NONTRIVIAL PERIODIC SOLUTIONS FOR SECOND-ORDER DIFFERENTIAL DELAY EQUATIONS*

Qi Wang^{$1,2,\dagger$}, Wenjie Liu¹ and Mei Wang¹

Abstract In this paper, we consider the existence of periodic solutions for second-order differential delay equations. Some existence results are obtained using Malsov-type index and Morse theory, which extends and complements some existing results.

Keywords Differential delay equations, periodic solutions, variational calculus, Malsov-type index, Morse theory.

MSC(2010) 39B22, 34K13, 49J40.

1. Introduction

In recent decades, there are some results on the periodic solutions to delay differential equations that were established via variational calculus ([1–15]). To the authors' knowledge, there are a few results on the periodic solutions to secondorder delay differential equations that were established by Morse theory [16, 17], the Galerkin approximation scheme [18, 19] and Maslov-type index theory [20, 21]. Motivated by [9, 15], we consider existence of 2τ -periodic solutions for the following delay differential equations

$$x''(t) = -f(x(t-\tau)),$$
(1.1)

where $\tau > 0$ is a given constant.

Throughout this paper, we assume that $(f_1) - (f_3)$ as following:

 (f_1) $f(x) \in C(\mathbf{R}^N, \mathbf{R}^N)$ is odd, i.e. for any $x \in \mathbf{R}^N$, f(x) = -f(x).

(f₂) There exists a C^1 -differentiable function F(x), such that $\nabla F(x) = f(x)$, $\forall x \in \mathbf{R}^N$ and F(0) = 0.

 (f_3) There are real symmetric $N \times N$ matrices A and B such that

(i) f(x) = Ax + o(|x|) as $x \to \infty$,

(ii) f(x) = Bx + o(|x|) as $x \to 0$,

that is, (1.1) is asymptotically linear both at infinity and origin.

[†]the corresponding author.

Email address: wq200219971974@163.com(Q. Wang)

¹School of Mathematical Sciences, Anhui University, Hefei, 230601, China

 $^{^2 \}rm School of Mathematics and Statistics, Central South University, Changsha, Hunan, 410083, China$

^{*}The authors were supported by National Natural Science Foundation of China (11271371, 51479215), Anhui Provincial Natural Science Foundation (1408085MA02), 211 Project of Anhui University (02303303-33030011, J18520207).

Throughout this paper, we also make some assumptions as follows:

For some positive numbers $R, c_1, c_2 > 0$ and 0 < s < 1, let $F_{\infty}(x) = F'(x) - Ax$, which satisfies

 (F_{∞}^{+}) $(F_{\infty}(x), x) \ge c_1 |x|^{1+s}, |F_{\infty}(x)| \le c_2 |x|^s, x \in \mathbf{R}^N$ with $|x| \ge R$; (F_{∞}^{-}) $(F_{\infty}(x), x) \leq 0$ and $(F_{\infty}(x), x) \geq c_1 |x|^{1+s}, |F_{\infty}(x)| \leq c_2 |x|^s, x \in \mathbf{R}^N$ with $|x| \geq R.$

For some positive numbers $\rho, c_3, c_4 > 0$ and $r > 1, F_0(x) := F'(x) - Bx$ satisfies (F_0^+) $(F_0(x), x) \ge c_3 |x|^{1+r}, |F_\infty(x)| \le c_4 |x|^r, x \in \mathbf{R}^N$ with $|x| \le \rho$; (F_0^-) $(F_0(x), x) \le 0$ and $|(F_0(x), x)| \ge c_3 |x|^{1+r}, |F_0(x)| \le c_4 |x|^r, x \in \mathbf{R}^N$ with

 $|x| \leq \rho$.

As that in [22], for given $N \times N$ real symmetric matrices S, T and positive integer k, we set

 $z_k(S)$ = the number of negative eigenvalues of $(-1)^k(2k-1)^2I + S$,

 $\bar{z}_k(S)$ = the number of non-positive eigenvalues of $(-1)^k (2k-1)^2 I + S$, and

$$\rho(S,T) = \sum_{k=1}^{\infty} [z_k(S) - z_k(T)], \quad \rho_1(S,T) = \sum_{k=1}^{\infty} [\bar{z}_k(S) - z_k(T)],$$

$$\rho_2(S,T) = \sum_{k=1}^{\infty} [\bar{z}_k(S) - \bar{z}_k(T)],$$

where I denotes the $N \times N$ identity matrix. It is known that $\rho(\cdot, \cdot), \rho_i(\cdot, \cdot), i = 1, 2$ are well defined, since for large $k, z_k(S) - z_k(T) = \overline{z}_k(S) - z_k(T) = \overline{z}_k(S) - \overline{z}_k(T) = 0$.

The rest of the paper is organized as follows. In Section 2, we shall state some lemmas. Criteria for the existence of τ -periodic solution for (1.1) is established in Section 3.

2. Preliminaries

In the following, we introduce some basic preliminary results on critical groups and Morse theory [17, 18].

