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Abstract In this paper, we consider the existence of periodic solutions for
second-order differential delay equations. Some existence results are obtained
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some existing results.
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1. Introduction

In recent decades, there are some results on the periodic solutions to delay dif-
ferential equations that were established via variational calculus( [1-15]). To the
authors’ knowledge, there are a few results on the periodic solutions to second-
order delay differential equations that were established by Morse theory [16,17],
the Galerkin approximation scheme [18,19] and Maslov-type index theory [20,21].
Motivated by [9,15], we consider existence of 27-periodic solutions for the following
delay differential equations

a”(t) = —f(a(t — 7)), (1.1)

where 7 > 0 is a given constant.

Throughout this paper, we assume that (f1) — (f3) as following:

(f1) f(z) € CRN,RN) is odd, i.e. for any x € RN, f(z) = —f(z).

(f2) There exists a C'-differentiable function F(z), such that VF(x) = f(x),
vz € RN and F(0) = 0.

(f3) There are real symmetric N x N matrices A and B such that

(1) f(z) = Az + o(|z|) as x — oo,

(1) f(x) = Bx+o(|z]) as x — 0,
that is, (1.1) is asymptotically linear both at infinity and origin.
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Throughout this paper, we also make some assumptions as follows:

For some positive numbers R, c1,¢2 > 0and 0 < s < 1, let Fiyo (x) = F'(x) — Az,
which satisfies

(FE) (Fo(z),2) > 1|22, |Foo(2)| < e2lz)®, 2 € RN with |z| > R;

(F3) (Fx(z),7) <0 and (Fy(z),7) > c1|z|'s, [Foo(z)] < colz|®, 7 € RY with
lz| > R.

For some positive numbers p, ¢z, cq4 > 0 and r > 1, Fy(x) := F'(x) — Bz satisfies

(FF) (Fy(w).) > csfa 17, [Foo(@)] < cafol’,z € RN with [o] < p

(Fy) (Fo(z),z) <0 and |(Fo(x), )| > ca|z|*t7, |Fo(x)| < calz|”, 2 € RN with
2| < p.

As that in [22], for given N x N real symmetric matrices S, T and positive integer
k, we set

2,(S) = the number of negative eigenvalues of (—1)*(2k — 1)2I + S,

Zr(S9) = the number of non-positive eigenvalues of (—1)*(2k — 1)1 + S,
and

p(8,T) = 352a[2k(S) = 2r(T)], - p1(S,T) = 325212k (S) — (T,
p2(S’ T) = Z;il[ik(S) - Zk(T)]’

where I denotes the N x N identity matrix. It is known that p(-,-), p;(-,+),i = 1,2
are well defined, since for large k, 2 (S)—zk(T) = 2k (S)—2(T) = 2 (S)—Z2x(T) = 0.

The rest of the paper is organized as follows. In Section 2, we shall state some
lemmas. Criteria for the existence of T-periodic solution for (1.1) is established in
Section 3.

2. Preliminaries

In the following, we introduce some basic preliminary results on critical groups and
Morse theory [17,18].

Let E be a Hilbert space with its inner product and norm denoted by (-, -) and
| - ||, respectively. Let v € C1(E,R). Let K = {x € E|¢(z) = 0},¢,, = {z €
Ely(z) < m}.

Definition 2.1. Suppose that ¢(K) is bounded from below by a € R and that
1 satisfies (PS), for all ¢ < a. The group Cy(¢,00) =: Hy(E, ), q € Z is said
to be the gth critical group of ¢ at infinity. Here H,(-,-) denotes singular relative
homology groups with Abelian coefficient groups.

We will work on the following framework as in [23,24], where the group C.(,")
can be described precisely.

(AL) ¥(z) = 3(La, )+ Az, where L : E — E is a self-adjoint operator such that
0 is isolated in the spectrum of L. The map A € C1(E, R) satisfies A’(z) = o(||z]|)
as ||z|]| = oo. A, A’ map bounded sets into bounded sets. ¥(x) is bounded from
below and v satisfies (P.S),. for ¢ < 0.

If (A7) is satisfied. Let V = Ker(L) and W = V. Wesplit W as W = W+ &
W~ such that L|y+ is positive definite and L|y - is negative definite. Denote p :=
dim W~ , v = dim W, the Morse index and the nullity of ¢ at infinity respectively.

Proposition 2.1. Let (A.) hold. Then
(1) Cq(¥,00) = 04,,G provided 1) satisfies the angle condition at infinity:
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(AC%) 3M > 0,a € (0,%) such that (' (x),v) >0 for any x =v+w € X with
[z > M, |Jw| < || sina.
(17) Cq(1h,0) = 6q,u4,G provided 1 satisfies the angle condition at infinity:
(ACZ) IM > 0,a € (0, 5) such that (' (x),v) <0 for any x = v+w € X with
z|| > M, ||w| < ||z sin .

