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THREE-DIMENSIONAL DYNAMICAL
SYSTEMS WITH FOUR-DIMENSIONAL
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Nail H. Ibragimov1,2,† and Aliya A. Gainetdinova2

Abstract Dynamical systems attract much attention due to their wide ap-
plications. Many significant results have been obtained in this field from var-
ious points of view. The present paper is devoted to an algebraic method of
integration of three-dimensional nonlinear time dependent dynamical systems
admitting nonlinear superposition with four-dimensional Vessiot-Guldberg-Lie
algebras L4. The invariance of the relation between a dynamical system admit-
ting nonlinear superposition and its Vessiot-Guldberg-Lie algebra is the core
of the integration method. It allows to simplify the dynamical systems in ques-
tion by reducing them to standard forms. We reduce the three-dimensional
dynamical systems with four-dimensional Vessiot-Guldberg-Lie algebras to 98
standard types and show that 86 of them are integrable by quadratures.
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1. Introduction

We consider time dependent nonlinear dynamical systems given by first-order
ordinary differential equations

dxi

dt
= f i(t, x), i = 1, . . . , n, (1.1)

with n > 1 dependent variables x1, . . . , xn. We denoted by x the n-dimensional
vector

x = (x1, . . . , xn)

and refer to the system (1.1) as an n-dimensional dynamical system.
A major obstacle in investigating nonlinear dynamical systems is that they do

not obey the usual superposition principle which provides powerful tools in dealing
with linear systems. Furthermore, integration methods based on Lie group analysis
of differential equations are not effective for dealing with the system (1.1) because
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determining equations for calculating Lie symmetries are not over-determined in the
case of first-order ordinary differential equations. Therefore only narrow categories
of particular nonlinear dynamical systems can be solved analytically. Consequently,
nonlinear systems are mostly analyzed by numerical methods or by approximating
them by linear systems using, e.g. perturbation theory.

In this paper we are concerned with constructing wide classes of integrable three-
dimensional dynamical systems (1.1) using, instead of the linear superposition prin-
ciple, the more general concept of nonlinear superpositions introduced in 1893 by
Vessiot [1], Guldberg [2] and Lie [3].

S. Lie [4] noticed in 1885 that the key features of linear ordinary differential
equations

dxi

dt
= aik(t)xk, i = 1, . . . , n,

are based on the fact that the differential operators

Xik = xi
∂

∂xk
, i, k = 1, . . . , n,

generate a finite continuous group, namely the linear homogeneous group with n
variables xi. This observation led him (see [4], §8) to believe that the main properties
of the linear equations can be extended to the nonlinear equations having the form
of generalized separation of variables:

dxi

dt
= T1(t)ξi1(x) + · · ·+ Tr(t)ξ

i
r(x), i = 1, . . . , n, (1.2)

provided that the linear span Lr of the first-order differential operators

Xα = ξiα(x)
∂

∂xi
, α = 1, . . . , r, (1.3)

is closed under the commutator:

[Xα, Xβ ] = cγαβXγ . (1.4)

It means that Lr is a finite-dimensional Lie algebra. The coefficients Tα(t) in
Equations (1.2) are any smooth functions of the variable t. S. Lie showed (see [4,
p.128]) that the general solution of his system (1.2) can be expressed via a certain
finite number m of particular solutions

x1 = (x11, . . . , x
n
1 ), . . . , xm = (x1m, . . . , x

n
m) (1.5)

of the system (1.2) and that the expression (nonlinear superposition)

x = ϕ(x1, . . . , xm, C1, . . . , Cn) (1.6)

for the general solution x = (x1, . . . , xn) as a function of the particular solutions
(1.5) and arbitrary constants C1, . . . , Cn is obtained by solving the equations

Ji(x, x1, . . . , xm) = Ci, i = 1, . . . , n, (1.7)

with respect to x = (x1, . . . , xn), where Ji are invariants ofm+1 points x, x1, . . . , xm
with respect to the group with the basic generators X1, . . . , Xr.

