
Journal of Applied Analysis and Computation Website:http://jaac-online.com/

Volume 7, Number 3, August 2017, 931–941 DOI:10.11948/2017058

NONTRIVIAL PERIODIC SOLUTIONS FOR
SECOND-ORDER DIFFERENTIAL DELAY

EQUATIONS∗

Qi Wang1,2,†, Wenjie Liu1 and Mei Wang1

Abstract In this paper, we consider the existence of periodic solutions for
second-order differential delay equations. Some existence results are obtained
using Malsov-type index and Morse theory, which extends and complements
some existing results.

Keywords Differential delay equations, periodic solutions, variational calcu-
lus, Malsov-type index, Morse theory.

MSC(2010) 39B22, 34K13, 49J40.

1. Introduction

In recent decades, there are some results on the periodic solutions to delay dif-
ferential equations that were established via variational calculus( [1–15]). To the
authors’ knowledge, there are a few results on the periodic solutions to second-
order delay differential equations that were established by Morse theory [16, 17],
the Galerkin approximation scheme [18, 19] and Maslov-type index theory [20, 21].
Motivated by [9,15], we consider existence of 2τ -periodic solutions for the following
delay differential equations

x′′(t) = −f(x(t− τ)), (1.1)

where τ > 0 is a given constant.
Throughout this paper, we assume that (f1)− (f3) as following:
(f1) f(x) ∈ C(RN ,RN ) is odd, i.e. for any x ∈ RN , f(x) = −f(x).
(f2) There exists a C1-differentiable function F (x), such that ∇F (x) = f(x),

∀x ∈ RN and F (0) = 0.
(f3) There are real symmetric N ×N matrices A and B such that
(i) f(x) = Ax+ o(|x|) as x→∞,
(ii) f(x) = Bx+ o(|x|) as x→ 0,

that is, (1.1) is asymptotically linear both at infinity and origin.
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Throughout this paper, we also make some assumptions as follows:
For some positive numbers R, c1, c2 > 0 and 0 < s < 1, let F∞(x) = F ′(x)−Ax,

which satisfies
(F+
∞) (F∞(x), x) ≥ c1|x|1+s, |F∞(x)| ≤ c2|x|s, x ∈ RN with |x| ≥ R;

(F−∞) (F∞(x), x) ≤ 0 and (F∞(x), x) ≥ c1|x|1+s, |F∞(x)| ≤ c2|x|s, x ∈ RN with
|x| ≥ R.

For some positive numbers ρ, c3, c4 > 0 and r > 1, F0(x) := F ′(x)−Bx satisfies
(F+

0 ) (F0(x), x) ≥ c3|x|1+r, |F∞(x)| ≤ c4|x|r, x ∈ RN with |x| ≤ ρ;
(F−0 ) (F0(x), x) ≤ 0 and |(F0(x), x)| ≥ c3|x|1+r, |F0(x)| ≤ c4|x|r, x ∈ RN with

|x| ≤ ρ.
As that in [22], for given N×N real symmetric matrices S, T and positive integer

k, we set
zk(S) = the number of negative eigenvalues of (−1)k(2k − 1)2I + S,
z̄k(S) = the number of non-positive eigenvalues of (−1)k(2k − 1)2I + S,

and

ρ(S, T ) =
∑∞
k=1[zk(S)− zk(T )], ρ1(S, T ) =

∑∞
k=1[z̄k(S)− zk(T )],

ρ2(S, T ) =
∑∞
k=1[z̄k(S)− z̄k(T )],

where I denotes the N ×N identity matrix. It is known that ρ(·, ·), ρi(·, ·), i = 1, 2
are well defined, since for large k, zk(S)−zk(T ) = z̄k(S)−zk(T ) = z̄k(S)−z̄k(T ) = 0.

The rest of the paper is organized as follows. In Section 2, we shall state some
lemmas. Criteria for the existence of τ -periodic solution for (1.1) is established in
Section 3.

2. Preliminaries

In the following, we introduce some basic preliminary results on critical groups and
Morse theory [17,18].

