose < 0 then, taking into account equalities (2.7), (4.2), (4.3), we have

v(hB) = G(hB) * Cy

N _ _ —1 2k—1
1 ehB—hy _ g=hB+hy (hB — h)
) ZO C”( B )
=

3

2 < (2k—1)!

=~
Il

eh? el —1 hp
= Tl dmw—1 + De + Rop—3(hfB) + Qm—2(hp), (4.11)
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where

[7n+1

|-1ok—1

h 2k—1—« «
Rom-s(hB) = > XN b,

—a)lal

m—1 m-2
hﬂ 2k—1— a( 1)(1

+ 2k —1—a)al Ja (4.12)
k:[‘lngl a:O
is a polynomial of degree 2m — 3 in (hf3),
m—1 2k—1 h,/B Qk 1— a a
m—2(hB) Cy(hy)® 4.13
it =} T3 L @ VD

2

is an unknown polynomial of degree m — 2 also in (h3), and

N
Z (4.14)

Similarly, in the case 8 > N, for the convolution v(h3) = G, (hB) * Cs, we
obtain

»P\H

v(hpB) = #;;% — De ™" — Rop_3(hf3) — Qu_2(hB). (4.15)

We denote
Q)5 (hB) = Pr_2(hB) + Qm_a(hB), a~ =d+ D, (4.16)
Qo (hB) = Prs(hB) = Qm-2(hB), a* =d-D, (4.17)

and, taking into account (4.11), (4.15), (4.6), we get the following problem.
Problem 4. Find the solution of the equation

Dr(hfB) % u(hB) =0, hf ¢ [0,1], (4.18)
having the form
h8 o=1 _1 B
~ o+ Rana(hB) + QL )5(hB). B <0,
u(hfB) = q fm(hB), 0<B<N
hB =1 _ 1
e At = Rana(hB) + QU (h8), B> N.

Here, ngz(hﬂ) and Qﬁlz(hﬂ) are unknown polynomials of degree m — 2 with
respect to (hf), a and a* are unknown constants.

If we find Qm 5(hpB), Qm 5(hB), a= and a™, then from (4.16), (4.17) we have

Pra(hf) = 5 (Q525008) + Q5(h8)) , d = S(a +a*),
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Qmoa(hB) = 5 (@22(08) ~ Qa(h8)), D = S(a™ —a®).

Unknowns an__)2(h6), QE:LF_)Q(hB), a” and a® can be found from the equation
(4.18), using the function D,,(h3). Then we can obtain the explicit form of the
function u(hf) and find the optimal coefficients Cz. Thus, Problem 4 and, respec-
tively, Problem 3 can be solved.

But here we will not find Q') (h8), Q") (hB), a= and a*. Instead of them,
using D, (hB) and u(hp), taking into account (4.10), we find now the expressions
for the optimal coefficients Cg when f=1,...,N — 1.

We denote
A = ~ e el -1
ar =352 M < ~ T omm 1 T Rem—a(=h)
~y=1
Q) (=) +ameh — fm<m>), (4.19)

A — ehrtl =1 1
b, = — M| —————— —Ropm_3(1+h
F Akp Z k( 4 2miw—1 2m-3(1+ h7)

=1

+Q (1 +hy) +ate M — £ (1 + fw)), (4.20)

where \;, are roots and p is the leading coefficient of the polynomial Pa,,—o(A) of
degree 2m — 2 defined by (4.9) and |Ag| < 1. The series in the notations (4.19),
(4.20) are convergent.

The following statement holds:

Theorem 4.3 (Theorem 3, [31]). The coefficients of optimal quadrature formulas

in the sense of Sard of the form (1.1) in the space ng’m‘”[o, 1] have the following
form

m—1

Co = Dun(hB) * fn(hB) + 3 (kA +0pA) "), B=1,2 N =1, (421)

k=1

where ay, and by, are unknowns and have the form (4.19) and (4.20) respectively,
Ak are the roots of the polynomial Pay,—o(X) which is defined by equality (4.9) and
|)\k| < 1.

From Theorem 4.3, it is clear that to obtain the explicit forms of the optimal
coefficients C in the space W™ 1[0,1] it is sufficient to find aj, and by, (k =
1,m —1). But here we will not calculate series (4.19) and (4.20). Instead of that
substituting equality (4.21) into (4.1) we obtain the identity with respect to (k).
Whence, equating the corresponding coeflicients in the left and the right hand sides
of equation (4.1) and using (4.2) when o = 1,2,...,m — 2, we find a; and b;. The
coefficients Cy and Cn can be found from (4.2) when a = 0 and (4.3), respectively.
Below we do it.

In the present section we solve the system (4.1)—(4.3) for any m > 2 and for
natural N that N + 1 > m. As it was mentioned above, it is sufficient to find ay
and by (k=1,m —1) in (4.21).
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The case m = 1 we consider in the next section. In the case m > 2 the following
results hold:

Theorem 4.4. The coefficients of optimal quadrature formulas of the form (1.1)

with the error functional (1.2) and with equal spaced nodes in the space Wém’mfl) [0,1]
whenm > 2, N+1>m and wh € Z are expressed by formulas

o Ketmivh 2miw(l —el) — 1
07 (e2miwh —eh)(e2miwh — 1) " 27iw(1 — 2miw) (1 — eh)
ak)\k bk)\iv
+Z<1)\k ) T e )
) m—1
Cﬁ = e2m“’hBK + (ak)\f + bkAgi'B) , 8= m,
k=1
Keh 27iw(e? — 1) — el
Cy =

(e2miwh _ eh)(e2miwh — 1) © 27iw(1 — 2miw)(1 — eh)
m—1 N )
h ak)\ bk)\k
> <<1Ak>< ) <1Ak><1xkeh>>’

where ay, and by, (k =1,m — 1) are defined by the following system of 2m — 2 linear
equations