Later E. Vessiot [1] and A. Guldberg [2] came to a lucky idea to look for all sys-
tems of ordinary differential equations possessing fundamental systems of integrals,
or in modern terminology, admitting nonlinear superpositions.
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Definition 1.1. A dynamical system (1.1) admits a nonlinear superposition if the
general solution of the system (1.1) can be written as a vector function (1.6) of a
finite number of its particular solutions (1.5) and n arbitrary constants C1, . . . , Cn.

The solution to Vessiot-Guldberg’s problem was given by S. Lie. He announced
in [3] the following statement (the detailed proof is published in [5, Chapter 24, pp.
793-804]; see also [6, Sect. 6.7]).

Theorem 1.1. The system (1.1) admits a nonlinear superposition if and only if it
has the form of generalized separation of variables (1.2). The number m of necessary
particular solutions (1.5) is estimated by

nm ≥ r. (1.8)

The nonlinear superposition (1.6) for the system (1.2) is given by the equation (1.7).

The algebra Lr spanned by the operators (1.3) is called the Vessiot-Guldberg-Lie
algebra for the dynamical system (1.2).

A renowned example of a first-order ordinary differential equation admitting a
nonlinear superposition is provided by the general Riccati equation

dx

dt
= P (t) +Q(t)x+R(t)x2.

In this example n = 1, r = 3, the nonlinear superposition (1.6) is given by the
cross-ratio theorem stating that any four solutions x1, x2, x3 and x of the Riccati
equation are connected by the equation

(x− x2)(x3 − x1)

(x1 − x)(x2 − x3)
= C, C = const.

The operators (1.3) of the Vessiot-Guldberg-Lie algebra have the form

X1 =
∂

∂x
, X2 = x

∂

∂x
, X3 = x2

∂

∂x
,

and the number of necessary particular solutions is m = 3, hence the estimation
(1.8) is satisfied with the equality sign.

We have demonstrated in [7] that there are 31 standard forms of time dependent
three-dimensional dynamical systems (1.1) admitting nonlinear superpositions with
three-dimensional Vessiot-Guldberg-Lie algebras L3. The solvable L3 provide 24
standard forms that are integrable by quadratures.

The purpose of the present paper is to enumerate standard forms of three-
dimensional nonlinear dynamical systems admitting nonlinear superpositions with
four-dimensional Vessiot-Guldberg-Lie algebras L4 and to single out the integrable
systems. We adopt here the notation and terminology used in [7].

2. Integration method

A method for integration of dynamical systems admitting nonlinear superposi-
tion has been suggested in [8, Section 11.2]. The method is based on the fact that
dynamical systems admitting nonlinear superposition and their Vessiot-Guldberg-
Lie algebras behave coherently under any change of the dependent variables

x̃i = x̃i(x), i = 1, . . . , n. (2.1)
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Table 1. Non-isomorphic structures of four-dimensional real Lie algebras

Type [X1, X2] [X2, X3] [X1, X3] [X1, X4] [X2, X4] [X3, X4]
I 0 0 0 0 0 0
II X1 0 0 0 0 0
III X1 0 0 0 0 X3

IV 0 X1 0 0 0 0
V 0 X1 +X2 X1 0 0 0
VI 0 X2 X1 0 0 0
VII 0 hX2 X1 0 0 0
VIII 0 X1 + bX2 bX1 −X2 0 0 0
IX X1 X3 2X2 0 0 0
X X3 X1 −X2 0 0 0
XI 0 0 0 0 X1 X2