Let E be a Hilbert space with its inner product and norm denoted by 〈·, ·〉 and
‖ · ‖, respectively. Let ψ ∈ C1(E,R). Let K = {x ∈ E|ψ(x) = θ}, ψm = {x ∈
E|ψ(x) ≤ m}.

Definition 2.1. Suppose that ψ(K) is bounded from below by a ∈ R and that
ψ satisfies (PS)c for all c ≤ a. The group Cq(ψ,∞) =: Hq(E,ψm), q ∈ Z is said
to be the qth critical group of ψ at infinity. Here H∗(·, ·) denotes singular relative
homology groups with Abelian coefficient groups.

We will work on the following framework as in [23,24], where the group C∗(·, ·)
can be described precisely.

(A′∞) ψ(x) = 1
2 〈Lx, x〉+Λx, where L : E → E is a self-adjoint operator such that

0 is isolated in the spectrum of L. The map Λ ∈ C1(E,R) satisfies Λ′(x) = o(‖x‖)
as ‖x‖ → ∞. Λ,Λ′ map bounded sets into bounded sets. ψ(x) is bounded from
below and ψ satisfies (PS)c for c� 0.

If (A′∞) is satisfied. Let V = Ker(L) and W = V ⊥. We split W as W = W+ ⊕
W− such that L|W+ is positive definite and L|W− is negative definite. Denote µ :=
dimW−, ν = dimW , the Morse index and the nullity of ψ at infinity respectively.

Proposition 2.1. Let (A′∞) hold. Then
(i) Cq(ψ,∞) ∼= δq,µG provided ψ satisfies the angle condition at infinity:
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(AC+
∞) ∃M > 0, α ∈ (0, π2 ) such that 〈ψ′(x), v〉 ≥ 0 for any x = v+w ∈ X with

‖x‖ ≥M, ‖w‖ ≤ ‖x‖ sinα.
(ii) Cq(ψ,∞) ∼= δq,µ+νG provided ψ satisfies the angle condition at infinity:
(AC−∞) ∃M > 0, α ∈ (0, π2 ) such that 〈ψ′(x), v〉 ≤ 0 for any x = v+w ∈ X with

‖x‖ ≥M, ‖w‖ ≤ ‖x‖ sinα.

Proposition 2.2. Suppose ψ has an isolated critical point x0 and is of class C2

near x0. 0 is isolated in the spectrum of L0 := ψ′′(x0) and µ0 <∞, ν0 <∞, where
µ0, ν0 denote the Morse index and the nullity of ψ at x0. Then

(i) Cq(ψ, x0) ∼= δq,µ0
G provided ψ satisfies the angle condition at infinity:

(AC+
0 ) ∃ρ > 0, α ∈ (0, π2 ) such that 〈ψ′(x+x0), v〉 > 0 for any x = v+w ∈ E =

V0 ⊕W0 with ‖x‖ ≤ ρ, ‖w‖ ≤ ‖x‖ sinα.
(ii) Cq(ψ, x0) ∼= δq,µ0+ν0G provided ψ satisfies the angle condition at infinity:
(AC−0 ) ∃ρ > 0, α ∈ (0, π2 ) such that 〈ψ′(x+x0), v〉 < 0 for any x = v+w ∈ E =

V0 ⊕W0 with ‖x‖ ≤ ρ, ‖w‖ ≤ ‖x‖ sinα, where V0 = Ker(L0),W0 = W+
0 ⊕W

−
0 :=

V ⊥0 .

By the change of variable λ = τ
π , t = λs, (1.1) is transformed to

x′′(t) = −λ2f(x(t− π)). (2.0)

Thus to seek a 2τ -periodic solution for (1.1) is equivalent to seek a 2π-periodic
solution for (2.0).