— ak Ak N mz:l b AN+
k=1 A — DA —eh) — (A — 1)(Agel — 1)
_ 1 N Ke2miwh
= 27TiW(1 — 27‘(‘iw)(1 — eh) (eZWiwh _ eh)(l _ e27riwh)’
[ R . m-1 -
= (A =D —et) = (A = D(Are — 1)
_ 1 " K627riwh
- 27”‘*-}(1 — 27T1LU)(1 — eh) (e2‘n’iwh _ eh)(l _ e?ﬂ'iwh)’
= ! m—1 J N+t At
AT AV ALY
akz k_1t+1+ bkz N
k=1 t=1 h—1 =1
j!h J Ke2miwh At(i o
—__J BeTTAY T
(27Tiwh)]+1 ; (e2mwh _ 1)t+1v J ,m ,
and

J i N+t At
; LAY iy Ap AR
ay [hfz T ) th Z 1_Ak)t+1]

m—1 J N+1 At J i tni
g AQI i i ALAY0
+Zbk[hjz T th 27/\;{—1?“
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L. . j—1 i i i
B k](]_l)"'(] _k+1) J i e2miwht At(yi
= (=1) (2miw)k+1 + KZ h Cj Z (1 — e2miwh)i+1 )
i=1 t=1

for j =1, m — 2, where

o — L {mz_:l {ZA;,c 1 — A\g cos(2mwh) Ay

] —4e" cos(2mwh) + 20}

@2 2 | X AT+ 1-2hccos(Znwh) A
m—1
L_
(27”‘*1 ; 27iw)?

Ak are the Toots of the polynomial (4.9), | \i| < 1, and pg;":;), Ay and C are defined

i Theorem 4.1.

Theorem 4.5. The coefficients of optimal quadrature formulas of the form (1.1)

with the error functional (1.2) and with equal spaced nodes in the space Wém’mfl) [0,1]
whenm >2, N+1>m and wh € Z, w # 0, are expressed by formulas

m—1

B 2miw(1 — e” ak)\2 bk)\kN
Co = 27miw(1 — 27iw)( l—eh + ’; { 1—A — k) + (1 —Xg)(1 = Ageh) |
m—1
Cy=>" (ari+ bkAf,j—ﬁ) . B=TIN-I
k=1

_ 2miw(e — 1) — A ak/\k b2
On = 2miw(1 — 27iw) (1 — eh +e Z { 1- — k) + (1= X)) (1 = ApeM) |’

where ay, and by, k =1, m — 1, are defined by the following system of 2m — 2 linear
equations

m—1

Z Clk;Ak + 1nzl bk)\N+1 - 1
= (=D —e") = (= 1) (el — 1) -~ 2miw(1 — 27iw) (1 — eh)’

iy apA T . ’”Zl bi s B 1
(=D —eh) = (= 1)(eh — 1) - 2miw(1 — 27iw) (1 — eh)’
m—1 J : m—1 7 N+t At .
e A7 A TTALY §'h o
a ) Ov — it DI 1= M)t~ @miwh)yitt 0TS
k=1 t=1 k=1 t=1
and

m—1 J i N+t '
A ALAY 0] i ANFAL
o P - e ]
m—1 [ J /\N+1AtOJ i

I PN
hjz( Ty th Z Akk, 1)t

t=1

RJG—1) - (G—k+1)
(2miw)k+1 ’

j=1m-—2.
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Here, A\, are the roots of the polynomial (4.9) and |\i| < 1, Ax and C are defined
in Theorem 4.1.

In order to prove Theorem 4.4 we use the following formulas (cf. [13], [12])

k

n—1 n i
q q i
quk Z<1—q> k_l—q;<1—q> A e
B B (4.22)
k+1

zv -3

where AT0F = Y7 (—1)""fCf*, Aly* is the finite difference of order i of ¥, and
(=1
Bj.41—; are the Bernoulli numbers, as well as

A%z =" CPA“P2" P, (4.23)
p=0
Proof of Theorem 4.4. Using the binomial formula in equality (4.4), for f,,(hg)
we deduce

gy = XD (et [ L R 1
427w +1) 427w — 1) (2miw)? =1 £~ (2miw)2k
—log—1 m—1 m—2
hﬁ 2k 1— a( 1)04 (hﬁ)Qk—l—a(_l)a
+ > aiarfet 2 D o T ey
a=0 k:[%] a=0
m—1 m—2
hﬁ 2k 1— a( l)a
+ Z 2(2k — 1 —a)la! Ja (4.24)

k:[mg—l a=m-—1

Then, using (4.24), Definition 4.3 and Theorems 4.1 and 4.2, after certain calcula-
tions for the convolution D, (hf) * f,(hB) we get

m—1
D - D 2miwh B
m(hﬁ) * fm(hﬂ) m(hﬁ) * le ((2,”%0 — (27T’LOJ )]
m—1 oo
— 2miwhfB 2miwhy
e [(27rzw z:l 2mw ] ; Dy (hy)e
— Ke27‘riwhﬁ’

where K is given in Theorem 4.4.
Therefore, from Theorem 4.3, taking into account the last equality, for coeffi-
cients Cg, 8 =1, N — 1, we have

m—1
Cp = Ke*™h? 4 3 (ak/\f + bkA,Ij‘ﬁ) . B=1,2,...,N—1. (4.25)
k=1
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For the convolution Gy, (hf) * Cg of equality (4.1) we have

hB _ —hpg m—1 2k 1
S(hB) = Co (e — - ;Llf I ) 4 Sy(hB) + Sa(hB),  (4.26)
k=1

where

k=1

N m—1
1 hﬂ hy _ hfy hp hﬁ h’y)Qk 1
I -3,

k=1

p-1 ohB— hv_eh"/ B L (BB — hy)2kl
>y -3 ")

hb) = C”( 2k — 1)! )
y=1

Then, using (4.25), (4.22), (4.23) and taking into account that Ay are roots of the
polynomial (4.9), after some simplifications, we get

iw Kel K
(hﬁ) C 2miwh hY h+2miwh
2(e —eh)  2(elt -1

Ke2riwh m—l po1—1 221 Argai—1 ]
~ 2rmiwh _ _ | 2miwh __ t
o 14 @—1)! & (e 1)

ehB [ K e2miwh m—1 ( A \i bk)\N >‘|
- +
f A

2 e27r1wh eh P E— eh 1— Akeh
1
N e M8 | Ke2miwhth + mz: apAge’ bk)\geh
2 eh+27r1wh Akeh _ 1 )\k
k=1
Ke27r1wh m—1 h2l 1 201 20-1 Ato?l 1—j

