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1. Introduction

This paper is to study the asymptotic behavior of solutions for the following non-
autonomous stochastic three-component reversible Gray-Scott system with multi-
plicative noise defined on the entire space Rn:

∂ũ
∂t = d1∆ũ− (F + k)ũ+ ũ2ṽ −Gũ3 +Nw̃ + g1(t, x) + σũ ◦ dωdt ,
∂ṽ
∂t = d2∆ṽ − F ṽ − ũ2ṽ +Gũ3 + g2(t, x) + σṽ ◦ dωdt ,
∂w̃
∂t = d3∆w̃ − (F +N)w̃ + kũ+ g3(t, x) + σw̃ ◦ dωdt ,

(1.1)

with initial data

(ũ(τ, x), ṽ(τ, x), w̃(τ, x)) = (ũτ , ṽτ , w̃τ ) , x ∈ Rn, (1.2)

where all given parameters are positive constants, gi (i = 1, 2, 3) are external forces
satisfying some certain integrable conditions, ω is a two-sided real-valued Wiener
process and ◦ denotes the Stratonovich sense of the stochastic term.

Historically, the two-component Gray-Scott system was originated from describ-
ing some isothermal, cubic autocatalytic, continuously fed and diffusive reactions of
two chemicals, which was signified one of the Brussels school led by the renowned
physical chemist and Nobel Prize laureate (1977), Ilya Prigogine, see [9, 10, 17, 19].
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The three-component reversible Gray-Scott model, first introduced by H. Mahara
et.al., was based on the scheme of two reversible chemical or biochemical reactions,
see [16]. Recently, You [23] took some non-dimensional transformations to make
the three-component model reduce to the following deterministic system without
the non-autonomous forces:

∂u
∂t = d1∆u− (F + k)u+ u2v −Gu3 +Nw,
∂v
∂t = d2∆v + F (1− v)− u2v +Gu3,
∂w
∂t = d3∆w − (F +N)w + ku.

(1.3)

By the re-scaling and grouping estimates, the existence or robustness (i.e. upper
semi-continuity) of global attractors for system (1.3) was considered in [8, 23, 24]
on a bounded domain with space dimension n ≤ 3 , so did the stochastic model
in [25,26].

However, as pointed out in [27], the study of the same or similar coupled reaction-
diffusion system on a higher space dimensional domain n > 3 whether bounded or
unbound, to the best of our knowledge, is still open. First of all, we cannot use
the Sobolev embedding H1 ↪→ L6 any more. Next, when dealing with such system
consisting of two or more equations, the common difficulty is that the following
sign-preserving property of the nonlinearity f(s) in vector version is not satisfied:

lim sup
|s|→+∞

f(s)s ≤ c, for c ≥ 0.

This plays a key role in the theory of attractors, since it prevents the existing
method of tackling the asymptotic behavior even for the classical reaction-diffusion
equation. Once again, the approach of constructing positively invariant regions does
not work since we do not assume solutions are nonnegative. Moreover, even if we
wish, the positively invariant region method is hard to implement for such multiple
reaction-diffusion equations.

Stochastic effects taken into consideration are of central importance for the de-
velopment of mathematical models of complex phenomena under uncertainty aris-
ing in applications. Such random influences are not just compensation of defects
in deterministic models but intrinsic phenomena. Then pullback random attractors
were introduced for these random dynamical systems, see [4, 11, 18] with some ap-
plications in [2, 3, 20]. When system (1.3) perturbed by white noise in a bounded
domain, the existence or upper semi-continuity of random attractors was investigat-
ed in [25, 26]. When dealing with the unbounded cases, the constant F presenting
in the second equation of (1.3) will cause a new insuperable obstacle for estimating
solutions. However, we can overcome this difficulty by affiliating F with the spatial
variable x such that F (x) ∈ L2(Rn)∩L6(Rn) or just letting it in the external force
g2(·, x), then system (1.1) follows. In particular, the existence of random attractors
in L2(Rn)3 for autonomous system (1.1) was shown in [6, 7]. As far as we know,
there are few results on the regularity of random attractors for the multi-component
stochastic systems.

In this paper, we study the regularity of pullback attractors for non-autonomous
system (1.1). Such regularity of random attractors seems to be first investigated
in [12] and then extended to [13,14,28]. In fact, for a single deterministic reaction-
diffusion equation, an H1-attractor can be achieved by differentiating on both sides
of the equation and making some additional assumptions for the derivation of the
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external force, see [5, 15, 21, 22, 29]. Unfortunately, this method cannot be general-
ized to the stochastic case because the Wiener process is almost everywhere non-
differentiatial. We will obtain pullback attractors in H1(Rn)3 by applying some new
Gronwall inequalities and uniform absorptions both in L6(Rn)3 and in H1(Rn)3 re-
spectively. These estimates are essential to present the asymptotic compactness
inside a ball under the norm of (H1)3, while the tail estimate outside a ball will be
achieved by using a cut-off technique. We remark here that our method is different
from [14] of stochastic Fitzhugh-Nagumo system, in which the integral of L6-norm
can be proved through the nonlinearity and then the truncation estimates follow.
This is why we claim initial data are in L2(Rn)3 ∩ L6(Rn)3, even for the existence
of attractors in L2(Rn)3 when space dimension n > 3.