Proposition 2.2. Suppose ¥ has an isolated critical point xo and is of class C?
near xo. 0 is isolated in the spectrum of Lo := ¢ (x¢) and po < 0o, vy < 0o, where
1o, Vo denote the Morse index and the nullity of v at xg. Then

(1) Cq(¥,x0) = 6q,u,G provided v satisfies the angle condition at infinity:

(ACF) 3p>0,a € (0,%) such that (' (x+z0),v) >0 for anyx =v+w € E =
Vo & Wo with |[z]] < p, [lw]| < [lz]|sina.

(13) Cq(¥, o) = 0g,1o+1, G provided ¢ satisfies the angle condition at infinity:

(ACy) 3p > 0,a € (0, F) such that (' (x+x0),v) <0 for any x =v+w € £ =
Vo & Wy with ||z]| < p, |Jw]| < ||z| sina, where Vo = Ker(Lg), Wo = Wm & Wy =
Vit

By the change of variable A = T, ¢ = \s, (1.1) is transformed to

2"(t) = —N2f(a(t — 7). (2.0)

Thus to seek a 27-periodic solution for (1.1) is equivalent to seek a 2m-periodic
solution for (2.0).

Let C>°(S!,R”) denote the space of 27 periodic C*° functions on R with values
in RN. For any, let E := W/22(S1 RN) = C(S1,RN), where |- | is the induced
norm in RY. Then E consists of those z(t) € L?(S', RY) with Fourier series

ao
z(t) = @y, cOSML + by sinmt) ,
v
where ag, am, b, € RY. E is also a Hilbert space with norm ||z|| = ()27T[|,2'(75)|2 +

|2’ (t)|?]dt < +o0 induced by the inner product (-) defined as

<Z Z ao,ao + Z 1 +m amvdm) + (bmabm)}
m=1

with z(t) = \;207 + ﬁ >re 1 (@m cosmt + by, sinmt), where (-, -) denotes the stan-
dard inner product in RY.
For Vx € F, define a variational functional [ : E — R as

1 27

I(z) = = /E(:U’(t + ), 2 (t))dt + N2 F(xz(t))dt = (Lx,x) + &(x). (2.1)
2 Jo 0

Then by Riesz representation theorem, we can define a bounded linear self-adjoint
operator on E as (Lz,y) = % O%(:E’(t—&-w) ‘(t))dt = —3 0 " (2" (t+7), y(t))dt(which
is obtained by integration by parts). We also define a compact operator ®(z) =
A2 027'r F(z(t))dt,z € E as [15]. Then I(z) can be written as

I(z) = (La,z) + ®(x). (2.1)
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By a standard argument as in [16], we get that I € C?(E,R) and critical points of
I are solutions of (1.1). Thus, looking for nontrivial 27-periodic solution of (1.1) is
equivalent to finding nonzero critical point of I.

For any =,y € E, an easy computation of [15] gives the gradient of I as

(' (x),y) = / (@ (64 ), () dE £ N2 / (Fa)y)d  (22)

Let E be a subspace of E by E = {z € E | z(t +7) = —z(t)}, then

_ 1 &
E=qzecE|z(t) = — [a2m—1 cos(2m — 1)t + bay,—1 sin(2m — 1)t] 5 .
ﬁ m=1
Under the norm fo )+ |Z (t)]* 412" (t)[*]dt < 400, E is also a Hilbert space.
Let the subspace Ek(k: =1,2,---) of E be defined by
k
E, = {x eFE|x(t) = 7 Z agm—1c08(2m — 1)t + bay,—1 sin(2m — l)t]}

Then Ej C Eiy1 and dimEy, = 2kN,Vk € N.

Lemma 2.1. Let D be an self-adjoint operator defined by a N x N symmetric
matriz D and m™* (L + D), m°(L + D) and m~ (L + D), denote the dimension of
the subspaces of Ey, where (L + D)y, is positive definite, zero and negative definite
respectively. Then

(1) m™(L4+D)x = S5, 2(D),  mO(L+D) = ¥h_, (5(D)—2(D), m~(L+
D)y +m®L + D), + m* (L + D), = 4Nk.

(2) there exists 1 > 0 independent of k such that (I, \ {0}) N (L + D), =0 for
all k € N, where I, = (=n,n) and o((L + D)) denote the spectrum of (L + D).

(3) there emists a positive integer k > 0 such that Ker(L + D) C Ey for k > k.