+ e2miwh _ Z )! Z C2l 14 Z eQﬂ'lwh )t
7=0 t=0

=1
m—1 Qg 1 20-1

_ m—1 A 20 lAtogg_l_j
2 G Z Cae? Z o X_: O — 1)F

]’LQZ 1 20-1 bk)\N 20—1 )\k- t fop 1
+ |ZC% B Zl—)\kz(l—)\k>A0 i,

~
Il
—

3

=1 t=0
(4.27)
Now, using the binomial formula and equalities (4.2) and (4.3), we obtain
(e =1 e I,
S2(hf) = 2{ 2(2miw — 1) ZC ¢
[#3] 1251 m—1 m— 2
(h6)2k 1— a( a hﬂ 2k 1- a( 1)04
+[ Z Z (Qkflfa'a' Ja 2k —1-a)la! Ja
k=1 a=0 k:[mg-l a:O
-1 2k—1 N
hﬁ 2k—1— a( 1)(1 N
k a;m: CE—ry ;cw(m) . (4.28)




1250 N. D. Boltaev, A. R. Hayotov, G. V. Milovanovi¢ & Kh. M. Shadimetov

Taking into account (4.27), (4.28) and putting (4.26), (4.24) into (4.1), we get
the following identity with respect to (hf3):

S(hB) + Pu—a(hB) +de ™" = f,,(hB). (4.29)

As it was said above, equality (4.29) is the identity with respect to (hf3). Keeping
in mind (4.27), (4.28), (4.24), equating the coefficients of e”” and the terms which
consist of (hB)*, @ = m — 1, 2m — 3 in both sides of (4.29), we get the following
equations for a; and by

m—1 N+1 N+1
/\ — A Ak — A
Z + by hk : =0, (4.30)
1 )(1 - /\k) (/\ke - 1)(1 — )\k)
Z PN S0 N b
Mt Y20 —1)! M@= -1 & (ePmivh — )il
20—1 m—1 20—1
hﬂ Jp2t=5-1 Ak AtQ2¢-1-3
+ 2 20— 1) ©Q—1— ! Z ; A — 1) (A — 1)t
20—1 m—1 20—1
h2£ j—1 )\N+1At02é 1—j
+ > 1 (hB)? Ty Z ZO e 0. (4.31)
j=m— t

Unknown polynomial P,,_2(h3) and the coefficient d can be found from (4.29)
by equating the corresponding coefficients of (h3)® when o = 0,1,...,m — 2 and
e P respectively.

Now, from equations (4.2) when a = 0 and (4.3), taking into account (4.25),
using identities (4.22) and (4.23), after some simplifications for the coefficients Cy
and Cy, we get the following expressions

KeZﬂ'iwh 1
e?miwh —eh  27iw — 1

m— 1{ )\k o _e>+)\2(e_1)+)\N+l( eh)

Co =

+

(e =1)(1 = Ap)(eh — Ag)

AT —e) + AN (e — 1) + Ag(1 — €M) } (4.32)

k=1

+by,

(e — DAk — 1)(Agel — 1)

and
Kel n 1
eh —e2miwh = 2miw — 1

m— 1{ e e—eh+1)+)\N( h+1 _ gh )+/\JkV+l(eh_e)

Cn =

* Z (e~ 1)(T— An)(e" — A)

b AN (e — el ) 4 A2 (et — ) + Ap (e — o) }’ (4.33)

(e— D)(1 — Ap)(1 — Areh)

respectively. Then, from (4.31), using (4.32), grouping the coefficients of same
degrees of (hf) and equating to zero, for aj and by we obtain the following m — 1
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linear equations:

m—1 L op2-2 222 AAT02=2 (el —e) + A2(e — 1) + AV (1 — eh)
D a [Z (@ -2 &= (O — 1) (e — 1)(&,6 — 1w feh)

m—1 2l-2 \N N
N bklz 22 Ap TEALQ2 2 )\k(leh)+)\,]cv(e1)+>\k+1(ehe)1

_ 1 _ _ h_
== 20 — — (1 Ak) (e — )M — 1)(Ape 1)
J h2l72 21-2 Ke27riwhAt02lf2 KeQﬂ'iwh 1
; (2miw)2=1 (21— 2)l & (e2mwh — 1)iFl | e2mivh —eh - 2miwh — 17

m—1 j 21 tn20—1 m—1 J 21—1  21=1 y N+t Ain20—1
h ARAT0 h ANFALQ
5 o gy e | S & e

|
=1 T t=0

J 1 p2i-1 A=L e omioh Atg2i-1
- Z (27Tiw)2l B (2l — 1)' ; (e27riwh _ 1)t+1 )

for j=1,[(m—1)/2].
Further, from (4.2) when a = 1,...,m — 2, using equalities (4.25), (4.33) and
identities (4.22) and (4.23) for a; and by, we have the following m—2 linear equations:

m—1 i N+i l N+i Adnl
AL — A L A TPA0
ak{ 277 e AN — Zh C: 27)%)1.“

k=1 =0 =0

+/\k(efeh+1)+)\£](eh+1fe) + AN (e —e)
(e = 1)(Ax = 1)(Ax —€")