We begin this paper with a brief summary in Section 2 of the standard (non-
autonomous) cocycle framework in which the theory of the regularity of pullback
random attractors can be developed. In Section 3, we use the unique solution for
system (1.1) to define a continuous cocycle. We then review in Section 4 some
known results of solutions from [7] with some generalizations. In Sections 5-7, we
derive uniform absorptions, tail estimates outside a ball and asymptotic estimates
inside a ball respectively. We prove the existence of bi-spatial pullback attractors
in the last section.

2. Preliminaries

Let (X, ‖ ·‖X) and (Y, ‖ ·‖Y ) be two separable Banach spaces and (Ω,F ,P, {θt}t∈R)
a metric dynamical system, where Ω = {ω ∈ C(R,R) : ω(0) = 0} with the Borel
σ-algebra F induced by the compact open topology of Ω and with the corresponding
Wiener measure P on (Ω,F), and the group is defined by θtω(·) = ω(· + t) − ω(t)
for all (t, ω) ∈ R× Ω, see [1].

Definition 2.1 ( [20]). A (non-autonomous) cocycle on X over R and (Ω,F ,P,
{θt}t∈R) is a measurable mapping

Φ : R+ × R× Ω×X → X, (t, τ, ω, x)→ Φ(t, τ, ω)x

such that Φ(0, τ, ω) = id on X and

Φ(t+ s, τ, ω) = Φ(t, τ + s, θsω)Φ(s, τ, ω), for all t, s ∈ R+, τ ∈ R and ω ∈ Ω.

Moreover, Φ is continuous if Φ : x → Φ(t, τ, ω)x is continuous in X for all t ∈ R+,
τ ∈ R and ω ∈ Ω.

Definition 2.2. The pair (X,Y ) is limit-identical if

xn ∈ X ∩Y and ‖xn−x0‖X + ‖xn− y0‖Y → 0 as n→ +∞, then x0 = y0 ∈ X ∩Y.

In the sequel, D always denotes a universe of some set-valued mappings from
R× Ω to 2X \ {∅}, and Φ is a continuous cocycle on X over R× Ω such that

Φ(t, τ, ω)X ⊂ Y, for all t > 0, τ ∈ R and ω ∈ Ω. (2.1)

Definition 2.3. A set-valued mapping A : R × Ω → 2X∩Y \ {∅} is a D-pullback
(X,Y )-attractor for the cocycle Φ enjoying (2.1) if
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(i) There is a K ∈ D such that A(τ, ω) ⊂ K(τ, ω) for all τ ∈ R and ω ∈ Ω;
(ii) ω → dX(x,A(τ, ω)) is (F ,B(R))-measurable for every x ∈ X and τ ∈ R;
(iii) A is invariant, i.e. Φ(t, τ, ω)A(τ, ω) = A(t+ τ, θtω);
(iv) A(τ, ω) is compact and A attracts every element in D under the topology of
Y , i.e. for each D ∈ D,

lim
t→+∞

distY (Φ(t, τ − t, θ−tω)D(τ − t, θ−tω),A(τ, ω)) = 0,

where distY (A,B) := supa∈A infb∈B ‖a− b‖Y is the Hausdorff semi-distance in Y .

Definition 2.4. A set-valued mapping K : R × Ω → 2X \ {∅} is a D-pullback
absorbing set for the cocycle Φ if for each τ ∈ R, ω ∈ Ω and D ∈ D, there is
T := T (τ, ω,D) > 0 such that⋃

t≥T

Φ(t, τ − t, θ−tω)D(τ − t, θ−tω) ⊂ K(τ, ω).

Definition 2.5. A cocycle Φ is D-pullback limit-set compact in Y if for each τ ∈ R,
ω ∈ Ω and D ∈ D,

lim
T→+∞

κY (
⋃
t≥T

Φ(t, τ − t, θ−tω)D(τ − t, θ−tω)) = 0, (2.2)

where κY (A) (A ⊂ Y ) denotes the (non-compact) Kuratowski measure in Y defined
by

κY (A) = inf{d > 0 | A has a finite cover {Ai} with diamY (Ai) ≤ d}.

Similarly, a cocycle Φ is D-pullback limit-set compact in X if (2.2) holds for κX(·).

Note that A ⊂ Y , then κY (A) < +∞ iff A is bounded, κY (A) = 0 iff A is
pre-compact, so is a set B ⊂ X, see [12,29].

Also, the limit-identity ensures that (X∩Y, ‖·‖X∩Y ) is a Banach space, see [13].

Proposition 2.1 ( [14]). Let D be a universe in X, (X,Y ) a limit-identical pair
of Banach spaces and Φ a continuous cocycle on X over R× Ω and take values in
Y , then Φ has a D-pullback (X,Y )-attractor if
(i) Φ has a closed, measurable absorbing set K ∈ D, and
(ii) Φ is D-pullback limit-set compact both in X and in Y .

3. The cocycles and main results

We will establish the existence of bi-spatial pullback attractors for system (1.1). To
do this, for given ω ∈ Ω, let z(t, ω) = e−σω(t), then z solves the following stochastic
equation in the sense of Stratonovich integration:

dz

dt
+ σz ◦ dω

dt
= 0.