Proof. Let uj,i = 1,2,---, N be the eigenvalues of (—1)7(2j — 1)>I + D and
uji,t = 1,2,--- , N be the corresponding eigenvectors, which form an orthogonal
basis of RY for every j € N. By the argument in [16, Section 5], p1j; /(1425 — 1+
(25 —1)?),€N,i=1,2,---, N are all the eigenvalues of L + D and

(c)

es; = u;; cos(2j — 1)t,

e & = uj;sin(2j — 1)t, jeN,i=1,2,---,N,

]Z

i =1,2,--- .k
(1+2j-1+(25-1)2)° P
= 1,2,--- ,N are all the eigenvalues of (L + D); and eg? = Uj; cosjtéﬁ) =
ujisin(2j —1)t,j =1,2,--- ,k,i=1,2,--- , N, form a complete orthogonal basis of

Ey. Tt follows that the conclusion (1) holds.
Denote the eigenvalues of the matrix D are d;,i = 1,2,--- , N, where d; are
finite. Then by the argument in [16, Section 5], uj; = (—=1)7(2j — 1)? + d;,j €

N,i=1,2,---,N and
}\{0}

Hgi (1Y@ -1 +ds {‘ i

. . = . . — +1, —
(42 -14+(27-1)%)  (1+2j-1+(2 - 1)) j+1

has positive minimum 7 > 0. Thus we have I, \ {0} No((L+ D)) = 0 for all k € N,

which shows that (2) holds.

form a complete orthogonal basis of E. We also get
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For sufficiently large j, (—1)7(2j — 1)2I + D is non-degenerate, then {u;;|p;; =
0,j € N,i=1,2,---,N} is a finite set. Since Ker(L + D) = span{e;?,ég»?mji =
0,jeN,i=1,2,---, N}, it follows that (3) holds and the proof is completed. I

The following Lemma 2.2 can be showed in the same way as that of [23, Lemmas
3.1 and 3.2], so we omit the proof of it.

Lemma 2.2. Suppose thatf satisfies (f1) — (f3) and let the functional I be defined
by (2.1). We have the following propositions:
(1) If (FL)(or(Fy)) holds, then I satisfies the angle condition (ACE)(or(ACL))

at infinity, i.e., there are M > 0,8 > 0, € (0, 5) such that

(@), o) 28>0, (or (I'(w), 7o) < =6 <0,)
for any x = v +w € E with ||z|| > M, |w| < ||z||sina, where V = Ker(L + A\2A),
the null space of the self-adjoint operator L + \?A and W = V+.
(2) If (F;")(or(Fy ")) holds, then there are p > 0,0 < € < 1 such that

/W(Fo(a:),v,)dt>0, (07’/ " (Fo(w),v)dt < 0,)
0 0

foranyr =v+w € E = Vo & Wy with x # 0, ||z|| < p,||w|| < €|z, where Vy =
Ker(L + A\2B), the null space of the self-adjoint operator L + \*B and Wy = V5-.
Hence the function I defined by (2.1) satisfies the angle condition (ACy )(or(ACy ))
at the origin.

Lemma 2.3. Suppose thatf satisfies (f1) — (fs) and the functional I, = I|g, . We
have the following propositions:

(1) If (FZ) holds, then 3k € N such that Iy, k > koo satisfies the angle condi-
tion (ACE) at infinity.

(2) If (Foi) holds, then kg € N such that I, k > ko satisfies the angle condition
(ACF) at origin.

Proof. Proof of (1). By Lemma 2.1(3), there exists koo > 0 such that Ej can be
divided as Ey, =V & Wy, for k > ko, where W}, is the orthogonal projection of W
on to Ej. Since, by Lemma 2.2(1), I satisfies (ACL) for k > ko at infinity for any
r=v+weVeW,=E; with ||z|| > M, ||lw|| <|z|sina with z € Ey,ve V,w e
Wi, then we have

") 2N — (I (). L — (I (). ) >
i.e. I, satisfies (ACL) for k > koo at infinity.

Proof of (2). By Lemma 2.1(3), there exists ko, > 0 such that Ej can be
divided as Ey = Vy & Wy for k > ko, where Wy is the orthogonal projection of W
on to Ey. Since, by Lemma 2.2(2), I satisfies (ACT) for k > koo at origin for any
x =v+w € Vo@Wy = Ei, withx # 0, ||z]]| < p, ||w| < €||z]],x € Eg,v € Vo, w € Wy,
where Vy = Ker(L + A\?B), the null space of the self-adjoint operator L + A\2B and
Wy = Vg-, then we have

F(I'(z),v) = F(I(x),v) = :t/o 7T(Fo(x),v)dt >3>0,

i.e. I satisfies (AC’Oi) for k > k., at origin. Then the proof is completed. O
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Definition 2.2. We say that I satisfies the (P.S)* condition, if any sequence z,, €
E,, such that I,,,(x,) being bounded and I/, (x,,) possesses a subsequence convergent
in E,,, where I,,, = I|g,, is the restriction of I on E,,.