XII 0 0 0 aX1 X2 X2 +X3

XIII 0 0 0 X1 0 X2

XIV 0 0 0 X1 X1 +X2 X2 +X3

XV 0 0 0 aX1 bX2 cX3

XVI 0 0 0 aX1 bX2 −X1 X2 + bX3

XVII 0 X1 0 2X1 X2 X2 +X3

XVIII 0 X1 0 (1 + h)X1 X2 hX3

XIX 0 X1 0 2bX1 bX2 −X3 X2 + bX3

XX 0 X2 X1 −X2 X1 0

Namely, it can be shown ( [9], see also [7]) that the system (1.2) is written in the
new variables (2.1) in the form

dx̃i

dt
= T1(t)ξ̃i1(x̃) + · · ·+ Tr(t)ξ̃

i
r(x̃), i = 1, . . . , n, (2.2)

where ξα = (ξ1α, . . . , ξ
n
α) are transformed according to the vector law

ξ̃iα =
∂x̃i(x)

∂xj
ξjα , i = 1, . . . , n, (2.3)

and the coefficients Tα(t) in Equations (2.2) are the same as in Equations (1.2).
According to the above property, one can simplify dynamical systems admitting

nonlinear superposition by reducing bases ξα of the Vessiot-Guldberg-Lie algebras
to simple (standard) forms using appropriate changes of variables (2.1).

3. Four-dimensional Lie algebras in the real domain

Recall that the non-isomorphic structures of four-dimensional Lie algebras L4

in the complex domain were described by S. Lie [10]. We will use the classification
in the real domain given in [11]. It is presented in our paper in Table 1. Note that
the constants in Table 1 satisfy the conditions a 6= 0, |h| ≤ 1, c 6= 0, b ≥ 0.

For our integration purposes we need realizations of Lie algebras L4 by first-
order linear partial differential operators in the three-dimensional space. The enu-
meration of non-similar realizations of four-dimensional real Lie algebras in the
three-dimensional space can be found in recent publications [12,13]. The paper [12]
deals with classification of systems of second-order ordinary differential equations.
Paper [13] contains a useful short review of results and an extensive list of litera-
ture on classification of low-dimensional Lie algebras. In Tables 2 and 3 we use the
realizations given in [13].
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4. Standard forms of L4 and associated dynamical
systems

We write the three-dimensional dynamical systems (1.2) admitting nonlinear
superposition with four-dimensional Vessiot-Guldberg-Lie algebras in the form

x′ = ξ11(x, y, z)T1(t) + ξ12(x, y, z)T2(t) + ξ13(x, y, z)T3(t) + ξ14(x, y, z)T4(t),

y′ = ξ21(x, y, z)T1(t) + ξ22(x, y, z)T2(t) + ξ23(x, y, z)T3(t) + ξ24(x, y, z)T4(t),

z′ = ξ31(x, y, z)T1(t) + ξ32(x, y, z)T2(t) + ξ33(x, y, z)T3(t) + ξ34(x, y, z)T4(t),

(4.1)

where x′, y′, z′ denote the derivatives of the dependent variables x, y, z with respect
to t. We reduce all systems (4.1) into standard forms by using the realizations of
non-isomorphic real Lie algebras L4. The result is given in Tables 2 and 3. Table
2 contains the standard forms of the system (4.1) associated with solvable Vessiot-
Guldberg-Lie algebras L4. In this table ϕ(z), ψ(z), θ(z) and θ(y, z) are arbitrary
functions. Table 3 contains the standard forms of the system (4.1) associated with
nonsolvable Vessiot-Guldberg-Lie algebras L4.

5. Discussion of Tables 2 and 3

Tables 2 and 3 show that there exist 98 distinctly different classes of systems
(4.1). Applying an arbitrary change of the dependent variables x, y, z to each class of
the equations from Tables 2 and 3 one obtains an infinite set of three-dimensional dy-
namical systems admitting nonlinear superposition with four-dimensional Vessiot-
Guldberg-Lie algebras. After a detailed inspection of Tables 2 and 3 we conclude
that 86 classes of the systems (4.1) with solvable L4, namely, the systems 1-84, 86
and 89 from Table 2 are integrable by quadratures. Note that the system 32 can
be integrated reducing it to the system

x′ = T̃1(t̃) + bx+ y, y′ = T̃2(t̃) + by − y, z′ = T̃3(t̃)

by introducing the new independent variable t̃ =
∫
T3(t)dt. The systems 33, 68 and

84 are integrated likewise. The systems 85, 87 and 88 from Table 2 provide linear
systems with variable coefficients and, in general, are not integrable by quadratures.
The systems with nonsolvable L4 (Table 3) are nonlinear and not integrable by
quadratures.