Let E be a Hilbert space with its inner product and norm denoted by $\langle \cdot, \cdot \rangle$ and $\|\cdot\|$, respectively. Let $\psi \in C^1(E, \mathbf{R})$. Let $K = \{x \in E | \psi(x) = \theta\}, \psi_m = \{x \in E | \psi(x) = \theta\}$ $E|\psi(x) \le m\}.$

Definition 2.1. Suppose that $\psi(K)$ is bounded from below by $a \in R$ and that ψ satisfies $(PS)_c$ for all $c \leq a$. The group $C_q(\psi, \infty) =: H_q(E, \psi_m), q \in Z$ is said to be the *qth* critical group of ψ at infinity. Here $H_*(\cdot, \cdot)$ denotes singular relative homology groups with Abelian coefficient groups.

We will work on the following framework as in [23, 24], where the group $C_*(\cdot, \cdot)$ can be described precisely.

 $(A'_{\infty}) \psi(x) = \frac{1}{2} \langle Lx, x \rangle + \Lambda x$, where $L: E \to E$ is a self-adjoint operator such that 0 is isolated in the spectrum of L. The map $\Lambda \in C^1(E, R)$ satisfies $\Lambda'(x) = o(||x||)$ as $||x|| \to \infty$. Λ, Λ' map bounded sets into bounded sets. $\psi(x)$ is bounded from below and ψ satisfies $(PS)_c$ for $c \ll 0$.

If (A'_{∞}) is satisfied. Let V = Ker(L) and $W = V^{\perp}$. We split W as $W = W^+ \oplus$ W^- such that $L|_{W^+}$ is positive definite and $L|_{W^-}$ is negative definite. Denote $\mu :=$ $\dim W^-, \nu = \dim W$, the Morse index and the nullity of ψ at infinity respectively.

Proposition 2.1. Let (A'_{∞}) hold. Then

(i) $C_q(\psi, \infty) \cong \delta_{q,\mu} G$ provided ψ satisfies the angle condition at infinity:

 $(AC^+_{\infty}) \exists M > 0, \alpha \in (0, \frac{\pi}{2}) \text{ such that } \langle \psi'(x), v \rangle \geq 0 \text{ for any } x = v + w \in X \text{ with } \|x\| \geq M, \|w\| \leq \|x\| \sin \alpha.$

(ii) $C_q(\psi, \infty) \cong \delta_{q,\mu+\nu}G$ provided ψ satisfies the angle condition at infinity:

 $(AC_{\infty}^{-}) \exists M > 0, \alpha \in (0, \frac{\pi}{2}) \text{ such that } \langle \psi'(x), v \rangle \leq 0 \text{ for any } x = v + w \in X \text{ with } \|x\| \geq M, \|w\| \leq \|x\| \sin \alpha.$

Proposition 2.2. Suppose ψ has an isolated critical point x_0 and is of class C^2 near x_0 . 0 is isolated in the spectrum of $L_0 := \psi''(x_0)$ and $\mu_0 < \infty, \nu_0 < \infty$, where μ_0, ν_0 denote the Morse index and the nullity of ψ at x_0 . Then

(i) $C_q(\psi, x_0) \cong \delta_{q,\mu_0} G$ provided ψ satisfies the angle condition at infinity:

 $(AC_0^+) \exists \rho > 0, \alpha \in (0, \frac{\pi}{2}) \text{ such that } \langle \psi'(x+x_0), v \rangle > 0 \text{ for any } x = v + w \in E = V_0 \oplus W_0 \text{ with } \|x\| \le \rho, \|w\| \le \|x\| \sin \alpha.$

(ii) $C_q(\psi, x_0) \cong \delta_{q,\mu_0+\nu_0} G$ provided ψ satisfies the angle condition at infinity:

 $(AC_0^-) \exists \rho > 0, \alpha \in (0, \frac{\pi}{2}) \text{ such that } \langle \psi'(x+x_0), v \rangle < 0 \text{ for any } x = v + w \in E = V_0 \oplus W_0 \text{ with } \|x\| \le \rho, \|w\| \le \|x\| \sin \alpha, \text{ where } V_0 = Ker(L_0), W_0 = W_0^+ \oplus W_0^- := V_0^\perp.$

By the change of variable $\lambda = \frac{\tau}{\pi}, t = \lambda s$, (1.1) is transformed to

$$x''(t) = -\lambda^2 f(x(t-\pi)).$$
(2.0)

Thus to seek a 2τ -periodic solution for (1.1) is equivalent to seek a 2π -periodic solution for (2.0).