J +1 l

. A AL
+Zbk{hJZk_1MAOJ Zhlcl )\k—il)ﬂ

=0

)\iVJrl(e _ eh-i-l) 4 )\k(eh _ e) =+ )\%(eh-&-l _ eh)
(e —D)(Ap — 1)(Agel — 1)
R VT 1 e R e ) Keh
2w * Z(_l) (2miw)+1 T oh _ o2miwh

=1

J— 2miwth Atol

1 l
1 LAl e
T 9w — 1 +K h Cj Z (1 — e2miwh)t+1”
1=0 t=0
where j =1, m — 2.
Finally, after some simplifications in (4.30) and the previous systems of equations
for a; and by, we get the system which is given in the assertion of this theorem. [J

The proof of Theorem 4.5 is similar to one of Theorem 4.4. Only one difference
is that D, (hB) * fm(hB) =
For m =2, m =3 and m = 4, from Theorem 4.4 we have the following results:
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Corollary 4.1. The coefficients of optimal quadrature formulas of the form (1.1),
with the error functional (1.2), and with equal spaced nodes when wh ¢ Z in the

space W;Q’l)[o, 1], are expressed by formulas

Kedmiwh 2miw(1 —eh) — 1
(e2miwh — gh)(e2miwh — 1) 27iw(1 — 27iw)(1 — eh)

1 A2 b AN
+ A L S0 M O
1—>\1 eh—)\l 1—)\1€h

Cp =™K Lo M +0AY P =T N-1,

Co =

Keh 27iw(e? — 1) — el
(e2miwh — gh)(e2miwh — 1) * 27iw(1 — 27miw)(1 — eh)

+ eh al)\{v i blA%
1—>\1 eh—)\l 1—)\1€h ’

Cy =

where
(e —A)(1—X\p) 1 N Ke2miwh(] — ¢h)
a; = T n
PN —D)(AY +1) [ 2miw(2miw — 1) | (e — e2miwh)(1 — e2miwh)
b — (1 —elA)(1 = Ay) 1 N Ke?miwh(1 — eh)
PN = D)AY +1) | 2miw(2miw — 1) | (eh — e2miwh)(1 — e2riwh) |
N Rl 1)\/h2(e" + 1) 4 2h(1 — )
e 1 — e2h + 2heh
L [24; 1 — Ay cos (2mwh) A
= | = -y 2 2
e {Al N 1—2)\cos (2mwh) A " cos(2mwh) + 20
I = 1 A = 2()\1—1)()\16 —1)(6 —>\1)
(2rw)2((2rw)2 +1)" ! A+ 1 ’
2
P =1 e 1 2ne, O = (1+e") - ML

A1
Remark 4.1. For )\; in Corollary 4.1 the following expansion

2v/3-3 , 3V3-1
= — 2 —
Ai=V3-2+4 30 " 4200

h*+ O (h%)
holds.

Corollary 4.2. The coefficients of optimal quadrature formulas of the form (1.1),
with the error functional (1.2), and with equal spaced nodes when wh & Z in the

space W2(3’2)[0, 1], are expressed by formulas

Kedmiwh 2miw(1 —eh) — 1
(e2miwh — gh)(2miwh — 1) 2miw(1 — 27iw)(1 — eh)

2
1 ak)\i bk)\kN
Jrk;ll—)\k {eh—)\k + I—Akeh ’

Co =
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2
Cp = K™t 4y~ (ak)\f n bkxfj—ﬁ) . B=TN_TI,
Keh 27iw(e? — 1) — el

(e2miwh — eh)(e2miwh — 1) © 27iw(1 — 27iw)(1 — eh)
2

1 ap\Y bpA2
h kL kA
+ekz_11/\k{eh)\k+l)\keh}’

Cn =

where a and by, (k =1,2) are defined by the following system of linear equations

22: aRAk N 22: bR AN+ - )
1 A — )M —eh) k:l A — D(Age — 1) 27iw(1 — 2miw) (1 — eh)
K627riwh
+ (e2ﬂiwh _ eh)(l _ eQﬂ—iwh) 5
22: ak)\Nﬂ . Z2: by B .
1 A — 1A —eh) k:l A — D(Age — 1)  2miw(1 — 2miw) (1 — eh)
K627riwh
+ (e2wiwh _ eh)(l _ egﬂ—iwh)v
Z & + i b AN+1 h B Ke27riwh .
k=1 (Ak - 1)2 1 (>\k — 1) (271'1wh)2 (627'riwh, _ 1)27
i M + i bk>\k o h B Ke27riwh
k=1 (Ax —1)2 1 (A —1)2 (2miwh)?2  (e2miwh —1)2°

Here M\, k = 1,2, are roots of the polynomial

Pa(A) = (1= (1= N)* —2[A(e*" +1) —e" (A +1)] [M(1 = N)* + %3(1 +4A+ 2],

for which || < 1,

2
24 1 — A cos(2mwh) Ag .
el Y — =E ) — 4e” cos(2mwh) + 2C

{; ( Ao A2 +1—2X,cos(2mwh) Mg e cos(2mwh) + ,

2
1
L=——
(Y {(2771(,0 Z (2miw)? }
4 =

and Ay and C are defined in Theorem 4.1.