6. Conclusions

The three-dimensional dynamical systems (4.1) admitting nonlinear superposi-
tion with four-dimensional Vessiot-Guldberg-Lie algebras are mapped to standard
forms. They are classified into 98 classes presented in Tables 2 and 3. Each class
is a representative of an infinite set of equations involving three arbitrary func-
tions of three variables. Systems associated with solvable four-dimensional Vessiot-
Guldberg-Lie algebras are classified into 89 classes presented in Table 2, among
them 86 are integrable by quadratures.
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Tables

Table 2. Dynamical systems with solvable L4

Type # Operators Systems

I 1 ∂
∂x
, ∂

∂y
, z ∂

∂x
+ ϕ(z) ∂

∂y
,

θ(z) ∂
∂x

+ ψ(z) ∂
∂y

x′ = T1(t) + zT3(t) + θ(z)T4(t),
y′ = T2(t) + ϕ(z)T3(t) + ψ(z)T4(t),
z′ = 0

2 ∂
∂x
, y ∂

∂x
, z ∂

∂x
, θ(y, z) ∂

∂x

x′ = T1(t) + yT2(t) + zT3(t) + θ(y, z)T4(t),
y′ = 0,
z′ = 0

3 ∂
∂x
, y ∂

∂x
, ϕ(y) ∂

∂x
, ψ(y) ∂

∂x

x′ = T1(t) + yT2(t) + ϕ(y)T3(t) + ψ(y)T4(t),
y′ = 0,
z′ = 0

II 4 ∂
∂x
, x ∂

∂x
, ∂

∂y
, ∂

∂z

x′ = T1(t) + xT2(t),
y′ = T3(t),
z′ = T4(t)

5 ∂
∂x
, x ∂

∂x
+ z ∂

∂z
, ∂

∂y
, z ∂

∂x

x′ = T1(t) + xT2(t) + zT4(t),
y′ = T3(t),
z′ = zT2(t)

6 ∂
∂x
, x ∂

∂x
+ϕ(z) ∂

∂y
, ∂

∂y
, z ∂

∂y

x′ = T1(t) + xT2(t),
y′ = ϕ(z)T2(t) + T3(t) + zT4(t),
z′ = 0

7 ∂
∂x
, x ∂

∂x
+ y ∂

∂y
+ z ∂

∂z
, y ∂

∂x
,

z ∂
∂x

x′ = T1(t) + xT2(t) + yT3(t) + zT4(t),
y′ = yT2(t),
z′ = zT2(t)

III 8 ∂
∂x
, x ∂

∂x
+ ∂

∂z
, ∂

∂y
, y ∂

∂y
+

C ∂
∂z

x′ = T1(t) + xT2(t),
y′ = T3(t) + yT4(t),
z′ = T2(t) + CT4(t)

9 ∂
∂x
, x ∂

∂x
+ z ∂

∂y
, ∂

∂y
, y ∂

∂y
+

z ∂
∂z

x′ = T1(t) + xT2(t),
y′ = zT2(t) + T3(t) + yT4(t),
z′ = zT4(t)

10 ∂
∂x
, x ∂

∂x
, ∂

∂y
, y ∂

∂y

x′ = T1(t) + xT2(t),
y′ = T3(t) + yT4(t),
z′ = 0

11 ∂
∂x
, x ∂

∂x
+

y ∂
∂y
, y ∂

∂x
, −y ∂

∂y
+ ∂

∂z

x′ = T1(t) + xT2(t) + yT3(t),
y′ = y[T2(t)− T4(t)],
z′ = T4(t)