By [1], we know that t → z(t, θtω) is continuous for each ω ∈ Ω and |z(t, ω)| is
tempered. Therefore, we make the following variable transformations:

(u(t, ω), v(t, ω), w(t, ω)) = z(t, ω)(ũ(t, ω), ṽ(t, ω), w̃(t, ω)),
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then system (1.1) can be written as
∂u
∂t = d1∆u− (F + k)u+ z−2(t, ω)u2v −Gz−2(t, ω)u3 +Nw

+z(t, ω)g1(t, x),
∂v
∂t = d2∆v − Fv − z−2(t, ω)u2v +Gz−2(t, ω)u3 + z(t, ω)g2(t, x),
∂w
∂t = d3∆w − (F +N)w + ku+ z(t, ω)g3(t, x),

(3.1)

with initial data (u(τ, ω), v(τ, ω), w(τ, ω)) = (uτ , vτ , wτ ) = z(τ, ω)(ũτ , ṽτ , w̃τ ), τ ∈
R.

From now on, let H = L2(Rn)3, U = L6(Rn)3, X = H ∩ U and Y = H1(Rn)3.
The external force g(t, x) := (g1(t, x), g2(t, x), g3(t, x)) belongs to L2

loc(R,H)∩L6
loc(R,U)

and satisfies the following integrable conditions: for all τ ∈ R,∫ 0

−∞
eFs(‖g(s+ τ, ·)‖2H + ‖g(s+ τ, ·)‖6U)ds < +∞. (3.2)

By the Galerkin approximation, similar to the autonomous system (1.3) con-
sidered in [24], for each τ ∈ R, ω ∈ Ω and (uτ , vτ , wτ ) ∈ X, system (3.1) has a
unique solution such that (u(·, τ, ω, uτ ), v(·, τ, ω, vτ ), w(·, τ, ω, wτ )) ∈ C([τ,∞), X)∩
L2((τ,∞), Y ). The unique solution generates two continuous cocycles Φ, Φ̃ : R+ ×
R×Ω×X → X, for all (t, τ, ω) ∈ R+×R×Ω and (uτ , vτ , wτ ) = z(τ, ω)(ũτ , ṽτ , w̃τ ) ∈
X,

Φ(t, τ, ω)(uτ , vτ , wτ ) :=(u(t+ τ, τ, θ−τω, uτ ), v(t+ τ, τ, θ−τω, vτ ),

w(t+ τ, τ, θ−τω,wτ )),

Φ̃(t, τ, ω)(ũτ , ṽτ , w̃τ ) :=z−1(t, ω)Φ(t, τ, ω)(uτ , vτ , wτ ).

(3.3)

We remark that both cocycles Φ and Φ̃ are (topologically) conjugated, in what
follows, we only need to consider the cocycle Φ associated with system (3.1). More-
over, D is always a universe whose elements D satisfy, for τ ∈ R and ω ∈ Ω,

D(τ, ω) ⊂ X and lim
t→+∞

e−δt(‖D(τ − t, θ−tω)‖2H + ‖D(τ − t, θ−tω)‖6U) = 0, (3.4)

where δ ∈ (0, F ) and ‖D‖X = supu∈D ‖u‖X .
The main result of this paper is stated as follows:

Theorem 3.1. Assume (3.2) holds, the (non-autonomous) cocycle Φ generated by
system (3.1) has a unique D-pullback bi-spatial attractor A with the initial space
X = L2(Rn)3 ∩L6(Rn)3 and the non-initial space Y = H1(Rn)3. In particular, the
cocycle Φ̃ induced by system (1.1) possesses a unique D-pullback (X,Y )-attractor
Ã.

In the sequel, we prove Theorem 3.1 by using Proposition 2.1. Very similar
to the autonomous system discussed in [7], we can prove that the condition (i) in

Proposition 2.1 holds and that Φ̃ is D-pullback limit-set compact in H = L2(Rn)3.
We remark here that the universe D in [7], actually, is a collection of all tempered
subsets in X = L2(Rn)3 ∩ L6(Rn)3 rather than in H, see [7, Proposition 4.2].

Then, our main work is to prove the D-pullback limit-set compactness of Φ̃ in
Y = H1(Rn)3. To do this, we prove Φ̃ is asymptotically small in Y by using a

cut-off technique outside a large ball and Φ̃ is D-pullback limit-set compact in Y by
applying some uniform absorption estimates to show the flattening property inside
a ball.
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4. Some auxiliary lemmas

We need the following Gronwall-type inequalities [14, Lemma 3.3], which will be
used frequently in this paper.

Lemma 4.1. Let y, y1 and y2 be three nonnegative and locally integrable functions
on R such that dy

ds is also locally integrable and

dy

ds
+ ay(s) + y1(s) ≤ y2(s), s ∈ R,

where the constant a ≥ 0. If τ ∈ R and µ > 0, then

sup
s∈[τ−µ,τ ]

y(s) ≤ e−aµ

µ

∫ τ

τ−3µ
y(r)dr +

∫ τ

τ−3µ
y2(r)dr, (4.1)∫ τ

τ−µ
y1(r)dr ≤ e−aµ

µ

∫ τ

τ−3µ
y(r)dr +

∫ τ

τ−3µ
y2(r)dr, (4.2)

y(τ) ≤ 1

µ

∫ τ

τ−µ
ea(r−τ)y(r)dr +

∫ τ

τ−µ
ea(r−τ)y2(r)dr. (4.3)