Lemma 2.4. Assume that (f1) — (f3) and (FZX) hold. Then

(1) Each Ii satisfies the (PS) condition for k > ko (€ N).

(2) I satisfies the (PS)* condition, i.e. any sequence {xr} € Ejy such that
Il(zx) — 0 as k — oo and that Iy (xy) is bounded from above, possesses a subse-
quence convergent in E.

Proof. (1) Let ko, be as Lemma 2.2 and Ey, = V & Wy, where V and Ej be
defined as above. For any fixed k > ko, let {z,,} € Ex be such that

I.(z,) = 0 as n — oo. (2.4)
Now, we will show that {x,,,} € F} is bounded. If not, then
|zn]| = o0 as n — oco. (2.5)

Let 2, = vy + Wy, = vy +w,, +w} € By =V & W, =V a&W, W, Then for
any y € Ey, we get

(I'(@n) y) = (L + N2A)zn, y) + [ (2n) = (L+ N2 A) g0, ). (2.6)
By (f1), (f3), for any r > 0, there exists ¢(r) > 0 such that
[f(t.y) — Ayl < rlyl + c(r), vy € R, (2.7)

Then by (2.7) and compactly imbedding theorem(E, E are compactly embedded in
L?(SY, RY)), we have

I’ (z) — (L + /\2A)LL'H <cl|f(t,z)— )\2Azzz||L2 <ci(r|z| 4+ e(r), Vo € B, (2.8)

where ¢y is a constant independent of r. Since that r can be arbitrarily small, it
follows that
11" (z) — (L + N A)z|

]

— 0, as x — o0, (2.9)

then we get

() = (L + AA) gz |

N — 0, Vx,, € Eg,as x, — . (2.10)
Tn

Let > 0 be as in Lemma 2.1(2) and take y = w,, +w,’ as above. Then from (2.4)
and (2.10), for any given ¢ > 0, we have

nllwnl* < 6lfwnlll|zn]l + &]lwnll, (211)
for n sufficiently large. It follows from (2.11) and ¢ is arbitrary small that

[[wn |
0|

From (2.5) and (2.12), we get that

— 0,as n — oo. (2.12)

|zl > M, |Jwy| < ||2,| sina, for sufficiently large n.
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Since I}, satisfies the angle condition (ACZ), which implies that

'<I'(m), |z”>‘ >8> 0. (2.13)

By (2.4),
<1’(a:), ZH> 0, as 71— oo, (2.14)

which is contract with (2.13). Thus {x,,} € Fj is bounded.
(2). Suppose that {z;} € E) such that

I.(zr) = 0 as k — oc. (2.15)

Similar to above discussion, we obtain that {z} is bounded.
Let &, = ® |g, and Py be the project mapping from E to Fj, then

Li(zg) = I}(x) — P (xr) and &) (xy) = Pp® (zy). (2.16)

Since Fj is invariant with respect to L, (2.16) shows that
L(xy) = Ij(vg) — Pp®(xg). (2.17)
Since I' is compact, so we can choose a subsequence of {zj}, (we still named as
{zx},) such that {—P,®'(zx)} — y in E. It follows from (2.17) that khj& Lz =y.

It is easy to see that L : E +— E is invertible, so that klim z, = L™ (y). It’s obvious
— 00

that x is a critical point of I. The proof is completed.
O

3. Main results.

Theorem 3.1. Assume that f is C'-differentiable in x near the origin 0 € E and
satisfies (f1) — (f3). If p1(A2B, \2B) = 0 and one of the following conditions holds:
(1) (A%) and p(X24,X2B) £0,
(2) (A=) and p1 (\2A, 2B) £0,
then (1.1) has a nontrivial 27-periodic solution.

Proof. Proof of (1). Step 1. For each k € N, define the map Ay : Fx — R as

1
A(z) = g (z) — §<A2Ax,x>, x € Ey. (3.1)
Then I, can be rewritten as
1
Iy(z) = §<(L + N Az)px, ) + O (2), © € Ej. (3.2)

By (AZL) and the standard arguments, we get that Aj is C! under the topology
C = O([0,27], RY) and satisfies

1A (@)lle = olllzllc), as |z]c — oo,z € By, (3.3)
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which, combining with Lemma 2.1(2), implies that I} satisfies (A”). It follows by
Lemma 2.3(1) and Proposition 2.1(1) that

Cq(Iy,00) = 84, G, k> koo, (3.4)

where iy = m™ (L + A\2A)y.