12 ∂
∂x
, x ∂

∂x
+y ∂

∂y
, y ∂

∂x
, −y ∂

∂y

x′ = T1(t) + xT2(t) + yT3(t),
y′ = y[T2(t)− T4(t)],
z′ = 0

IV 13 ∂
∂x
, ∂

∂z
, z ∂

∂x
, ∂

∂y

x′ = T1(t) + zT3(t),
y′ = T4(t),
z′ = T2(t)

14 ∂
∂x
, ∂

∂z
, z ∂

∂x
+ϕ(y) ∂

∂z
, y ∂

∂x

x′ = T1(t) + zT3(t) + yT4(t),
y′ = 0,
z′ = T2(t) + ϕ(y)T3(t)

V 15 ∂
∂x
, ∂

∂y
, (x+y) ∂

∂x
+y ∂

∂y
, ∂
∂z

x′ = T1(t) + (x+ y)T3(t),
y′ = T2(t) + yT3(t),
z′ = T4(t)

16 ∂
∂x
, ∂

∂y
, (x + y) ∂

∂x
+ y ∂

∂y
+

∂
∂z
, ez

(
z ∂
∂x

+ ∂
∂y

)
x′ = T1(t) + (x+ y)T3(t) + zezT4(t),
y′ = T2(t) + yT3(t) + ezT4(t),
z′ = T3(t)

17 ∂
∂x
, ∂

∂y
, (x + y) ∂

∂x
+ y ∂

∂y
+

∂
∂z
, ez ∂

∂x

x′ = T1(t) + (x+ y)T3(t) + ezT4(t),
y′ = T2(t) + yT3(t),
z′ = T3(t)
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Table 2 (Continued)
Type # Operators Systems

18 ∂
∂x
, y ∂

∂x
, x ∂

∂x
− ∂

∂y
, ∂

∂z

x′ = T1(t) + yT2(t) + xT3(t),
y′ = −T2(t),
z′ = T4(t)

19 ∂
∂x
, y ∂

∂x
,x ∂

∂x
− ∂

∂y
,ze−y ∂

∂x

x′ = T1(t) + yT2(t) + xT3(t) + ze−yT4(t),
y′ = −T2(t),
z′ = 0

20 ∂
∂x
, y ∂

∂x
, x ∂

∂x
− ∂

∂y
, e−y ∂

∂x

x′ = T1(t) + yT2(t) + xT3(t) + e−yT4(t),
y′ = −T2(t),
z′ = 0

VI 21 ∂
∂x
, ∂

∂y
, x ∂

∂x
+ y ∂

∂y
, ∂

∂z

x′ = T1(t) + xT3(t),
y′ = T2(t) + yT3(t),
z′ = T4(t)

22 ∂
∂x
, ∂

∂y
, x ∂

∂x
+ y ∂

∂y
+ ∂

∂z
,

ez ∂
∂x

x′ = T1(t) + xT3(t) + ezT4(t),
y′ = T2(t) + yT3(t),
z′ = T3(t)

23 ∂
∂x
, ∂

∂y
, x ∂

∂x
+ ∂

∂z
, ϕ(y) ∂

∂z

x′ = T1(t) + xT3(t),
y′ = T2(t),
z′ = T3(t) + ϕ(y)T4(t)

24 ∂
∂x
, ∂

∂y
, x ∂

∂x
+ ∂

∂z
, ez ∂

∂x

x′ = T1(t) + xT3(t) + ezT4(t),
y′ = T2(t),
z′ = T3(t)

VII 25 ∂
∂x
, ∂

∂y
, x ∂

∂x
+ ay ∂

∂y
, ∂

∂z

x′ = T1(t) + xT3(t),
y′ = T2(t) + ayT3(t),
z′ = T4(t)