Let $C^{\infty}(S^1, \mathbf{R}^N)$ denote the space of 2π periodic C^{∞} functions on \mathbf{R} with values in \mathbf{R}^N . For any, let $E := W^{1/2,2}(S^1, \mathbf{R}^N) = \overline{C^{\infty}(S^1, \mathbf{R}^N)}$, where $|\cdot|$ is the induced norm in \mathbf{R}^N . Then E consists of those $z(t) \in L^2(S^1, \mathbf{R}^N)$ with Fourier series

$$z(t) = \frac{a_0}{\sqrt{2\pi}} + \frac{1}{\sqrt{\pi}} \sum_{m=1}^{\infty} (a_m \cos mt + b_m \sin mt),$$

where $a_0, a_m, b_m \in \mathbf{R}^N$. *E* is also a Hilbert space with norm $||z|| = \int_0^{2\pi} ||z(t)|^2 + |z'(t)|^2]dt < +\infty$ induced by the inner product $\langle \cdot \rangle$ defined as

$$\langle z, \bar{z} \rangle = (a_0, \bar{a}_0) + \sum_{m=1}^{\infty} (1+m^2)[(a_m, \bar{a}_m) + (b_m, \bar{b}_m)]$$

with $\bar{z}(t) = \frac{\bar{a}_0}{\sqrt{2\pi}} + \frac{1}{\sqrt{\pi}} \sum_{m=1}^{\infty} \left(\bar{a}_m \cos mt + \bar{b}_m \sin mt \right)$, where (\cdot, \cdot) denotes the standard inner product in \mathbf{R}^N .

For $\forall x \in E$, define a variational functional $I : E \to \mathbf{R}$ as

$$I(x) = \frac{1}{2} \int_0^{\frac{\pi}{2}} (x'(t+\pi), x'(t))dt + \lambda^2 \int_0^{2\pi} F(x(t))dt = \langle Lx, x \rangle + \Phi(x).$$
(2.1)

Then by Riesz representation theorem, we can define a bounded linear self-adjoint operator on E as $\langle Lx, y \rangle = \frac{1}{2} \int_0^{2\pi} (x'(t+\pi), y'(t)) dt = -\frac{1}{2} \int_0^{2\pi} (x''(t+\pi), y(t)) dt$ (which is obtained by integration by parts). We also define a compact operator $\Phi(x) = \lambda^2 \int_0^{2\pi} F(x(t)) dt$, $x \in E$ as [15]. Then I(x) can be written as

$$I(x) = \langle Lx, x \rangle + \Phi(x). \tag{2.1}'$$

By a standard argument as in [16], we get that $I \in C^2(E, \mathbf{R})$ and critical points of I are solutions of (1.1). Thus, looking for nontrivial 2τ -periodic solution of (1.1) is equivalent to finding nonzero critical point of I.

For any $x, y \in E$, an easy computation of [15] gives the gradient of I as

$$\langle I'(x), y \rangle = \int_0^{2\pi} (x'(t+\pi), y'(t))dt + \lambda^2 \int_0^{2\pi} (f(x(t)), y(t))dt.$$
(2.2)

Let \overline{E} be a subspace of E by $\overline{E} = \{x \in E \mid x(t + \pi) = -x(t)\}$, then

$$\bar{E} = \left\{ x \in E \mid x(t) = \frac{1}{\sqrt{\pi}} \sum_{m=1}^{\infty} [a_{2m-1}\cos(2m-1)t + b_{2m-1}\sin(2m-1)t] \right\}.$$

Under the norm $\int_0^{2\pi} [|z(t)|^2 + |z'(t)|^2 + |z''(t)|^2] dt < +\infty$, \overline{E} is also a Hilbert space. Let the subspace $E_k(k = 1, 2, \cdots)$ of \overline{E} be defined by

$$E_k = \left\{ x \in E \mid x(t) = \frac{1}{\sqrt{\pi}} \sum_{m=1}^k [a_{2m-1}\cos(2m-1)t + b_{2m-1}\sin(2m-1)t] \right\}$$

Then $E_k \subset E_{k+1}$ and $dim E_k = 2kN, \forall k \in \mathbf{N}$.

Lemma 2.1. Let D be an self-adjoint operator defined by a $N \times N$ symmetric matrix D and $m^+(L+D)_k$, $m^0(L+D)_k$ and $m^-(L+D)_k$ denote the dimension of the subspaces of E_k , where $(L+D)_k$ is positive definite, zero and negative definite respectively. Then

 $\begin{array}{l} (1) \ m^{-}(L+D)_{k} = \sum_{j=1}^{k} z_{j}(D), \quad m^{0}(L+D)_{k} = \sum_{j=1}^{k} (\bar{z}_{j}(D) - z_{j}(D), \quad m^{-}(L+D)_{k} + m^{0}(L+D)_{k} + m^{+}(L+D)_{k} = 4Nk. \end{array}$

(2) there exists $\eta > 0$ independent of k such that $(I_{\eta} \setminus \{0\}) \cap (L+D)_k = \emptyset$ for all $k \in \mathbf{N}$, where $I_{\eta} = (-\eta, \eta)$ and $\sigma((L+D)_k)$ denote the spectrum of $(L+D)_k$.

(3) there exists a positive integer $\bar{k} > 0$ such that $Ker(L+D) \subset E_k$ for $k \geq \bar{k}$.