In the next sections, we always denote

(u(s, τ − t, θ−τω, uτ−t), v(s, τ − t, θ−τω, vτ−t), w(s, τ − t, θ−τω,wτ−t)), (4.4)

for s ∈ [τ − t, τ ], t ≥ 0, τ ∈ R and (uτ−t, vτ−t, wτ−t) ∈ X. Sometimes, write (4.4)
as u(or v, w)(s, τ − t, θ−τω), u(or v, w)(s, τ − t) or u(or v, w)(s) even u(or v, w) if
no confusions. Then we replace ω by θ−τω in system (3.1), and find that (4.4) are
solutions of the following system:

us = d1∆u− (F + k)u+ z−2(s, θ−τω)u2v −Gz−2(s, θ−τω)u3

+Nw + z(s, θ−τω)g1(s, x),

vs = d2∆v − Fv − z−2(s, θ−τω)u2v +Gz−2(s, θ−τω)u3

+z(s, θ−τω)g2(s, x),

ws = d3∆w − (F +N)w + ku+ z(s, θ−τω)g3(s, x).

(4.5)

Similar to [7], the following useful estimates can be proved with some slight
modifications.

Lemma 4.2. For every τ ∈ R, ω ∈ Ω and D ∈ D, there exists T := T (τ, ω,D) ≥ 3
such that for all t ≥ T and (uτ−t, vτ−t, wτ−t) ∈ D(τ − t, θ−tω),

‖u(τ)‖2 + ‖v(τ)‖2 + ‖w(τ)‖2 ≤ R1(τ, ω), (4.6)

‖u(τ)‖66 + ‖v(τ)‖66 + ‖w(τ)‖66 ≤ R2(τ, ω), (4.7)

and ∫ τ

τ−t
eF (s−τ)(‖u(s)‖2H1 + ‖v(s)‖2H1 + ‖w(s)‖2H1)ds ≤ R1(τ, ω),∫ τ

τ−t
eF (s−τ)(‖u(s)‖66 + ‖v(s)‖66 + ‖w(s)‖66)ds ≤ R2(τ, ω),
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where R1(τ, ω) := M + Mz−2(−τ, ω)
∫ 0

−∞ eFsz2(s, ω)‖g(s + τ, ·)‖2ds, R2(τ, ω) :=

M+Mz−6(−τ, ω)
∫ 0

−∞ eFsz6(s, ω)‖g(s+τ, ·)‖6Uds and M := M(F,G,N, k, d1, d2, d3).
In particular, we have∫ τ

τ−3
(‖u(s)‖2H1 + ‖v(s)‖2H1 + ‖w(s)‖2H1)ds ≤ R1(τ, ω), (4.8)∫ τ

τ−3
(‖u(s)‖66 + ‖v(s)‖66 + ‖w(s)‖66)ds ≤ R2(τ, ω). (4.9)

Lemma 4.3. For every τ ∈ R, ω ∈ Ω and D ∈ D, there exists T := T (τ, ω,D) ≥ 3
such that for all t ≥ T and (uτ−t, vτ−t, wτ−t) ∈ D(τ − t, θ−tω),

‖∇u(τ)‖2 + ‖∇v(τ)‖2 + ‖∇w(τ)‖2 ≤ R3(τ, ω),

where R3(τ, ω) := cR1(τ, ω)+cz4(−τ, ω)R2(τ, ω) with R1(τ, ω) and R2(τ, ω) defined
in Lemma 4.2.

Lemma 4.4. For τ ∈ R, ω ∈ Ω and D ∈ D are fixed, then for each ε > 0,
there exist T := T (ε) ≥ 3 and K := K(ε) ≥ 1 such that for all t ≥ T and
(uτ−t, vτ−t, wτ−t) ∈ D(τ − t, θ−tω),∫

|x|≥K
(u2(τ) + v2(τ) + w2(τ))dx < ε, (4.10)∫

|x|≥K
(u6(τ) + v6(τ) + w6(τ))dx < ε, (4.11)

and ∫ τ

τ−1

∫
|x|≥K

(u2(s) + v2(s) + w2(s) + |∇u(s)|2 + |∇v(s)|2 + |∇w(s)|2)dxds

+

∫ τ

τ−1

∫
|x|≥K

(u6(s) + v6(s))dxds < ε.

(4.12)

5. Uniform absorptions both in U and Y

This section establishes some uniform absorptions when the time belongs to a com-
pact interval, which are vital to show the D-pullback limit-set compactness in Y .
We always denote c and C := C(ω) by a generic constant and a generic random
variable respectively, which may alter values everywhere.

Lemma 5.1. For every τ ∈ R, ω ∈ Ω and D ∈ D, there exist T := T (τ, ω,D) ≥
3 and a finite function R4 : R × Ω → (0,+∞) such that for all t ≥ T and
(uτ−t, vτ−t, wτ−t) ∈ D(τ − t, θ−tω),

sup
s∈[τ−1,τ ]

(‖u(s)‖66 + ‖v(s)‖66 + ‖w(s)‖66) ≤ R4(τ, ω), (5.1)

sup
s∈[τ−1,τ ]

(‖u(s)‖2H1 + ‖v(s)‖2H1 + ‖w(s)‖2H1)

+

∫ τ

τ−1
(‖ur(r)‖2 + ‖vr(r)‖2 + ‖wr(r)‖2)dr ≤ R4(τ, ω). (5.2)
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Proof. Let

V (s, τ − t) =
1

G
v(s, τ − t), W (s, τ − t) =

N

k
w(s, τ − t), µ =

k

N
,

then (4.5) can be rewritten as

us = d1∆u− (F + k)u+Gz−2(s, θ−τω)u2V

−Gz−2(s, θ−τω)u3 + kW + z(s, θ−τω)g1(s, x),

Vs = d2∆V − FV − z−2(s, θ−τω)u2V + z−2(s, θ−τω)u3

+ 1
Gz(s, θ−τω)g2(s, x),

µWs = µd3∆W − (µF + k)W + ku+ z(s, θ−τω)g3(s, x).