Let C∞(S1,RN ) denote the space of 2π periodic C∞ functions on R with values

in RN . For any, let E := W 1/2,2(S1,RN ) = C∞(S1,RN ), where | · | is the induced
norm in RN . Then E consists of those z(t) ∈ L2(S1,RN ) with Fourier series

z(t) =
a0√
2π

+
1√
π

∞∑
m=1

(am cosmt+ bm sinmt) ,

where a0, am, bm ∈ RN . E is also a Hilbert space with norm ‖z‖ =
∫ 2π

0
[|z(t)|2 +

|z′(t)|2]dt < +∞ induced by the inner product 〈·〉 defined as

〈z, z̄〉 = (a0, ā0) +

∞∑
m=1

(1 +m2)[(am, ām) + (bm, b̄m)]

with z̄(t) = ā0√
2π

+ 1√
π

∑∞
m=1

(
ām cosmt+ b̄m sinmt

)
, where (·, ·) denotes the stan-

dard inner product in RN .
For ∀x ∈ E, define a variational functional I : E → R as

I(x) =
1

2

∫ π
2

0

(x′(t+ π), x′(t))dt+ λ2

∫ 2π

0

F (x(t))dt = 〈Lx, x〉+ Φ(x). (2.1)

Then by Riesz representation theorem, we can define a bounded linear self-adjoint

operator on E as 〈Lx, y〉 = 1
2

∫ 2π

0
(x′(t+π), y′(t))dt = − 1

2

∫ 2π

0
(x′′(t+π), y(t))dt(which

is obtained by integration by parts). We also define a compact operator Φ(x) =

λ2
∫ 2π

0
F (x(t))dt, x ∈ E as [15]. Then I(x) can be written as

I(x) = 〈Lx, x〉+ Φ(x). (2.1)′
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By a standard argument as in [16], we get that I ∈ C2(E,R) and critical points of
I are solutions of (1.1). Thus, looking for nontrivial 2τ -periodic solution of (1.1) is
equivalent to finding nonzero critical point of I.

For any x, y ∈ E, an easy computation of [15] gives the gradient of I as

〈I ′(x), y〉 =

∫ 2π

0

(x′(t+ π), y′(t))dt+ λ2

∫ 2π

0

(f(x(t)), y(t))dt. (2.2)

Let Ē be a subspace of E by Ē = {x ∈ E | x(t+ π) = −x(t)}, then

Ē =

{
x ∈ E | x(t) =

1√
π

∞∑
m=1

[a2m−1 cos(2m− 1)t+ b2m−1 sin(2m− 1)t]

}
.

Under the norm
∫ 2π

0
[|z(t)|2 + |z′(t)|2 + |z′′(t)|2]dt < +∞, Ē is also a Hilbert space.

Let the subspace Ek(k = 1, 2, · · · ) of Ē be defined by

Ek =

{
x ∈ E | x(t) =

1√
π

k∑
m=1

[a2m−1 cos(2m− 1)t+ b2m−1 sin(2m− 1)t]

}
.

Then Ek ⊂ Ek+1 and dimEk = 2kN,∀k ∈ N.

Lemma 2.1. Let D be an self-adjoint operator defined by a N × N symmetric
matrix D and m+(L+D)k,m

0(L+D)k and m−(L+D)k denote the dimension of
the subspaces of Ek, where (L+D)k is positive definite, zero and negative definite
respectively. Then

(1) m−(L+D)k =
∑k
j=1 zj(D), m0(L+D)k =

∑k
j=1(z̄j(D)−zj(D), m−(L+

D)k +m0(L+D)k +m+(L+D)k = 4Nk.
(2) there exists η > 0 independent of k such that (Iη \ {0}) ∩ (L + D)k = ∅ for

all k ∈ N, where Iη = (−η, η) and σ((L+D)k) denote the spectrum of (L+D)k.
(3) there exists a positive integer k̄ > 0 such that Ker(L+D) ⊂ Ek for k ≥ k̄.

Proof. Let µji, i = 1, 2, · · · , N be the eigenvalues of (−1)j(2j − 1)2I + D and
uji, i = 1, 2, · · · , N be the corresponding eigenvectors, which form an orthogonal
basis of RN for every j ∈ N. By the argument in [16, Section 5], µji/(1 + 2j − 1 +
(2j − 1)2), j ∈ N, i = 1, 2, · · · , N are all the eigenvalues of L+D and

e
(c)
ji = uji cos(2j − 1)t, ẽ

(c)
ji = uji sin(2j − 1)t, j ∈ N, i = 1, 2, · · · , N,

form a complete orthogonal basis of E. We also get
µji

(1+2j−1+(2j−1)2) , j = 1, 2, · · · , k,
i = 1, 2, · · · , N are all the eigenvalues of (L + D)k and e

(c)
ji = uji cos jt, ẽ

(c)
ji =

uji sin(2j − 1)t, j = 1, 2, · · · , k, i = 1, 2, · · · , N, form a complete orthogonal basis of
Ek. It follows that the conclusion (1) holds.