Proof. Let $\mu_{ji}, i = 1, 2, \dots, N$ be the eigenvalues of $(-1)^j (2j-1)^2 I + D$ and $u_{ji}, i = 1, 2, \dots, N$ be the corresponding eigenvectors, which form an orthogonal basis of \mathbf{R}^N for every $j \in \mathbf{N}$. By the argument in [16, Section 5], $\mu_{ji}/(1+2j-1+(2j-1)^2), j \in \mathbf{N}, i = 1, 2, \dots, N$ are all the eigenvalues of L + D and

$$e_{ji}^{(c)} = u_{ji}\cos(2j-1)t, \quad \tilde{e}_{ji}^{(c)} = u_{ji}\sin(2j-1)t, \quad j \in \mathbf{N}, i = 1, 2, \cdots, N,$$

form a complete orthogonal basis of E. We also get $\frac{\mu_{ji}}{(1+2j-1+(2j-1)^2)}$, $j = 1, 2, \dots, k$, $i = 1, 2, \dots, N$ are all the eigenvalues of $(L + D)_k$ and $e_{ji}^{(c)} = u_{ji} \cos jt$, $\tilde{e}_{ji}^{(c)} = u_{ji} \sin(2j-1)t$, $j = 1, 2, \dots, k$, $i = 1, 2, \dots, N$, form a complete orthogonal basis of E_k . It follows that the conclusion (1) holds.

Denote the eigenvalues of the matrix D are $d_i, i = 1, 2, \dots, N$, where d_i are finite. Then by the argument in [16, Section 5], $\mu_{ji} = (-1)^j (2j-1)^2 + d_i, j \in \mathbf{N}, i = 1, 2, \dots, N$ and

$$\frac{\mu_{ji}}{(1+2j-1+(2j-1)^2)} = \frac{(-1)^j(2j-1)^2 + d_i}{(1+2j-1+(2j-1)^2)} \to \pm 1, \quad \left\{ \left| \frac{\mu_{ji}}{j+1} \right| \right\} \setminus \{0\}$$

has positive minimum $\eta > 0$. Thus we have $I_{\eta} \setminus \{0\} \cap \sigma((L+D)_k) = \emptyset$ for all $k \in \mathbb{N}$, which shows that (2) holds.

For sufficiently large $j, (-1)^j (2j-1)^2 I + D$ is non-degenerate, then $\{u_{ji} | \mu_{ji} = 0, j \in \mathbf{N}, i = 1, 2, \cdots, N\}$ is a finite set. Since $Ker(L+D) = span\{e_{ji}^{(c)}, \tilde{e}_{ji}^{(c)} | \mu_{ji} = 0, j \in \mathbf{N}, i = 1, 2, \cdots, N\}$, it follows that (3) holds and the proof is completed. \Box

The following Lemma 2.2 can be showed in the same way as that of [23, Lemmas 3.1 and 3.2], so we omit the proof of it.

Lemma 2.2. Suppose that f satisfies $(f_1) - (f_3)$ and let the functional I be defined by (2.1). We have the following propositions:

(1) If $(F_{\infty}^+)(or(F_{\infty}^-))$ holds, then I satisfies the angle condition $(AC_{\infty}^+)(or(AC_{\infty}^-))$ at infinity, i.e., there are $M > 0, \beta > 0, \alpha \in (0, \frac{\pi}{2})$ such that

$$\langle I'(x), \frac{v}{\|v\|} \rangle \ge \beta > 0, \quad (or \ \langle I'(x), \frac{v}{\|v\|} \rangle \le -\beta < 0,)$$

for any $x = v + w \in \overline{E}$ with $||x|| \ge M$, $||w|| \le ||x|| \sin \alpha$, where $V = Ker(L + \lambda^2 A)$, the null space of the self-adjoint operator $L + \lambda^2 A$ and $W = V^{\perp}$.

(2) If $(F_0^+)(or(F_0^-))$ holds, then there are $\rho > 0, 0 < \epsilon < 1$ such that

$$\int_{0}^{2\pi} (F_0(x), v,)dt > 0, \quad (or \int_{0}^{2\pi} (F_0(x), v)dt < 0,)$$

for any $x = v + w \in \overline{E} = V_0 \oplus W_0$ with $x \neq 0$, $||x|| \leq \rho$, $||w|| \leq \epsilon ||x||$, where $V_0 = Ker(L + \lambda^2 B)$, the null space of the self-adjoint operator $L + \lambda^2 B$ and $W_0 = V_0^{\perp}$. Hence the function I defined by (2.1) satisfies the angle condition $(AC_0^+)(or(AC_0^-))$ at the origin.

Lemma 2.3. Suppose that f satisfies $(f_1) - (f_3)$ and the functional $I_k = I|_{E_k}$. We have the following propositions:

(1) If (F_{∞}^{\pm}) holds, then $\exists k_{\infty} \in \mathbf{N}$ such that $I_k, k \geq k_{\infty}$ satisfies the angle condition (AC_{∞}^{\pm}) at infinity.

(2) If (F_0^{\pm}) holds, then $\exists k_0 \in \mathbf{N}$ such that $I_k, k \geq k_0$ satisfies the angle condition (AC_0^{\pm}) at origin.