Corollary 4.3. The coefficients of optimal quadrature formulas of the form (1.1),
with the error functional (1.2), and with equal spaced nodes when wh & 7 in the
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space W2(4’3) [0,1], are expressed by formulas

K etmioh omiw(l — eh) — 1
(e2miwh — gh)(e2miwh — 1) 2miw(1 — 27iw)(1 — eh)

kA2 b\
+Zl—)\k{e )\k+1—)\keh}’

3
Cp= MK+ 3 (X + A7), B=TN-1,
k=1
Kel 27w (e — 1) —e"
(Zmioh — o) (e2mwh — 1) © 2riw(1 — 2miw) (1 — ob)

3
1 ap A b2
h kN kL
te ;1—)\k{eh—)\k+1—)\keh}’

where a and by, (k =1,3) are defined by the following system of linear equations

Co =

Cn =

23: ak/\k + ZS: b )\N+1 o 1
Ak =D —eh) = (A = D(e = 1) 2miw(1l - 2miw)(1 — e)
Ke27riwh
+ - - ;
(e271'1wh _ eh)(l _ eQ‘n’lwh)

i Q. >\N+1 + i bk>\k - 1
— (/\k — 1)()% — eh) — ()\k — 1)()\;€eh -1) o 27Tiw(1 — 27riw)(1 — eh)
Ke27riwh

(e2miwh — ghy(1 — 2miwh)’

i: aMe i: byt ho KePmen
(A —1)2 (A —1)2 (27Tiwh)2 (e2miwh _ 1)2’

+

k=1 k=1

& ak)\N+1 5 bdi h K e2miwh .

JCZ:; Ak = 1) ! ,CZ::I A — 12 (2miwh)?  (e2miwh —1)2°

> aph 5 by )\N+2 h h K o2mich
1;1 (A —1)3 + ; 1—Xg)3 27r1wh) T 2(2miwh)?  (e2miwh — 1)3;

3 3 Tiw
ZakAk ].7)\N) +Z bk)\k(Aljfvf].) o (172h)K€‘2 h

_ _ 13 2(a2miwh _ 1)2°
— 1—X)3 P (A —1) 2h2(e 1)

Here N\, k =1,2,3 are the roots of the polynomial
Ps(A) = (1 —e2)(1 = N)® —2[A(e®" +1) —e"(A2 + D] |h(1 — N)*

h3 hd
+5 (- MN2(1+4X 422 + Top(1+26A+ 6677 4+ 260% + A1) |,
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for which |A\g| < 1,

3
L 2Ak 1-— >\k COS(27Twh) Ak h
K=" il = BE) el cos(2 2
O {Z< M N1 2hcos@meh) | ) e cos@mwh) 20,

k=1
3
L —
(27r1w Z (2miw)2k’
k:l
péﬁ) is the leading coefficient of the polynomial Pg(A), and Ay and C are defined in

Theorem 4.1 for m = 4.

Now from Theorem 4.5 for m = 2, m = 3 and m = 4, we have the following
corollaries:

Corollary 4.4. The coefficients of optimal quadrature formulas of the form (1.1),
with the error functional (1.2), and with equal spaced nodes when wh € Z and w # 0

in the space W2(2’1)[O, 1], are expressed by formulas

Co— 27iw(1 —el) — 1 1 {a1A§ N bi AN }

- 27iw(1 — 27iw) (1 — eh) + 1-—XN — A 1= )eb

Cs=a M+ AV =1 N—-T1,

2miw(el — 1) — " el aiAy’ biAf
CN e - . +
2miw(l — 27riw) (1 —ef) 1 —X; et =X  1—\eh
where
a] = (e — /\1)(1 )
27iw(2miw — 1)Aq (el — 1) (AN + 1)’
- (1 —e"X)(1—X\p)
1= 27iw(2miw — 1)Aq (el — 1) (AN + 1)’
and
LMt et 1 (e - Dy/h2(eh + 1)% + 20(1 - o2h)
. )

1 —e2h 4+ 2heh

Corollary 4.5. The coefficients of optimal quadrature formulas of the form (1.1),
with the error functional (1.2), and with equal spaced nodes when wh € Z and w # 0

in the space W2(3’2) [0,1], are expressed by formulas

21w1—e ap\? b AN
e+ Y {2k + ).
27r1w(1 — 27iw)( e — A 1= e

2
Cp =3 (@] +bkA{j*ﬁ) . B=TN-1,
k=1

2riw(eh — 1) oh ak)\liv bk/\i
Cn —
N 27miw(1 — 27r1w) 1-— eh Z 1-— )\k { — Ak + 1— el [
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where a and by, (k =1,2) are defined by the following system of linear equations

[

Ak At 1
ag Zbk = A . ’
= (A= 1) (A — eh) (M — D(Agel — 1) 27iw(1 — 27iw)(1 — eh)
2 N+1 2
A A 1
a k + Zbk u = — . ,
=7 (A= 1) (A — eh) =T (= D(Ake = 1) 2miw(l - 27iw)(1 — ")

Zak )\k—l

)\N-l-l h
Z k (A —1)2 (2771wh)

k=1
i )\NJrl N Z ) Ak h
£ g = 1)2 FOw—1)2 T (2miwh)?’

Here M\, k = 1,2, are roots of the polynomial

3

Ps(A) = (1—e*)(1 - N)* +%(1+4)\+>\2)]

for which |A\g| < 1.

—2[A(e* +1) —e" (N2 + 1)] [A(1 — \)?