Denote the eigenvalues of the matrix D are di, i = 1, 2, · · · , N , where di are
finite. Then by the argument in [16, Section 5], µji = (−1)j(2j − 1)2 + di, j ∈
N, i = 1, 2, · · · , N and

µji
(1 + 2j − 1 + (2j − 1)2)

=
(−1)j(2j − 1)2 + di

(1 + 2j − 1 + (2j − 1)2)
→ ±1,

{∣∣∣∣ µjij + 1

∣∣∣∣} \ {0}
has positive minimum η > 0. Thus we have Iη \{0}∩σ((L+D)k) = ∅ for all k ∈ N,
which shows that (2) holds.
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For sufficiently large j, (−1)j(2j − 1)2I + D is non-degenerate, then {uji|µji =

0, j ∈ N, i = 1, 2, · · · , N} is a finite set. Since Ker(L + D) = span{e(c)
ji , ẽ

(c)
ji |µji =

0, j ∈ N, i = 1, 2, · · · , N}, it follows that (3) holds and the proof is completed.
The following Lemma 2.2 can be showed in the same way as that of [23, Lemmas

3.1 and 3.2], so we omit the proof of it.

Lemma 2.2. Suppose thatf satisfies (f1)− (f3) and let the functional I be defined
by (2.1). We have the following propositions:

(1) If (F+
∞)(or(F−∞)) holds, then I satisfies the angle condition (AC+

∞)(or(AC−∞))
at infinity, i.e., there are M > 0, β > 0, α ∈ (0, π2 ) such that

〈I ′(x),
v

‖v‖
〉 ≥ β > 0, (or 〈I ′(x),

v

‖v‖
〉 ≤ −β < 0, )

for any x = v + w ∈ Ē with ‖x‖ ≥ M, ‖w‖ ≤ ‖x‖sinα, where V = Ker(L+ λ2A),
the null space of the self-adjoint operator L+ λ2A and W = V ⊥.

(2) If (F+
0 )(or(F−0 )) holds, then there are ρ > 0, 0 < ε < 1 such that∫ 2π

0

(F0(x), v, )dt > 0, (or

∫ 2π

0

(F0(x), v)dt < 0, )

for any x = v + w ∈ Ē = V0 ⊕W0 with x 6= 0, ‖x‖ ≤ ρ, ‖w‖ ≤ ε‖x‖, where V0 =
Ker(L + λ2B), the null space of the self-adjoint operator L + λ2B and W0 = V ⊥0 .
Hence the function I defined by (2.1) satisfies the angle condition (AC+

0 )(or(AC−0 ))
at the origin.

Lemma 2.3. Suppose thatf satisfies (f1)− (f3) and the functional Ik = I|Ek . We
have the following propositions:

(1) If (F±∞) holds, then ∃k∞ ∈ N such that Ik, k ≥ k∞ satisfies the angle condi-
tion (AC±∞) at infinity.

(2) If (F±0 ) holds, then ∃k0 ∈ N such that Ik, k ≥ k0 satisfies the angle condition
(AC±0 ) at origin.

Proof. Proof of (1). By Lemma 2.1(3), there exists k∞ > 0 such that Ek can be
divided as Ek = V ⊕Wk for k ≥ k∞, where Wk is the orthogonal projection of W
on to Ek. Since, by Lemma 2.2(1), I satisfies (AC±∞) for k ≥ k∞ at infinity for any
x = v + w ∈ V ⊕Wk = Ek with ‖x‖ ≥M, ‖w‖ ≤ ‖x‖ sinα with x ∈ Ek, v ∈ V,w ∈
Wk, then we have