Proof. Proof of (1). By Lemma 2.1(3), there exists $k_{\infty} > 0$ such that E_k can be divided as $E_k = V \oplus W_k$ for $k \ge k_{\infty}$, where W_k is the orthogonal projection of W on to E_k . Since, by Lemma 2.2(1), I satisfies (AC_{∞}^{\pm}) for $k \ge k_{\infty}$ at infinity for any $x = v + w \in V \oplus W_k = E_k$ with $||x|| \ge M$, $||w|| \le ||x|| \sin \alpha$ with $x \in E_k$, $v \in V$, $w \in W_k$, then we have

$$\pm \langle I'(x), \frac{v}{\|v\|} \rangle = \pm \langle I'_k(x), \frac{v}{\|v\|} \rangle = \pm \langle I'(x), \frac{v}{\|v\|} \rangle \ge \beta > 0,$$

i.e. I_k satisfies (AC_{∞}^{\pm}) for $k \ge k_{\infty}$ at infinity.

Proof of (2). By Lemma 2.1(3), there exists $k_{\infty} > 0$ such that E_k can be divided as $E_k = V_0 \oplus W_0$ for $k \ge k_{\infty}$, where W_0 is the orthogonal projection of Won to E_k . Since, by Lemma 2.2(2), I satisfies (AC_0^{\pm}) for $k \ge k_{\infty}$ at origin for any $x = v + w \in V_0 \oplus W_0 = E_k$, with $x \ne 0$, $||x|| \le \rho$, $||w|| \le \epsilon ||x||, x \in E_0, v \in V_0, w \in W_0$, where $V_0 = Ker(L + \lambda^2 B)$, the null space of the self-adjoint operator $L + \lambda^2 B$ and $W_0 = V_0^{\perp}$, then we have

$$\mp \langle I'(x), v \rangle = \mp \langle I'_k(x), v \rangle = \pm \int_0^{2\pi} (F_0(x), v) dt \ge \beta > 0,$$

i.e. I_k satisfies (AC_0^{\pm}) for $k \ge k_{\infty}$ at origin. Then the proof is completed.

Definition 2.2. We say that I satisfies the $(PS)^*$ condition, if any sequence $x_n \in E_m$ such that $I_m(x_n)$ being bounded and $I'_m(x_n)$ possesses a subsequence convergent in E_m , where $I_m = I|_{E_m}$ is the restriction of I on E_m .

Lemma 2.4. Assume that $(f_1) - (f_3)$ and (F_{∞}^{\pm}) hold. Then

(1) Each I_k satisfies the (PS) condition for $k \ge k_{\infty} (\in \mathbf{N})$.

(2) I satisfies the $(PS)^*$ condition, i.e. any sequence $\{x_k\} \in E_k$ such that $I'_k(x_k) \to 0$ as $k \to \infty$ and that $I_k(x_k)$ is bounded from above, possesses a subsequence convergent in \overline{E} .

Proof. (1) Let k_{∞} be as Lemma 2.2 and $E_k = V \oplus W_k$, where V and E_k be defined as above. For any fixed $k \ge k_{\infty}$, let $\{x_m\} \in E_k$ be such that

$$I'_k(x_n) \to 0 \text{ as } n \to \infty.$$
 (2.4)

Now, we will show that $\{x_m\} \in E_k$ is bounded. If not, then

$$||x_n|| \to \infty \text{ as } n \to \infty. \tag{2.5}$$

Let $x_n = v_n + w_n = v_n + w_n^- + w_n^+ \in E_k = V \oplus W_k = V \oplus W_k^- \oplus W_k^+$. Then for any $y \in E_k$, we get

$$\langle I'(x_n), y \rangle = \langle (L + \lambda^2 A)_k x_n, y \rangle + \langle I'_k(x_n) - (L + \lambda^2 A)_k x_n, y \rangle.$$
(2.6)

By $(f_1), (f_3)$, for any r > 0, there exists c(r) > 0 such that

$$|f(t,y) - Ay| \le r|y| + c(r), \forall y \in \mathbf{R}^N.$$
(2.7)

Then by (2.7) and compactly imbedding theorem $(E, \overline{E} \text{ are compactly embedded in } L^2(S^1, \mathbf{R}^N))$, we have

$$\|I'(x) - (L + \lambda^2 A)x\| \le c_1 \|f(t, x) - \lambda^2 Ax\|_{L^2} \le c_1 (r|x| + c(r)), \forall x \in \overline{E},$$
 (2.8)

where c_1 is a constant independent of r. Since that r can be arbitrarily small, it follows that $\|I'(x) - (L + \lambda^2 A)x\| \to 0 \quad \text{are } r \to \infty$ (2.0)

$$\frac{|I'(x) - (L + \lambda^2 A)x||}{\|x\|} \to 0, \text{ as } x \to \infty,$$
(2.9)

then we get

$$\frac{\|I'(x_n) - (L + \lambda^2 A)_k x_n\|}{\|x_n\|} \to 0, \ \forall x_n \in E_k, \text{as } x_n \to \infty.$$

$$(2.10)$$

Let $\eta > 0$ be as in Lemma 2.1(2) and take $y = w_n^- + w_n^+$ as above. Then from (2.4) and (2.10), for any given $\delta > 0$, we have

$$\eta \|w_n\|^2 \le \delta \|w_n\| \|x_n\| + \delta \|w_n\|, \tag{2.11}$$

for n sufficiently large. It follows from (2.11) and δ is arbitrary small that

$$\frac{\|w_n\|}{\|x_n\|} \to 0, \text{as } n \to \infty.$$
(2.12)

From (2.5) and (2.12), we get that

 $||x_n|| \ge M$, $||w_n|| \le ||x_n|| \sin \alpha$, for sufficiently large n.