Since the injection of E into C' = C([0,27], RY), with its maximum norm ||z||c,
is continuous and f is Cl-differentiable near 0 € Ej, we know that I is C2-
differentiable near the origin 0 € Ej. Further, we have

1;,(0) = (L + \>B)y. (3.5)

Since p1 (\2B, A2 B) = 0, which implies that for every k € N, (A2 B)—2,(A\?B) = 0,
we see that the origin 0 € Fj is a non-degenerate critical point of I,. Thus we have

Cy(11,0) =6, ,0G, k€N, (3.6)

where 1 = m™ (L + A2B)j. By p(A2A,\2B) # 0, there exists k € N such that for
k >k, py # p for k > max{keo, k}. Then from (3.4), (3.6), it follows that I; has
different critical groups at origin and at infinity respectively, which implies that Iy
has at least one nontrivial critical point x;, # 0 for k > max{ks, k}.

Step 2. From above discussion of Step 1, we know that 0 € o((L + A2B);). By
Lemma 2.1(2), which implies that there exists a constant n > 0 independent of k,
such that (—n,1) No((L 4+ A?B);) = 0. It follows that for k > max{ke., k},

(L + AQB)k:r|| > nllz|l, z € Ex,z # 0. (3.7)

From (2.9),(2.10), for k > k' € N, it follows that there exists a constant r¢ > 0 such
that 0
17(z) = (L+ X*B)zl| < S|l @ € B, ||z]| <o, (3-8)

and
|@) = (L + XB)ie| < Jllel, « € By |lal| < ro, (3.9)

which, combining with (2.6) and (3.7), implies that for = € Fy, ||| < ro,

1@l = [1k(x) = (L + NB)rx + (L + N Bz

(3.10)
> (L + N Bzl — L (x) — (L + NB)rz| = F|z].

Since xy, is a nontrivial critical point of Iy, in Ej, we know from (3.10) that ||z|| > ro
for k > k = max{koo, k, k'}.

Step 3. By Lemma 2.4(2), I satisfies the (P.S)* condition. Hence there is a limit
point x of {x}, which is a critical point of I with ||lz|| > ro for k > max k. Then
the proof is completed.

Case (2) can be proved in the same way as the proof of (1). O

Theorem 3.2. Assume that f is C'-differentiable in x near the origin 0 € E and

satisfies (fl) —(f3). If p1(A>B,A\2B) > 0 and one of the following conditions holds:
(1) (AL). (A7) and p(\*A,X*B) #0,
(2) (AL), (A]) and pr(A2B, \24) 0,
(3) (A%): (Ag) and p(\*A,X*B) #0,
(4) (A%), (Ag) and p2(N°B, N> A) # 0,
then (1.1) has at least a nontrivial 27-periodic solution.
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Proof. Proof of (1). Step 1. Similar to the proof of Theorem 3.1, we can get
(3.4). By (A7), Lemma 2.3(2) and Proposition 2.2(), we have

Cy(I1,0) = 8, 0 G, k> ko. (3.11)

Note that
p(N2AN2B) #£0

implies that uy # p9 for k > k” € N, we have
Cy(I;,0) % Cy (I, 00), k >k = max{koo, ko, k", (3.12)

which implies that I, k > k has at least one nontrivial critical point zy, #0.
Step 2. By Lemma 2.1(2), we have

(L + N?B)wl|| > n|wl||, we Wy, w # 0. (3.13)

Consider that z = v+w € E, = VW), with z # 0 and ||z]| < p. If ||w]] < ||z| sin e,
then by (AL), we get

(Il(x),v) >0 for k> maxk. (3.14)

If [Jw|| > ||z| sin @, then

(Ii(x),w) = (L + NB)(z), w) + (I(x) = (L + N’ B)i(x), w)

(3.15)
> nljwl| = o(||z[)][w]| > nllw] = o([w]|?) > 0.

Thus there exists a constant r; > 0, independent of k, such that for any k > l~c7
(I.(z),w) # 0, = € Ey, ||z|| <.

So we have ||zx|| > ry for any k > k.
Step 3. By Lemma 2.4, I satisfies (PS)*, thus {z\} has a subsequence converging
to some point x € E with ||z|| > 71, which is a nontrivial critical point of I, i.e.
problem (1.1) has at least one nontrivial 2m-periodic solution.
Case (2)-(4) can be proved in the same way as the proof of (1). So we omit it.
O
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