±〈I ′(x),
v

‖v‖
〉 = ±〈I ′k(x),

v

‖v‖
〉 = ±〈I ′(x),

v

‖v‖
〉 ≥ β > 0,

i.e. Ik satisfies (AC±∞) for k ≥ k∞ at infinity.
Proof of (2). By Lemma 2.1(3), there exists k∞ > 0 such that Ek can be

divided as Ek = V0 ⊕W0 for k ≥ k∞, where W0 is the orthogonal projection of W
on to Ek. Since, by Lemma 2.2(2), I satisfies (AC±0 ) for k ≥ k∞ at origin for any
x = v+w ∈ V0⊕W0 = Ek, with x 6= 0, ‖x‖ ≤ ρ, ‖w‖ ≤ ε‖x‖, x ∈ E0, v ∈ V0, w ∈W0,
where V0 = Ker(L+ λ2B), the null space of the self-adjoint operator L+ λ2B and
W0 = V ⊥0 , then we have

∓〈I ′(x), v〉 = ∓〈I ′k(x), v〉 = ±
∫ 2π

0

(F0(x), v)dt ≥ β > 0,

i.e. Ik satisfies (AC±0 ) for k ≥ k∞ at origin. Then the proof is completed.
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Definition 2.2. We say that I satisfies the (PS)∗ condition, if any sequence xn ∈
Em such that Im(xn) being bounded and I ′m(xn) possesses a subsequence convergent
in Em, where Im = I|Em is the restriction of I on Em.

Lemma 2.4. Assume that (f1)− (f3) and (F±∞) hold. Then
(1) Each Ik satisfies the (PS) condition for k ≥ k∞(∈ N).
(2) I satisfies the (PS)∗ condition, i.e. any sequence {xk} ∈ Ek such that

I ′k(xk) → 0 as k → ∞ and that Ik(xk) is bounded from above, possesses a subse-
quence convergent in Ē.

Proof. (1) Let k∞ be as Lemma 2.2 and Ek = V ⊕ Wk, where V and Ek be
defined as above. For any fixed k ≥ k∞, let {xm} ∈ Ek be such that

I ′k(xn)→ 0 as n→∞. (2.4)

Now, we will show that {xm} ∈ Ek is bounded. If not, then

‖xn‖ → ∞ as n→∞. (2.5)

Let xn = vn + wn = vn + w−n + w+
n ∈ Ek = V ⊕Wk = V ⊕W−k ⊕W

+
k . Then for

any y ∈ Ek, we get

〈I ′(xn), y〉 = 〈(L+ λ2A)kxn, y〉+ 〈I ′k(xn)− (L+ λ2A)kxn, y〉. (2.6)

By (f1), (f3), for any r > 0, there exists c(r) > 0 such that

|f(t, y)−Ay| ≤ r|y|+ c(r),∀y ∈ RN . (2.7)

Then by (2.7) and compactly imbedding theorem(E, Ē are compactly embedded in
L2(S1,RN )), we have

‖I ′(x)− (L+ λ2A)x‖ ≤ c1‖f(t, x)− λ2Ax‖L2 ≤ c1(r|x|+ c(r)),∀x ∈ Ē, (2.8)

where c1 is a constant independent of r. Since that r can be arbitrarily small, it
follows that

‖I ′(x)− (L+ λ2A)x‖
‖x‖

→ 0, as x→∞, (2.9)

then we get

‖I ′(xn)− (L+ λ2A)kxn‖
‖xn‖

→ 0, ∀xn ∈ Ek, as xn →∞. (2.10)

Let η > 0 be as in Lemma 2.1(2) and take y = w−n +w+
n as above. Then from (2.4)

and (2.10), for any given δ > 0, we have

η‖wn‖2 ≤ δ‖wn‖‖xn‖+ δ‖wn‖, (2.11)

for n sufficiently large. It follows from (2.11) and δ is arbitrary small that

‖wn‖
‖xn‖

→ 0, as n→∞. (2.12)

From (2.5) and (2.12), we get that

‖xn‖ ≥M, ‖wn‖ ≤ ‖xn‖ sinα, for sufficiently large n.
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Since Ik satisfies the angle condition (AC±∞), which implies that∣∣∣∣〈I ′(x),
v