Since I_k satisfies the angle condition (AC_{∞}^{\pm}) , which implies that

$$\left|\left\langle I'(x), \frac{v}{\|v\|} \right\rangle\right| \ge \beta > 0.$$
(2.13)

By (2.4),

$$\left\langle I'(x), \frac{v}{\|v\|} \right\rangle \to 0, \quad \text{as} \quad n \to \infty,$$
 (2.14)

which is contract with (2.13). Thus $\{x_m\} \in E_k$ is bounded.

(2). Suppose that $\{x_k\} \in E_k$ such that

$$I'_k(x_k) \to 0 \text{ as } k \to \infty.$$
 (2.15)

Similar to above discussion, we obtain that $\{x_k\}$ is bounded.

Let $\Phi_k = \Phi \mid_{E_k}$ and P_k be the project mapping from \overline{E} to E_k , then

$$L_k(x_k) = I'_k(x_k) - \Phi'_k(x_k)$$
 and $\Phi'_k(x_k) = P_k \Phi'(x_k).$ (2.16)

Since E_k is invariant with respect to L, (2.16) shows that

$$L(x_k) = I'_k(x_k) - P_k \Phi'(x_k).$$
(2.17)

Since I' is compact, so we can choose a subsequence of $\{x_k\}$, (we still named as $\{x_k\}$,) such that $\{-P_k\Phi'(x_k)\} \to y$ in \overline{E} . It follows from (2.17) that $\lim_{k\to\infty} Lx_k = y$. It is easy to see that $L: \overline{E} \to \overline{E}$ is invertible, so that $\lim_{k\to\infty} x_k = L^-(y)$. It's obvious that x is a critical point of I. The proof is completed.

3. Main results.

Theorem 3.1. Assume that f is C^1 -differentiable in x near the origin $\mathbf{0} \in E$ and satisfies $(f_1) - (f_3)$. If $\rho_1(\lambda^2 B, \lambda^2 B) = 0$ and one of the following conditions holds: (1) (A_{∞}^+) and $\rho(\lambda^2 A, \lambda^2 B) \neq 0$,

(1) (A_{∞}^{-}) and $\rho(\lambda^{-}A, \lambda^{2}B) \neq 0$, (2) (A_{∞}^{-}) and $\rho_{1}(\lambda^{2}A, \lambda^{2}B) \neq 0$,

then (1.1) has a nontrivial 2τ -periodic solution.

Proof. Proof of (1). Step 1. For each $k \in \mathbf{N}$, define the map $\Lambda_k : E_k \mapsto \mathbf{R}$ as

$$\Lambda_k(x) = \Phi_k(x) - \frac{1}{2} \langle \lambda^2 A x, x \rangle, \ x \in E_k.$$
(3.1)

Then I_k can be rewritten as

$$I_k(x) = \frac{1}{2} \langle (L + \lambda^2 A x)_k x, x \rangle + \Phi_k(x), \ x \in E_k.$$
(3.2)

By (A_{∞}^+) and the standard arguments, we get that Λ_k is C^1 under the topology $C = C([0, 2\pi], \mathbf{R}^N)$ and satisfies

$$\|\Lambda'_k(x)\|_C = o(\|x\|_C), \quad \text{as } \|x\|_C \to \infty, x \in E_k,$$
(3.3)

which, combining with Lemma 2.1(2), implies that I_k satisfies (A'_{∞}) . It follows by Lemma 2.3(1) and Proposition 2.1(1) that

$$C_q(I_k, \infty) \cong \delta_{q,\mu_k} G, \ k \ge k_\infty, \tag{3.4}$$

where $\mu_k = m^- (L + \lambda^2 A)_k$.

Since the injection of E into $C = C([0, 2\pi], \mathbf{R}^N)$, with its maximum norm $||x||_C$, is continuous and f is C^1 -differentiable near $\mathbf{0} \in E_k$, we know that I_k is C^2 differentiable near the origin $\mathbf{0} \in E_k$. Further, we have

$$I'_k(\mathbf{0}) = (L + \lambda^2 B)_k. \tag{3.5}$$

Since $\rho_1(\lambda^2 B, \lambda^2 B) = 0$, which implies that for every $k \in \mathbf{N}, \overline{z}_k(\lambda^2 B) - z_k(\lambda^2 B) = 0$, we see that the origin $\mathbf{0} \in E_k$ is a non-degenerate critical point of I_k . Thus we have

$$C_q(I_k, \mathbf{0}) \cong \delta_{q, \mu_k^0} G, \ k \in \mathbf{N}, \tag{3.6}$$

where $\mu_k^0 = m^- (L + \lambda^2 B)_k$. By $\rho(\lambda^2 A, \lambda^2 B) \neq 0$, there exists $\bar{k} \in \mathbf{N}$ such that for $k \geq \bar{k}, \ \mu_k \neq \mu_k^0$ for $k \geq \max\{k_{\infty}, \bar{k}\}$. Then from (3.4), (3.6), it follows that I_k has different critical groups at origin and at infinity respectively, which implies that I_k has at least one nontrivial critical point $x_k \neq \mathbf{0}$ for $k \geq \max\{k_{\infty}, \bar{k}\}$.