(5.3)

Take the inner products of (5.3) with (u5, GV 5, W 5), and add them together to
derive

1

6

d

ds
(‖u‖66 +G‖V ‖66 + µ‖W‖66) + (F + k)‖u‖66 +GF‖V ‖66 + (µF + k)‖W‖66

≤−Gz−2(s, θ−τω)

∫
Rn

(u8 − u7V − u3V 5 + u2V 6)dx+ k(W,u5)

+ k(u,W 5) + z(s, θ−τω)
(
(g1(s, x), u5) + (g2(s, x), V 5) + (g3(s, x),W 5)

)
,

which, along with u8−u7V −u3V 5 +u2V 6 ≥ 0, the continuity of r → z(·, θrω) and
the Young inequality, shows that for all s ∈ [τ − 3, τ ],

d

ds
(‖u‖66 +G‖V ‖66 + µ‖W‖66) + F (‖u‖66 +G‖V ‖66 + µ‖W‖66) ≤ C‖g(s, ·)‖66. (5.4)

Using the Gronwall inequality (4.1) (with µ = 1) to (5.4), we obtain from (4.9) that
there exists T := T (τ, ω,D) ≥ 3 such that for all t ≥ T ,

sup
s∈[τ−1,τ ]

(‖u(s)‖66 +G‖V (s)‖66 + µ‖W (s)‖66)

≤C
∫ τ

τ−3
(‖u(r)‖66 +G‖V (r)‖66 + µ‖W (r)‖66)dr + C

∫ τ

τ−3
‖g(r, ·)‖66dr

≤CR2(τ, ω) + C

∫ 0

−3
‖g(r + τ, ·)‖66dr,

which implies (5.1) immediately.
To prove the uniform estimate (5.2), we take the inner products of (4.5) with

(us, vs, ws) and sum them up to have

1

2

d

ds
((F +N)‖u‖2 + d1‖∇u‖2 + F‖v‖2 + d2‖∇v‖2 + (F +N)‖w‖2

+ d3‖∇w‖2) + ‖us‖2 + ‖vs‖2 + ‖ws‖2

=z−2(s, θ−τω)
(
(u2v −Gu3, us)− (u2v −Gu3, vs)

)
+ (Nw, us) + (ku,ws)

+ z(s, θ−τω) ((g1(s, x), us) + (g2(s, x), vs) + (g3(s, x), ws)) ,

which means for all s ∈ [τ − 3, τ ],

d

ds
((F +N)‖u‖2 + d1‖∇u‖2 + F‖v‖2 + d2‖∇v‖2 + (F +N)‖w‖2

+ d3‖∇w‖2) + ‖us‖2 + ‖vs‖2 + ‖ws‖2

≤C(‖u‖66 + ‖v‖66 + ‖u‖2 + ‖w‖2 + ‖g(s, ·)‖2).

(5.5)
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Applying the Gronwall inequalities (4.1) and (4.2) (with µ = 1) to (5.5), it yields
from (4.8) and (4.9) that

sup
s∈[τ−1,τ ]

(‖u(s)‖2H1 + ‖v(s)‖2H1 + ‖w(s)‖2H1)

+

∫ τ

τ−1
(‖ur(r)‖2 + ‖vr(r)‖2 + ‖wr(r)‖2)dr

≤C
∫ τ

τ−3
(‖u(r)‖2H1 + ‖v(r)‖2H1 + ‖w(r)‖2H1)dr

+ C

∫ τ

τ−3
(‖u(r)‖66 + ‖v(r)‖66)dr + C

∫ 0

−3
‖g(r + τ, ·)‖2dr

≤C(R1(τ, ω) +R2(τ, ω) +

∫ 0

−3
‖g(r + τ, ·)‖2dr),

which completes the proof.

6. Uniform estimates outside a ball

We prove system (4.5) is asymptotically arbitrary small outside a ball under the
norm of Y .

Lemma 6.1. For τ ∈ R, ω ∈ Ω and D ∈ D are fixed, then for each ε > 0, there
exist T := T (ε) ≥ 3 and K := K(ε) ≥ 1 such that for all t ≥ T , ξ ≥ K and
(uτ−t, vτ−t, wτ−t) ∈ D(τ − t, θ−tω),∫

|x|≥ξ
(|∇u(τ)|2 + |∇v(τ)|2 + |∇w(τ)|2)dx < ε.