‖v‖

〉∣∣∣∣ ≥ β > 0. (2.13)

By (2.4), 〈
I ′(x),

v

‖v‖

〉
→ 0, as n→∞, (2.14)

which is contract with (2.13). Thus {xm} ∈ Ek is bounded.
(2). Suppose that {xk} ∈ Ek such that

I ′k(xk)→ 0 as k →∞. (2.15)

Similar to above discussion, we obtain that {xk} is bounded.
Let Φk = Φ |Ek and Pk be the project mapping from Ē to Ek, then

Lk(xk) = I ′k(xk)− Φ′k(xk) and Φ′k(xk) = PkΦ′(xk). (2.16)

Since Ek is invariant with respect to L, (2.16) shows that

L(xk) = I ′k(xk)− PkΦ′(xk). (2.17)

Since I ′ is compact, so we can choose a subsequence of {xk}, (we still named as
{xk},) such that {−PkΦ′(xk)} → y in Ē. It follows from (2.17) that lim

k→∞
Lxk = y.

It is easy to see that L : Ē 7→ Ē is invertible, so that lim
k→∞

xk = L−(y). It’s obvious

that x is a critical point of I. The proof is completed.

3. Main results.

Theorem 3.1. Assume that f is C1-differentiable in x near the origin 0 ∈ E and
satisfies (f1)− (f3). If ρ1(λ2B, λ2B) = 0 and one of the following conditions holds:

(1) (A+
∞) and ρ(λ2A, λ2B) 6= 0,

(2) (A−∞) and ρ1(λ2A, λ2B) 6= 0,
then (1.1) has a nontrivial 2τ -periodic solution.

Proof. Proof of (1). Step 1. For each k ∈ N, define the map Λk : Ek 7→ R as

Λk(x) = Φk(x)− 1

2
〈λ2Ax, x〉, x ∈ Ek. (3.1)

Then Ik can be rewritten as

Ik(x) =
1

2
〈(L+ λ2Ax)kx, x〉+ Φk(x), x ∈ Ek. (3.2)

By (A+
∞) and the standard arguments, we get that Λk is C1 under the topology

C = C([0, 2π],RN ) and satisfies

‖Λ′k(x)‖C = o(‖x‖C), as ‖x‖C →∞, x ∈ Ek, (3.3)



938 Q. Wang, W. Liu & M. Wang

which, combining with Lemma 2.1(2), implies that Ik satisfies (A′∞). It follows by
Lemma 2.3(1) and Proposition 2.1(1) that

Cq(Ik,∞) ∼= δq,µkG, k ≥ k∞, (3.4)

where µk = m−(L+ λ2A)k.
Since the injection of E into C = C([0, 2π],RN ), with its maximum norm ‖x‖C ,

is continuous and f is C1-differentiable near 0 ∈ Ek, we know that Ik is C2-
differentiable near the origin 0 ∈ Ek. Further, we have

I ′k(0) = (L+ λ2B)k. (3.5)

Since ρ1(λ2B, λ2B) = 0, which implies that for every k ∈ N, z̄k(λ2B)−zk(λ2B) = 0,
we see that the origin 0 ∈ Ek is a non-degenerate critical point of Ik. Thus we have

Cq(Ik,0) ∼= δq,µ0
k
G, k ∈ N, (3.6)

where µ0
k = m−(L+ λ2B)k. By ρ(λ2A, λ2B) 6= 0, there exists k̄ ∈ N such that for

k ≥ k̄, µk 6= µ0
k for k ≥ max{k∞, k̄}. Then from (3.4), (3.6), it follows that Ik has

different critical groups at origin and at infinity respectively, which implies that Ik
has at least one nontrivial critical point xk 6= 0 for k ≥ max{k∞, k̄}.