Step 2. From above discussion of Step 1, we know that $\mathbf{0} \notin \sigma((L + \lambda^2 B)_k)$. By Lemma 2.1(2), which implies that there exists a constant $\eta > 0$ independent of k, such that $(-\eta, \eta) \cap \sigma((L + \lambda^2 B)_k) = \emptyset$. It follows that for $k \ge \max\{k_{\infty}, \bar{k}\}$,

$$\|(L+\lambda^2 B)_k x\| \ge \eta \|x\|, \ x \in E_k, x \neq \mathbf{0}.$$
(3.7)

From (2.9),(2.10), for $k \ge k' \in \mathbf{N}$, it follows that there exists a constant $r_0 > 0$ such that

$$\|I'(x) - (L + \lambda^2 B)x\| \le \frac{\eta}{2} \|x\|, \ x \in E, \|x\| < r_0,$$
(3.8)

and

$$\|I'_k(x) - (L + \lambda^2 B)_k x\| \le \frac{\eta}{2} \|x\|, \ x \in E_k, \|x\| < r_0,$$
(3.9)

which, combining with (2.6) and (3.7), implies that for $x \in E_k, ||x|| < r_0$,

$$\|I'_{k}(x)\| = \|I'_{k}(x) - (L + \lambda^{2}B)_{k}x + (L + \lambda^{2}B)_{k}x\|$$

$$\geq \|(L + \lambda^{2}B)_{k}x\| - \|I'_{k}(x) - (L + \lambda^{2}B)_{k}x\| \geq \frac{\eta}{2}\|x\|.$$
(3.10)

Since x_k is a nontrivial critical point of I_k in E_k , we know from (3.10) that $||x|| \ge r_0$ for $k \ge \hat{k} = \max\{k_{\infty}, \bar{k}, k'\}$.

Step 3. By Lemma 2.4(2), I satisfies the $(PS)^*$ condition. Hence there is a limit point x of $\{x_k\}$, which is a critical point of I with $||x|| \ge r_0$ for $k \ge \max \hat{k}$. Then the proof is completed.

Case (2) can be proved in the same way as the proof of (1).

Theorem 3.2. Assume that f is C^1 -differentiable in x near the origin $\mathbf{0} \in E$ and satisfies $(f_1) - (f_3)$. If $\rho_1(\lambda^2 B, \lambda^2 B) > 0$ and one of the following conditions holds: (1) $(A_{\infty}^+), (A_0^+)$ and $\rho(\lambda^2 A, \lambda^2 B) \neq 0$,

(2) $(A_{\infty}^+), (A_0^+)$ and $\rho_1(\lambda^2 B, \lambda^2 A) \neq 0$,

- (3) $(A_{\infty}^{-}), (A_{0}^{+})$ and $\rho(\lambda^{2}A, \lambda^{2}B) \neq 0$,
- (4) $(A_{\infty}^{-}), (A_{0}^{-})$ and $\rho_{2}(\lambda^{2}B, \lambda^{2}A) \neq 0$,

then (1.1) has at least a nontrivial 2τ -periodic solution.

Proof. Proof of (1). Step 1. Similar to the proof of Theorem 3.1, we can get (3.4). By (A_0^+) , Lemma 2.3(2) and Proposition 2.2(*i*), we have

$$C_q(I_k, \mathbf{0}) \cong \delta_{q, \mu_k^0} G, \ k \ge k_0. \tag{3.11}$$

Note that

$$\rho(\lambda^2 A, \lambda^2 B) \neq 0$$

implies that $\mu_k \neq \mu_k^0$ for $k \geq k'' \in \mathbf{N}$, we have

$$C_q(I_k, \mathbf{0}) \cong C_q(I_k, \infty), \ k \ge \tilde{k} = \max\{k_\infty, k_0, k''\},$$
(3.12)

which implies that $I_k, k \ge \tilde{k}$ has at least one nontrivial critical point $x_k \ne 0$.

Step 2. By Lemma 2.1(2), we have

$$\|(L+\lambda^2 B)_k w\| \ge \eta \|w\|, \ w \in W_k, w \neq \mathbf{0}.$$
(3.13)

Consider that $x = v + w \in E_k = V \oplus W_k$ with $x \neq 0$ and $||x|| \leq \rho$. If $||w|| \leq ||x|| \sin \alpha$, then by (A^+_{∞}) , we get

$$\langle I'_k(x), v \rangle > 0 \quad \text{for} \quad k \ge \max k.$$
 (3.14)

If $||w|| \ge ||x|| \sin \alpha$, then

$$\langle I'_{k}(x), w \rangle = \langle (L + \lambda^{2}B)_{k}(x), w \rangle + \langle I'_{k}(x) - (L + \lambda^{2}B)_{k}(x), w \rangle$$

$$\geq \eta \|w\| - o(\|x\|) \|w\| \geq \eta \|w\| - o(\|w\|^{2}) > 0.$$
 (3.15)

Thus there exists a constant $r_1 > 0$, independent of k, such that for any $k \ge \tilde{k}$,

$$\langle I'_k(x), w \rangle \neq 0, \ x \in E_k, ||x|| < r_1.$$

So we have $||x_k|| \ge r_1$ for any $k \ge k$.