26 ∂
∂x
, ∂

∂y
, x ∂

∂x
+ ay ∂

∂y
+ ∂

∂z
,

ez ∂
∂x

+ eaz ∂
∂y

x′ = T1(t) + xT3(t) + ezT4(t),
y′ = T2(t) + ayT3(t) + eazT4(t),
z′ = T3(t)

27 ∂
∂x
, ∂

∂y
, x ∂

∂x
+ ay ∂

∂y
+ ∂

∂z
,

ez ∂
∂x

x′ = T1(t) + xT3(t) + ezT4(t),
y′ = T2(t) + ayT3(t),
z′ = T3(t)

28 ∂
∂x
, y ∂

∂x
, x ∂

∂x
+ (1 − a)y ∂

∂y
,

∂
∂z

x′ = T1(t) + yT2(t) + xT3(t),
y′ = (1− a)yT3(t),
z′ = T4(t)

29 ∂
∂x
, y ∂

∂x
, x ∂

∂x
+ (1 − a)y ∂

∂y
,

z|y|
1

1−a ∂
∂x

x′ = T1(t) + yT2(t) + xT3(t) + z|y|
1

1−a T4(t),
y′ = (1− a)yT3(t),
z′ = 0

30 ∂
∂x
, y ∂

∂x
, x ∂

∂x
+ (1 − a)y ∂

∂y
,

|y|
1

1−a ∂
∂x

x′ = T1(t) + yT2(t) + xT3(t) + z|y|
1

1−a T4(t),
y′ = (1− a)yT3(t),
z′ = 0

31 ∂
∂x
, ∂
∂y
,x ∂

∂x
+ ay ∂

∂y
+ ∂

∂z
,

eaz ∂
∂y

x′ = T1(t) + xT3(t) + ezT4(t),
y′ = T2(t) + ayT3(t) + eazT4(t),
z′ = T3(t)

VIII 32 ∂
∂x
, ∂

∂y
, (bx + y) ∂

∂x
+ (by −

x) ∂
∂y
, ∂

∂z

x′ = T1(t) + (bx+ y)T3(t),
y′ = T2(t) + (by − x)T3(t),
z′ = T4(t)

33 ∂
∂x
, ∂

∂y
, (bx + y) ∂

∂x
+ (by −

x) ∂
∂y

+ ∂
∂z
, ebz(cos(z) ∂

∂x
−

sin(z) ∂
∂y

)

x′ = T1(t) + (bx+ y)T3(t) + ebz cos(z)T4(t),
y′ = T2(t) + (by − x)T3(t)− ebz sin(z)T4(t),
z′ = T3(t)

34 ∂
∂x
, y ∂

∂x
, (b − y)x ∂

∂x
− (1 +

y2) ∂
∂y
, ∂

∂z

x′ = T1(t) + yT2(t) + (b− y)xT3(t),
y′ = −(1 + y2)T3(t),
z′ = T4(t)
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35

∂
∂x
, y ∂

∂x
,

(b− y)x ∂
∂x
− (1 + y2) ∂

∂y
,

z
√

1 + y2 exp(−b arctan(y)) ∂
∂x

x′ = T1(t) + yT2(t) + (b− y)xT3(t)
+z
√

1− y2 exp(−b arctan(y))T4(t),
y′ = −(1 + y2)T3(t),
z′ = 0

36

∂
∂x
, y ∂

∂x
,

(b− y)x ∂
∂x
− (1 + y2) ∂

∂y
,√

1 + y2 exp(−b arctan(y)) ∂
∂x

x′ = T1(t) + yT2(t) + (b− y)xT3(t)
+
√

1− y2 exp(−b arctan(y))T4(t),
y′ = −(1 + y2)T3(t),
z′ = 0

XI 37 ∂
∂x
, ∂

∂y
, ∂

∂z
, y ∂

∂x
+ z ∂

∂y

x′ = T1(t) + yT4(t),
y′ = T2(t) + zT4(t),
z′ = T3(t)