Proof. Let ρξ(x) = ρ( |x|
2

ξ2 ), x ∈ Rn and ξ > 0, where ρ : R+ → [0, 1] is a smooth
function satisfying

ρ(s) =

{
0, if 0 ≤ s ≤ 1,

1, if s ≥ 2.
(6.1)

Taking the inner products of (4.5) with (−ρξ∆u,−ρξ∆v,−ρξ∆w) and adding them
together, we deduce for all s ∈ [τ − 1, τ ],

1

2

d

ds

∫
Rn
ρξ(|∇u|2 + |∇v|2 + |∇w|2)dx+

∫
Rn
∇ρξ(us∇u+ vs∇v + ws∇w)dx

+

∫
Rn
ρξ(d1|∆u|2 + d2|∆v|2 + d3|∆w|2)dx

= ((F + k)u−Nw, ρξ∆u) + (Fv, ρξ∆v) + ((F +N)w − ku, ρξ∆w)

+ z−2(s, θ−τω)
(
(u2v −Gu3,−ρξ∆u)− (u2v −Gu3,−ρξ∆v)

)
− z(s, θ−τω) ((g1(s, x), ρξ∆u) + (g2(s, x), ρξ∆v) + (g3(s, x), ρξ∆w)) .

(6.2)

It is obvious to check that ‖∇ρξ‖∞ ≤ c
ξ for each ξ > 0, then there exists K1 :=
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K1(ε) ≥ 1 such that for all ξ ≥ K1,∫
Rn
∇ρξ(us∇u+ vs∇v + ws∇w)dx

≥− c

ξ
(‖us‖2 + ‖∇u‖2 + ‖vs‖2 + ‖∇v‖2 + ‖ws‖2 + ‖∇w‖2)

≥− ε(‖us‖2 + ‖∇u‖2 + ‖vs‖2 + ‖∇v‖2 + ‖ws‖2 + ‖∇w‖2).

(6.3)

We also choose K2 ≥ K1 such that for all ξ ≥ K2, the right hand side of (6.2) is
bounded by

1

2

∫
Rn
ρξ(d1|∆u|2 + d2|∆v|2 + d3|∆w|2)dx

+ C

∫
|x|≥ξ

(u6 + v6 + u2 + v2 + w2 + g2(s, x))dx,
(6.4)

whenever s ∈ [τ − 1, τ ]. Then it follows from (6.2)-(6.4) that for all ξ ≥ K2 and
s ∈ [τ − 1, τ ],

d

ds

∫
Rn
ρξ(|∇u|2 + |∇v|2 + |∇w|2)dx

≤ε(‖us‖2 + ‖∇u‖2 + ‖vs‖2 + ‖∇v‖2 + ‖ws‖2 + ‖∇w‖2)

+ C

∫
|x|≥ξ

(u6 + v6 + u2 + v2 + w2 + g2(s, x))dx.

(6.5)

By using the Gronwall inequality (4.1) (with µ = 1
3 and a = 0) to (6.5) and

combining with the Lebesgue theorem on (3.2), we have from (4.12) and (5.2) that∫
|x|≥
√
2ξ

(|∇u(τ)|2 + |∇v(τ)|2 + |∇w(τ)|2)dx

≤C
∫ τ

τ−1

∫
|x|≥ξ

(|∇u(s)|2 + |∇v(s)|2 + |∇w(s)|2)dxds+ C

∫ 0

−1

∫
|x|≥ξ

|g(s+ τ, x)|2dxds

+ C

∫ τ

τ−1

∫
|x|≥ξ

(u6(s) + v6(s) + u2(s) + v2(s) + w2(s))dxds

+ ε

∫ τ

τ−1
(‖us‖2 + ‖∇u‖2 + ‖vs‖2 + ‖∇v‖2 + ‖ws‖2 + ‖∇w‖2)ds

≤Cε,

which completes the proof.

7. Uniform estimates inside a ball

This section shows the D-pullback limit-set compactness of system (4.5) inH1
0 (Q√2ξ)

3

, where Q√2ξ = {x ∈ Rn : |x| <
√

2ξ} with ξ ≥ 1. To do this, define % = 1 − ρ,

where ρ is given in (6.1). Given ξ ≥ 1, let %ξ(x) = %( |x|
2

ξ2 ) for x ∈ Rn, we can easily
see that

(û, v̂, ŵ) := (û(s), v̂(s), ŵ(s)) = %ξ(u(s), v(s), w(s))
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are solutions of (by (4.5))

ûs = d1∆û− (F + k)û+ %ξz
−2(s, θ−τω)u2v −G%ξz−2(s, θ−τω)u3

+N%ξw + %ξz(s, θ−τω)g1(s, x)− d1u∆%ξ − 2d1∇%ξ∇u,
v̂s = d2∆v̂ − F v̂ − %ξz−2(s, θ−τω)u2v +G%ξz

−2(s, θ−τω)u3

+%ξz(s, θ−τω)g2(s, x)− d2v∆%ξ − 2d2∇%ξ∇v,
ŵs = d3∆ŵ − (F +N)ŵ + k%ξu+ %ξz(s, θ−τω)g3(s, x)

−d3w∆%ξ − 2d3∇%ξ∇w.

(7.1)

with the boundary condition

(û, v̂, ŵ) = 0, for |x| =
√

2ξ,

where s ∈ [τ − 1, τ ] with t ∈ R+, τ ∈ R and x ∈ Q√2ξ.

Let Hi = span{e1, e2, · · ·, ei} ⊂ H1
0 (Q√2ξ), Pi : H1

0 (Q√2ξ) → Hi the canonical
projector, I the identity and {λi}i≥1 eigenvalues related to eigenfunctions {ei}i≥1
of the operator −∆ with zero boundary condition in Q√2ξ. For any û ∈ H1

0 (Q√2ξ),
û has a unique orthogonal decomposition: û = Piû⊕ (I − Pi)û = û1 ⊕ û2.