Corollary 4.6. The coefficients of optimal quadrature formulas of the form (1.1),
with the error functional (1.2), and with equal spaced nodes when wh € Z and w # 0

in the space W2(4’3) [0,1], are expressed by formulas
b
R
1-— )\keh

[
+Zl—)\k{e )\k

3
=Y (akAQ +bkA{j*ﬁ) . B=T,N 1,
k_

o Z WAL AL
1-— >\k e )\k 1-— )\keh ’

where ap and by, (k =1,3) are defined by the following system of linear equations

2miw(1 — el

C =
07 2riw(1 — 2miw) 1 - eh

2miw(e — 1) —
2miw(1 — 27iw) (1 — eh

Cn =

)\N+1 1

3
Z Ak Z
b =
:1ak M — D) (A —eh) - 1k Ak = D(Aget —1)  27iw(1 — 27iw)(1 — eh)’

)\N—‘rl 1
b =
;ak (A = 1)(Ag —eh) +k§:1 " O = 1)( )\keh—l) 27iw(1 — 27iw) (1 — eh)’
At h
b
Zak k:—l +Z e —12  (2riwh)?’
k=1 k=1
3 N+1
Al h
b
Zak( A — 1)2 Z " k—l = (2miwh)?’
k=1 k=1
)\N+2 h h
b _
Z“’“ )\k - 1 * Z FO—)?  (2miwh)®  2(2miwh)?’
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3
)\2 )\N +2

N

Here M\, k =1,2,3, are roots of the polynomial

)\N+1 )\k o

Po(A) = (1 —e*)(1 = N)° —2[A(e® +1) —e"(A? +1)] [h(l - !

3 5
+%(1 —N)2(1 4N+ 2\?) + %0(1 + 26X + 6677 + 26)° + )\4)]

for which || < 1.

5. Coefficients and norm of the error functional of
optimal quadrature formulas (1.1) in Wél’o) 0,1]

Here we get the explicit expressions for coefficients and calculate the square of the
norm of the error functional (1.2), of the optimal quadrature formula (1.1), on the
space W( 0)[ 1].

For m =1 the system (4.1)—(4.3) takes the form

N
ZOWGl(hﬂfh7)+deihﬁ:fl(hﬂ)a 6:07177]\[7 (51)
~=0
N -1
_np € —1
Zcﬁe - 27w — 1’ (5:2)
5=0

Gr(w) = S (o oa),

4
eh,@ e27rio.}—1 +1 e—h,@ eQTriw-i—l +1 e27ricuh6
PN O U a2 . (53)
4(2miw — 1) 4(2miw + 1) (2miw + 1)(2miw — 1)
and C3 (8=0,1,...,N) and d are unknowns.
In this case Problem 4 is expressed as follows:
Problem 5. Find the solution of the equation
having the form
eh? el —1 h
- - —a—hB
Tomw—1 v A<
u(hf) = q f1(hB), 0<B<N, (5.5)
ehB =11

—————+ate > N
I _1 e BN

where f1(hf3) is defined by (5.3), @~ and a™ are unknowns.
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For m = 1, from Theorem 4.1 for D;(hf3), we obtain

0, 18 = 2,

1
Dy(hf) = 1—r | —2¢", 18] =1,

2(1+e?), B=o0.

Now, taking into account (5.6), for the convolution Cg = D1 (hf) * u(hp), we

have

Dy(hp) + u(hB) = Dy(h)(u(hfB — h) +u(hB + h)) + D1(0)u(hf).

Hence, keeping in mind (5.4) for 5 = —1 and 8 = N+1, we get the following system

D1 (h)(u(—2h) +u(0)) + D1(0)u(—h) =0,
Dy(h)(w(Nh) + u(Nh + 2h)) + D1(0)u(Nh + h) = 0.
Whence, taking into account (5.5), (5.6) for a~ and a™, we have

e—1
4(2miw + 1)

_ e—1 I
a =—— a" =-—
427w + 1)’

Then, using (5.7), from (4.16) and (4.17) we obtain

1 1 e—1
= — - + = sz - _at =
d 2(a +a™) =0, 2(a a™) 2rw+ 1)

Substituting (5.7) into (5.5) for u(h3) we have the following expression

ehf o1 1 Jre’hﬁ e—1 5<0
4 2miw —1 4 2riw+1’ ’

u(hB) =< f1(hB), 0<B<N,

ehB =11 e P e—1
4 2miw —1 4 2riw+1’

(5.8)

Using (5.9) and (5.6), taking into account (5.3), by direct calculations for optimal
coefficients Cg = D1 (h8) * u(hf) (8 =0,1,...,N) we obtain the following result:

Theorem 5.1. Coefficients of the optimal quadrature formulas of the form (1.1) in

the sense of Sard in the space W2(1’0) [0,1] have the form

1+ th _ 2627riwh+h _ 27Tiw(1 _ e2h)

Co = ,
0 (e2h — 1) (472w + 1)
2(1 + 2" — 2" cos 27wh) .
Cp = amiwhf 3 =1,2,...,N -1
1+ e2h _ 9gh—2miwh + 27T10J(1 _ th)
Cn =

(e2h — 1)(4r2w? + 1)
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Note that, in Theorem 5.1, the formulas for the optimal coefficients Cjs are
decomposed into two parts — real and imaginary parts. Therefore, from Theorem
5.1 we get the following results:

Corollary 5.1. Coefficients for the optimal quadrature formulas of the form

. N
/ () cos 2nwr dz = ch¢(h5)
0 B=0

in the sense of Sard in the space Wg(l’o) [0,1] have the form

R _ 1+ e — 2eh cos 2mwh r 1+e" —2el cos2nwh
07 (e —1)(dn2w2+1) 7 N T (e —1)(4n2w2 1)
2(1 + 2 — 2e" cos 2mwh
op = 2LT T =20 cosImh) o kB, B=1,2,... N~ 1.

(e2h — 1)(4m2w? 4+ 1)
Corollary 5.2. Coefficients for the optimal quadrature formulas of the form

1 N
/ o(z) sin 2wz da = Z C’ég@(hﬁ)
0 520

in the sense of Sard in the space WQ(LO) [0, 1] have the form

ol _ 2mw(e?? — 1) — 2e" sin 27mwh r 2mw(e?t — 1) — 2eMsin 2rwh
07 (e —1)(n2w2+1) 7 TN (e2h —1)(4m2w2 +1)

2(1 4 e — 2e" cos 27wh)

I .