Step 3. By Lemma 2.4, I satisfies $(PS)^*$, thus $\{x_k\}$ has a subsequence converging to some point $x \in \overline{E}$ with $||x|| \ge r_1$, which is a nontrivial critical point of I, i.e. problem (1.1) has at least one nontrivial 2π -periodic solution.

Case (2)-(4) can be proved in the same way as the proof of (1). So we omit it. \Box

Acknowledgements

The authors are grateful for the referees careful reviewing and helpful comments.

References

- [1] J. B. Li and X. Z. He, *Periodic solutions of some differential delay equations* created by Hamiltonian systems, Bull. Aust. Math. Soc., 1999, 60(3), 377–390.
- [2] J. B. Li and X. Z. He, Multiple periodic solutions of differential delay equations created by asymptotically linear Hamiltonian systems, Nonlinear Anal. TMA., 1998, 31(1-2), 45–54.

- [3] J. B. Li and X. Z. He, Proof and generalization of Kaplan-Yorke's conjecture under the condition f'(0) > 0 on periodic solution of differential delay equations, Sci. China Series A, 1999, 42(9), 957–964.
- [4] J. B. Li, X. Z. He and Z. Liu, Hamiltonian symmetric groups and multiple periodic solutions of differential delay equations, Nonlinear Anal. TMA., 1999, 35(4), 457–474.
- [5] Y. T. Xu and Z. M. Guo, Applications of a Z_p index theory to periodic solutions for a class of functional differential equations, J. Math. Anal. Appl., 2001, 257(1), 189–205.
- [6] Z. M. Guo and J. S. Yu, Multiplity results for periodic solutions to delay differential equations via critical point theory, J. Differential equations, 2005, 218(1), 15–35.
- [7] G. H. Fei, Multiple periodic solutions of differential delay equations via Hamiltonian systems (I), Nonlinear Analysis, 2006, 65(1), 25–39.
- [8] G. Fei, Multiple periodic solutions of differential delay equations via Hamiltonian systems (II), Nonlinear Anal., 2006, 65(1), 40–58.
- [9] X. S. Zhang and Q. Meng, Nonlinear periodic solutions for delay differential systems via Morse theory, Nonlinear Anal., 2011, 74(5), 1960–1968.
- [10] C. G. Liu, Periodic solutions of asymptotically linear delay differential systems via Hamiltonian systems, J. Differential equations, 2012, 252(10), 5712-5734.
- [11] J. S. Yu and H. F. Xiao, Multiple periodic solutions with minimal period 4 of the delay differential equation $\dot{x}(t) = -f(t, x(t-1))$, J. Differential Equations, 2013, 254(5), 2158–2172.
- [12] Q. Wang and C. G. Liu, Periodic solutions of delay differential systems via hamiltonian systems, Nonlinear Anal. TMA., 2014, 102, 159–174.
- [13] S. P. Lu, L. Zheng and L. J. Chen, Homoclinic solutions for a class of second order neutral functional differential systems, Acta Mathematica Scientia, 2013, 33(5), 1361–1374.
- [14] D. Z. Chen and B. X. Dai, Periodic solution of second order impulsive delay differential systems via variational method, Applied Mathematics Letters, 2014, 38, 61–66.
- [15] C. J. Guo and Z. M. Guo, Existence of multiple periodic solutions for a class of second-order delay differential equations, Nonlinear Analysis: RWA., 2009, 10(5), 3285–3297.
- [16] K. C. Chang, Infinite Dimensional Morse Theory and Multiple Solution Problem, Birkhauser, Boston, 1993.
- [17] J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems, Springer-Verlag, Berlin, 1989.
- S. Li and J. Liu, Morse theory and asymptotically linear Hamiltonian systems, J. Differential Equations, 1989, 78(1), 53–73.
- [19] P. H. Rabinowitz, Periodic solutions of Hamiltonian systems, Comm. Pure Appl. Math., 1978, 31(2), 157–184.
- [20] C. Conley and E. Zehnder, Morse type index theory for flows and periodic solutions for Hamiltonian equations, Comm. Pure Appl. Math., 1984, 37(2), 207–253.

- [21] Y. Long and E. Zehnder, Morse theory for forced oscillations of asymptotically linear Hamiltonian systems, in: Stochastic Processes in Physics and Geometry, World Scientific, Singapore, 1990, 528–563.
- [22] V. Benci, On critical point theory for indefinite functionals in the presence of symmetries, Trans. Amer. Soc. 1982, 274(2), 533–572.
- [23] J. B. Su, Nontrivial periodic solutions for the asymptotically linear Hamiltonian systems with resonance at infinity, J. Differential Equations, 1998, 145(2), 252– 273.
- [24] T. Bartsch and S. J. Li, Critical point theory for asymptotically quadratic functionals and applications to problems with resonance, Nonlinear Anal., 1997, 28(3), 419–441.