Lemma 7.1. For τ ∈ R, ω ∈ Ω and D ∈ D are fixed, then for each ξ ≥ 1 and
ε > 0, there exist T := T (ε) ≥ 3 and N := N(ε) ≥ 1 such that for all t ≥ T , i ≥ N
and (uτ−t, vτ−t, wτ−t) ∈ D(τ − t, θ−tω),

‖(I − Pi) (û(τ) + v̂(τ) + ŵ(τ)) ‖2H1
0 (Q

√
2ξ)

< ε.

Proof. Since ‖u‖+ ‖∇u‖ is equivalent to ‖∇u‖ in H1
0 (Q√2ξ), it suffices to prove

for all t ≥ T and i ≥ N ,

‖∇û2(τ)‖2L2(Q√
2ξ)

+ ‖∇v̂2(τ)‖2L2(Q√
2ξ)

+ ‖∇ŵ2(τ)‖2L2(Q√
2ξ)

< ε.

To this end, taking the inner products of (7.1) with (−∆û2,−∆v̂2,−∆ŵ2) on Q√2ξ

and summing them up, we find for all s ∈ [τ − 1, τ ],

1

2

d

ds

(
‖∇û2‖2 + ‖∇v̂2‖2 + ‖∇ŵ2‖2

)
+ d1‖∆û2‖2 + d2‖∆v̂2‖2

+ d3‖∆ŵ2‖2 + (F + k)‖∇û2‖2 + F‖∇v̂2‖2 + (F +N)‖∇ŵ2‖2

=(N%ξw,−∆û2) + (k%ξu,−∆ŵ2) + (d1u∆%ξ + 2d1∇%ξ∇u,∆û2)

+ (d2v∆%ξ + 2d2∇%ξ∇v,∆v̂2) + (d3w∆%ξ + 2d3∇%ξ∇w,∆ŵ2)

+ z−2(s, θ−τω)
(
(%ξu

2v −G%ξu3,−∆û2)− (%ξu
2v −G%ξu3,−∆v̂2)

)
+ z(s, θ−τω) ((%ξg1(s, x),−∆û2) + (%ξg2(s, x),−∆v̂2))

+ ((%ξg3(s, x),−∆ŵ2)) .

(7.2)

Since s− τ ∈ [−1, 0] and ‖%ξ‖∞ ≤ 1, the last three lines in (7.2) are bounded by

d1
6
‖∆û2‖2 +

d2
6
‖∆v̂2‖2 +

d3
6
‖∆ŵ2‖2 + C(‖u‖66 + ‖v‖66 + ‖g(s, ·)‖2). (7.3)

By the Young inequality, we have

(N%ξw,−∆û2) + (k%ξu,−∆ŵ2)

≤d1
6
‖∆û2‖2 +

d3
6
‖∆ŵ2‖2 + c(‖u‖2 + ‖w‖2).

(7.4)
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Since

‖∇%ξ‖∞ = ‖ρ′ 2x
ξ2
‖∞ ≤

c

ξ
≤ c,

‖∆%ξ‖∞ = ‖ρ′′ 4x
2

ξ4
+ ρ′

2

ξ2
‖∞ ≤

c

ξ2
≤ c,

then the remaining terms on the right side of (7.2) are bounded by

d1
6
‖∆û2‖2 +

d2
6
‖∆v̂2‖2 +

d3
6
‖∆ŵ2‖2

+ c(‖u‖2 + ‖∇u‖2 + ‖v‖2 + ‖∇v‖2 + ‖w‖2 + ‖∇w‖2).
(7.5)

Note that ‖∆û2‖2 + ‖∆v̂2‖2 + ‖∆ŵ2‖2 ≥ λi+1(‖∇û2‖2 + ‖∇v̂2‖2 + ‖∇ŵ2‖2) on
Q√2ξ, we obtain from (7.2)-(7.5) that for all s ∈ [τ − 1, τ ],

d

ds

(
‖∇û2‖2 + ‖∇v̂2‖2 + ‖∇ŵ2‖2

)
+ d0λi+1

(
‖∇û2‖2 + ‖∇v̂2‖2 + ‖∇ŵ2‖2

)
≤C(‖u‖2 + ‖∇u‖2 + ‖v‖2 + ‖∇v‖2 + ‖w‖2 + ‖∇w‖2

+ ‖u‖66 + ‖v‖66 + ‖g(s, ·)‖2),

(7.6)

where d0 = min{d1, d2, d3}. Applying the Gronwall inequality (4.3) (with µ = 1
3 )

to (7.6), we derive

‖∇û2(τ)‖2 + ‖∇v̂2(τ)‖2 + ‖∇ŵ2(τ)‖2

≤3

∫ τ

τ−1
e−d0λi+1(τ−s)(‖∇û2(s)‖2 + ‖∇v̂2(s)‖2 + ‖∇ŵ(s)‖2)ds

+ C

∫ τ

τ−1
e−d0λi+1(τ−s)(‖u‖2 + ‖∇u‖2 + ‖v‖2

+ ‖∇v‖2 + ‖w‖2 + ‖∇w‖2)ds

+ C

∫ τ

τ−1
e−d0λi+1(τ−s)(‖u(s)‖66 + ‖v(s)‖66)ds

+ C

∫ 0

−1
ed0λi+1s‖g(s+ τ, ·)‖2ds.