= n2rwhpB, pf=1,2,...,N—1.
Cs (e2h — 1)(4m2w? + 1) St ) ZIEERR)

Remark 5.1. When w = 0, Theorem 5.1 reduces to Theorem 4.4 from [34].
Theorem 5.2. The square of the norm of the error functional (1.2), of the optimal

quadrature formula (1.1), on the space W( 0)[ 1], has the form
o 1 2(e?h 4+ 1 — 2e" cos 2mwh)
P = ———— [4m%0w? +1— . Nl
el (4m2w? +1)2 ( Wt h(e?h — 1) (5.10)

Proof. For m = 1 we rewrite the equality (2.11) in the following form
1
141 = [ch <Z CIG1(hB — h) —/ o8 2TwWT Gl(x—hﬁ)dm>
=0 0
1
+ Z C'é <Z C’,ﬁGl(hﬂ —hy) — / sin 2rwax Gy (xz — hp) dx)
B=0 =0 0

N 1
_ZCB/ cos 2wz G1(x — hp) dx—ZCé/O sin 2rwzx G1(x — hB) dx
B=0

/ / cos[2me(z — )]G (x )dxdy]
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where G1(x) is defined by (5.3).
Taking into account (5.8), from (5.1) we get

N 1
Z C’fGl(hﬁ — hy) — / cos 2wz G1(x — hf)dz =0
v=0 0

and

N 1
Z C’iGl(hﬁ —hy) — / sin 21wz G1(x — hB)dz = 0.
0

Then, using the last two equalities, for [|£||?> we obtain

N 1
1> = Zcﬁ/ cos 2mwz Gy (z — hB) dx+ZCé/ sin 2wz Gy (z — hB) dx
p=0 70

//cos27rwa:— ]G ( — y) da dy.

Finally, calculating these integrals and using Corollaries 5.1 and 5.2, after some
simplifications, we get (5.10). O

Remark 5.2. When w = 0, Theorem 5.2 reduces to Theorem 5.1 from [34].

6. Numerical results

In this section we give some numerical results of the upper bounds for the errors
in the optimal quadrature formulas of the form (1.1), as well their analysis in the
cases m = 1 and m = 2.

According to the Cauchy-Schwarz inequality, in the space Wém’mfl) [0, 1] for the
absolute value of the difference (1.4) we get

|(40)] < el - 11,

where ||f| is the norm of the optimal error functional which corresponds to the
optimal quadrature formulas (1.1).

1° First we consider the case m = 1.

Using Theorem 5.2, for HE|W2(1’O)*[O, 1]||], when N = 1,10, 10%,10%,10* and w =
1,11,101, 1001, 10001, we get numerical results which are presented in Table 1.
Numbers in parenthesis indicate the decimal exponents. From the first column of
this table we see that order of convergence of our optimal quadrature formula is
O(N~1) and from the first row of Table 1 it is clear that the quantity ||| converges
as O(Jw|™!). From other columns and rows of Table 1 we conclude that order of
convergence of our optimal quadrature formula in the case m = 1is O((N + |w|)™1).



Optimal quadrature formulas for Fourier coefficients 1261

Table 1. The numerical results for ||€H in the case m = 1 when N = 10*, k = 0,1,2,3,4, and
w=1,11,101, 1001, 10001.

N w=1 w=11 w =101 w = 1001 w = 10001

1 | 1.5537(—1) 1.44657(—2) 1.5757878(—3) 1.589959433(—4) 1.5913902915020(—5)
10 | 2.8664(—2) 1.44078(—2) 1.5757130(—3) 1.589958665(—4) 1.5913902838027(—5)
102 | 2.8865(—3) 2.86386(—3) 1.5757104(—3) 1.589958638(—4) 1.5913902835341(—5)
103 | 2.8867(—4) 2.88652(—4) 2.8674495(—4) 1.589958638(—4) 1.5913902835314(—5)
10* | 2.8368(—5) 2.88675(—5) 2.8865576(—5) 2.867790858(—5)  1.5913902835314(—5)

Now, as an integrand we take the function ¢(z) = e2*. Then for the actual error
Ry (w) of the optimal quadrature formula (1.1) we have the following estimate

1 N
/ 2w 2 14 Z CﬁGQhﬁ

0 =0

Ry(w) = |(£,e™)] =

IN

1,0 5 1,0)x

e W10, 11| - (1€ W% [0, 1]
3 0 1,0)*
SVt =1 Ew5 [0, 1)),

For the same values of N and w, using formulas for the optimal coefficients Cg from
Theorem 5.1 and formula (5.10), we get the numerical values for the actual error
Ry (w) and for the bound By (w) on the right hand side in the previous inequality.
These results are presented in Table 2.

Table 2. Numerical values of Ry (w) = |(4,e?®)| and By (w) = [|e®*||||€]| in the case m = 1 for some
selected values of N and w.
w= w=11 w =101 w = 1001 w = 10001
RN(W) BN(UJ) RN(w) BN(w) R]\(w) BN((A/> RN(uJ) BN(UJ) RN(w) BN(w)
T [21(-1) 1.7(0) | 1.9(=3) L6(—1) | 22(—5) 1.7(-2) | 2.3(=7)  1.7(-3) | 2.3(—9)  L7(—4)
10 | 24(-3) 31(-1) | 53(-4) 1.6(-1) | 6.9(—=6) 1.7(=2) | T1(=8) 1.7(=3) | 7.1(~10) 1.7(—4)
102 | 2.4(=5) 3.2(=2) | 2.3(=6)  3.1(=2) | 7.1(=6) 1.7(-2) | 7.3(=8)  L.7(=3) | 74(—10) 1.7(—4)
10% | 24(—7) 32(=3) | 2.3(=8)  3.2(=3) | 25(=9) 3.1(=3) | 7.3(—8)  1.7(=3) | 7.4(—10) 1.7(—4)
104 | 24(=9) 3.2(-4) | 2.3(=10) 3.2(=4) | 2.5(—11) 3.2(—4) | 2.6(=12) 3.1(—4) | 7.4(=10) 1.7(—4)

These numerical results confirm our theoretical results obtained in the previous
sections.