Step 2. From above discussion of Step 1, we know that 0 6∈ σ((L+ λ2B)k). By
Lemma 2.1(2), which implies that there exists a constant η > 0 independent of k,
such that (−η, η) ∩ σ((L+ λ2B)k) = ∅. It follows that for k ≥ max{k∞, k̄},

‖(L+ λ2B)kx‖ ≥ η‖x‖, x ∈ Ek, x 6= 0. (3.7)

From (2.9),(2.10), for k ≥ k′ ∈ N, it follows that there exists a constant r0 > 0 such
that

‖I ′(x)− (L+ λ2B)x‖ ≤ η

2
‖x‖, x ∈ E, ‖x‖ < r0, (3.8)

and
‖I ′k(x)− (L+ λ2B)kx‖ ≤

η

2
‖x‖, x ∈ Ek, ‖x‖ < r0, (3.9)

which, combining with (2.6) and (3.7), implies that for x ∈ Ek, ‖x‖ < r0,

‖I ′k(x)‖ = ‖I ′k(x)− (L+ λ2B)kx+ (L+ λ2B)kx‖

≥ ‖(L+ λ2B)kx‖ − ‖I ′k(x)− (L+ λ2B)kx‖ ≥ η
2‖x‖.

(3.10)

Since xk is a nontrivial critical point of Ik in Ek, we know from (3.10) that ‖x‖ ≥ r0

for k ≥ k̂ = max{k∞, k̄, k′}.
Step 3. By Lemma 2.4(2), I satisfies the (PS)∗ condition. Hence there is a limit

point x of {xk}, which is a critical point of I with ‖x‖ ≥ r0 for k ≥ max k̂. Then
the proof is completed.

Case (2) can be proved in the same way as the proof of (1).

Theorem 3.2. Assume that f is C1-differentiable in x near the origin 0 ∈ E and
satisfies (f1)− (f3). If ρ1(λ2B, λ2B) > 0 and one of the following conditions holds:

(1) (A+
∞), (A+

0 ) and ρ(λ2A, λ2B) 6= 0,
(2) (A+

∞), (A+
0 ) and ρ1(λ2B, λ2A) 6= 0,

(3) (A−∞), (A+
0 ) and ρ(λ2A, λ2B) 6= 0,

(4) (A−∞), (A−0 ) and ρ2(λ2B, λ2A) 6= 0,
then (1.1) has at least a nontrivial 2τ -periodic solution.
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Proof. Proof of (1). Step 1. Similar to the proof of Theorem 3.1, we can get
(3.4). By (A+

0 ), Lemma 2.3(2) and Proposition 2.2(i), we have

Cq(Ik,0) ∼= δq,µ0
k
G, k ≥ k0. (3.11)

Note that

ρ(λ2A, λ2B) 6= 0

implies that µk 6= µ0
k for k ≥ k′′ ∈ N, we have

Cq(Ik,0) 6∼= Cq(Ik,∞), k ≥ k̃ = max{k∞, k0, k
′′}, (3.12)

which implies that Ik, k ≥ k̃ has at least one nontrivial critical point xk 6= 0.
Step 2. By Lemma 2.1(2), we have

‖(L+ λ2B)kw‖ ≥ η‖w‖, w ∈Wk, w 6= 0. (3.13)

Consider that x = v+w ∈ Ek = V ⊕Wk with x 6= 0 and ‖x‖ ≤ ρ. If ‖w‖ ≤ ‖x‖ sinα,
then by (A+

∞), we get

〈I ′k(x), v〉 > 0 for k ≥ max k̃. (3.14)

If ‖w‖ ≥ ‖x‖ sinα, then

〈I ′k(x), w〉 = 〈(L+ λ2B)k(x), w〉+ 〈I ′k(x)− (L+ λ2B)k(x), w〉

≥ η‖w‖ − o(‖x‖)‖w‖ ≥ η‖w‖ − o(‖w‖2) > 0.
(3.15)

Thus there exists a constant r1 > 0, independent of k, such that for any k ≥ k̃,

〈I ′k(x), w〉 6= 0, x ∈ Ek, ‖x‖ < r1.

So we have ‖xk‖ ≥ r1 for any k ≥ k̃.
Step 3. By Lemma 2.4, I satisfies (PS)∗, thus {xk} has a subsequence converging

to some point x ∈ Ē with ‖x‖ ≥ r1, which is a nontrivial critical point of I, i.e.
problem (1.1) has at least one nontrivial 2π-periodic solution.

Case (2)-(4) can be proved in the same way as the proof of (1). So we omit it.
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