(7.7)

By using the Lebesgue theorem on (3.2), we have that there exists N1 := N1(ε) ≥ 1
such that the last term in (7.7) is less than ε whenever i ≥ N1. By (5.1) and (5.2),
there exist T := T (ε) ≥ 3 and N2 ≥ N1 such that for all t ≥ T and i ≥ N2, the
second and third terms on the right side of (7.7) are bounded by

CR4(τ, ω)

∫ τ

τ−1
e−d0λi+1(τ−s)ds ≤ CR4

d0λi+1
< ε. (7.8)

By ‖∇%ξ‖∞ ≤ c again, we obtain

‖∇û2‖2 = ‖u2∇%ξ + %ξ∇u2‖2 ≤ c(‖u‖2 + ‖∇u‖2).

Similarly, we can prove the boundedness of ‖∇v̂2‖2 and ‖∇ŵ2‖2 for all t ≥ T , in
view of (5.2). Then there exists N ≥ N2 such that for all i ≥ N , the first term on
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the right side of (7.7) is bounded by

c

∫ τ

τ−1
e−d0λi+1(τ−s)(‖u‖2 + ‖∇u‖2 + ‖v‖2 + ‖∇v‖2 + ‖w‖2 + ‖∇w‖2)ds

≤ cR4

d0λi+1
< ε. (7.9)

It follows from (7.7)-(7.9) that for all i ≥ N and t ≥ T ,

‖∇û2(τ)‖2L2(Q√
2ξ)

+ ‖∇v̂2(τ)‖2L2(Q√
2ξ)

+ ‖∇ŵ2(τ)‖2L2(Q√
2ξ)

< 3ε,

which shows the desired inequality.

8. Proof of the main result

In this section, based on the above necessary estimates, we are now in a position to
prove Theorem 3.1 by using Proposition 2.1.

Proof of Theorem 3.1. Recall X = L2(Rn)3 ∩ L6(Rn)3 and Y = H1(Rn)3, then
it is obvious that (X,Y ) is a limit-identical pair. The cocycle Φ defined in (3.3)
is continuous on X and takes values in Y . By (4.6), Φ has a closed, measurable
absorbing set K ∈ D. By (4.10) and Lemma 4.3, it is simple to prove Φ is D-
pullback limit-set compact in L2(Rn)3. Therefore, by Proposition 2.1, it remains to
show that Φ is D-pullback limit-set compact in Y .

For τ ∈ R, ω ∈ Ω and D ∈ D are fixed, define

B(T ) =
⋃
t≥T

Φ(t, τ − t, θ−tω)D(τ − t, θ−tω).

Given ε > 0, by (4.10) and Lemma 6.1, there exist T1 := T1(ε) ≥ 3 and K1 :=
K1(ε) ≥ 1 such that for each ξ ≥ K1,

‖u‖2H1(Qcξ)
+ ‖v‖2H1(Qcξ)

+ ‖w‖2H1(Qcξ)
< ε, for all (u, v, w) ∈ B(T1). (8.1)

By Lemma 7.1, there exist i := i(ε) ≥ 1 and T2 ≥ T1 such that

‖(I − Pi)û‖2H1
0 (Q

√
2ξ)

+ ‖(I − Pi)v̂‖2H1
0 (Q

√
2ξ)

+ ‖(I − Pi)ŵ‖2H1
0 (Q

√
2ξ)

< ε,

for all (u, v, w) ∈ B(T2),
(8.2)

where (û, v̂, ŵ) := %ξ(u, v, w) and %ξ is the bounded function given in Lemma 7.1.
By (4.6) and Lemma 4.3, there is T3 ≥ T2 such that B(T3) is bounded in Y and
thus B̂(T3) := {(û, v̂, ŵ); (u, v, w) ∈ B(T3)} is bounded in H1

0 (Q√2ξ)
3, which shows

PiB̂(T3) is bounded in the finite dimensional subspace
(
Pi(H

1
0 (Q√2ξ))

)3
. There-

fore, PiB̂(T3) is pre-compact in H1
0 (Q√2ξ)

3 and thus κH1
0 (Q

√
2ξ)

3(PiB̂(T3)) = 0,

where κ(·) is the Kuratowski measure. This, combining with (8.2), implies

κH1
0 (Q

√
2ξ)

3(B̂(T3)) ≤ κH1
0 (Q

√
2ξ)

3(PiB̂(T3)) + κH1
0 (Q

√
2ξ)

3((I − Pi)B̂(T3)) < 2ε,

which shows B̂(T3) is pre-compact in H1
0 (Q√2ξ)

3. Since (û, v̂, ŵ) = %ξ(u, v, w) =
(u, v, w) on Qξ, we obtain

κH1
0 (Qξ)

3(B(T3)) = κH1
0 (Qξ)

3(B̂(T3)) ≤ κH1
0 (Q

√
2ξ)

3(B̂(T3)) < 2ε,



Regularity of pullback attractors for reaction-diffusion systems 897

which, along with (8.1), implies

κY (B(T3)) ≤ κH1
0 (Qξ)

3(B(T3)) + ε < 3ε.

Thus Φ is D-pullback limit-set compact in Y , and Φ has indeed an (X,Y )-
pullback attractor, so is Φ̂ in view of the equivalence of Φ and Φ̂.
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