2° Now we consider the case m = 2.

From (2.11), taking into account (2.7), after some calculations for the norm of
the error functional of the optimal quadrature formula (1.1) we get the following
expression

o Sl sgn(hp — h7)
10> = 33 (ke + cgci)% [sinh (b8 — h) — b + 1]

B=0~v=0
A +2 ZN: o [ et + e cos(2mwh)
4m202 (4m2w? + 1) Al2(4m2w? +1) ' 2n2w?(4n2w? + 1)

B=0

4dm2w? +1 2mlw?(4m2w? +1) 7w

icl [mu(e_l +1)es N sin(27rwh3) hﬁ}
_ ! .
8=0
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Hence, using the formulas for the optimal coefficients Cz which are given in Corol-
lary 4.4 when N = 1 and w = 1,11,101,1001, 10001, we get the results which are
presented in the first row of Table 3. Using the formulas of the optimal coeffi-
cients Cg, which are given in Corollary 4.1, when N = 10,100,1000,10000 and
w =1,11,101,1001, 10001, we obtain the numerical results presented in other rows
of Table 3. From the numerical results of the first column of Table 3 we see that
order of convergence of the optimal quadrature formula (1.1) is O(N~2). And from
the results presented in the first row of Table 3 we conclude that order of conver-
gence is O(|w|™2). From the results which are given in other columns and rows
of Table 3 we have that order of our optimal quadrature formula in this case is
O((N + [w])~2)

Table 3. The numerical results for ||€H in the case m = 2 when N = 10*, k = 0,1,2,3,4, and
w =1,11,101,1001, 10001.

N w=1 w=11 w =101 w = 1001 w = 10001

1 3.5377(-2) 2.96022(—4) 3.5116561(—6) 3.575090999(—8)  3.581528459606(—10)
10 4.3982(—4) 2.15172(—4) 2.5538002(—6) 2.599946583(—8)  2.604628302387(— 10)
10% | 3.7819(—6) 3.99301(—6) 2.4902722(—6) 2.535258220(—8)  2.539823327481(—10)
103 | 3.7322(-8) 3.73427(-8) 3.9122983(—8) 2.528700745(—8)  2.533254031754(— 10)
10* | 3.7273(—10)  3.72734(—10)  3.7291046(—10)  3.904339277(—10) 2.532596167387(—10)

Now we consider the function ¢(z) = 2% as an integrand. Then for the error of

the optimal quadrature formula (1.1) we have

1
mwaQW“w—Z%w < [ (w10, 1)) - (1 |W5> D 0,1]]
B=0
2 o "
< VL 4w 0,1,

Using formulas for the optimal coefficients C'z which are given in Corollary 4.4 and
formula (6.1) for the left and the right hand sides of the last inequality, respectively,
when N =1 and w = 1,11,101, 1001, 10001, we get the numerical results given in
the first row of Table 4. The numerical results which are presented in other rows of
Table 4 are obtained by using Corollary 4.1 and formula (6.1).

Table 4. Numerical values of Ry (w) = |(£,2?)] and By (w) = |l2?||||€]| in the case m = 2 for some
selected values of N and w.
w=1 w=11 w =101 w = 1001 w = 10001
Ry(w)  Bnw) | Bvw) BnyWw) [Rn(w) By(w) RN(W) BN( ) [Byvw)  Bn(w)
T | 75(-2) Li(—1) | 6.3(—4) 9.0(—4) | 7.4(—6) LI1(=5) | 7.6(-8) 1.1(—7) | 7.6(—10) L1(-9)
10 | 1.5(=4)  1.3(=3) | 3.6(=5) 6.6(—4) | 4.3(=7)  7.8(~6) | 4.3(-9) 79( 8) | 4.3(~11) 8.0(~10)
102 | 1A(-7)  12(=5) | 15(-7)  1.2(=5) | 44(—8) 7.6(~6) | 4.4(-10) 7.7(-8) | 4.4(-12) T.8(-10)
10° | 1.4(=10) 1.1(=7) | 1.4(=10) 1.1(=7) | 1.5(=10) 1.2(=7) | 4.5(=11) 7.7(=8) | 4.4(~13) 7.7(~10)
104 | 14(-13) 11(-9) | 14(-13) 1.1(~9) | 14(—13) 1.1(~9) | 1.5(—13) 1.2(~9) | 4.5(~14) 7.7(10)
Finally, for the function x + ¢(z) = 2%2e~%, we consider an example of calcu-

lating Fourier coefficients fol e?™iwT (1) dr using the optimal quadrature formula in
the space W2(2’1). The real part of this integrand, cos(2rwz)p(z), for w = 80 is
presented in Figure 1 (left).

The exact value of the corresponding Fourier integral can be obtained in an
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Figure 1. Graphics of the integrand z +— cos(2nwz)p(z) for w = 80 (left) and w — R{I(w)} for
w € [10,130] (right).

analytic form,

1 2 : 2.2
: 2 wr(—5+8 4
() / e27”°””g0(x) de ete ( iwm + 4w )7
0

e(1 — 2iwm)3

and therefore, we can calculate the actual relative errors

Qu(w) ~ I(w)

erry (w) 1)

N
in our optimal quadrature sums Qn(w) = Y. Cgp(hp).
B=0

erry(w)

> w

1 10 100 1000 104

Figure 2. Relative errors w — erry(w) for N = 10, 100, 1000.

The real part of the integral I(w) is displayed in Figure 1 (right) for w € [10, 130].
Graphics of w +— erry(w) for N = 10,100, 1000, when w runs over [1,10%], are
presented in Figure 2 in log-log scale.
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