38 ∂
∂x
, ∂
∂y
,− 1

2
z2 ∂

∂x
+z ∂

∂y
, y ∂

∂x
−

∂
∂z

x′ = T1(t)− 1
2
z2T3(t) + yT4(t),

y′ = T2(t) + zT3(t),
z′ = −T4(t)

39 ∂
∂x
, y ∂

∂x
, ∂

∂z
, yz ∂

∂x
− ∂

∂y

x′ = T1(t) + yT2(t) + yzT4(t),
y′ = −T4(t),
z′ = T3(t)

40 ∂
∂x
, y ∂

∂x
, z ∂

∂x
, − ∂

∂y
− y ∂

∂z

x′ = T1(t) + yT2(t) + zT4(t),
y′ = −T4(t),
z′ = −yT4(t)

41 ∂
∂x
, y ∂

∂x
, 1

2
y2 ∂

∂x
, − ∂

∂y

x′ = T1(t) + yT2(t) +
1
2
y2T3(t),

y′ = −T4(t),
z′ = 0

XII 42
∂
∂x
, ∂
∂y
, ∂
∂z
,

bx ∂
∂x

+ (y + z) ∂
∂y

+ z ∂
∂z

x′ = T1(t) + bxT4(t),
y′ = T2(t) + (y + z)T4(t),
z′ = T3(t) + zT4(t)

43 ∂
∂x
, ∂

∂y
, z ∂

∂y
, bx ∂

∂x
+ y ∂

∂y
−

∂
∂z

x′ = T1(t) + bxT4(t),
y′ = T2(t) + zT3(t) + yT4(t),
z′ = −T4(t)

44 ∂
∂x
, y ∂

∂x
, ∂

∂z
, (bx+ yz) ∂

∂x
+

(b− 1) y ∂
∂y

+ z ∂
∂z

x′ = T1(t) + yT2(t) + (bx+ yz)T4(t),
y′ = (b− 1)yT4(t),
z′ = T3(t) + zT4(t)

45 ∂
∂x
, y ∂

∂x
, z ∂

∂x
, bx ∂

∂x
+ (b −

1)y ∂
∂y

+ ((b− 1)z − y) ∂
∂z

x′ = T1(t) + yT2(t) + zT3(t) + bxT4(t),
y′ = (b− 1)yT4(t),
z′ = ((b− 1)z − y)T4(t)

46 ∂
∂x
, ∂

∂y
, e(1−b)z ∂

∂x
+ z ∂

∂y
,

bx ∂
∂x

+ y ∂
∂y
− ∂

∂z

x′ = T1(t) + e(1−b)zT3(t) + bxT4(t),
y′ = T2(t) + zT3(t) + yT4(t),
z′ = −T4(t)

47 ∂
∂x
, y ∂

∂x
, y
1−b

ln |y| ∂
∂x
, bx ∂

∂x
+

(b− 1)y ∂
∂y

x′ = T1(t) + yT2(t) +
y

1−b
ln |y|T3(t) + bxT4(t),

y′ = (b− 1)yT4(t),
z′ = 0

XIII 48 ∂
∂x
, ∂

∂y
, ∂

∂z
, x ∂

∂x
+ z ∂

∂y

x′ = T1(t) + xT4(t),
y′ = T2(t) + zT4(t),
z′ = T3(t)

49 ∂
∂x
, ∂
∂y
, εe−z ∂

∂x
+z ∂

∂y
, x ∂

∂x
−

∂
∂z

x′ = T1(t) + εe−zT3(t) + xT4(t),
y′ = T2(t) + zT3(t),
z′ = −T4(t)

50 ∂
∂x
, y ∂

∂x
, ∂

∂z
, (x+ yz) ∂

∂x
+

y ∂
∂y

x′ = T1(t) + yT2(y) + (x+ yz)T4(t),
y′ = yT4(t),
z′ = T3(t)

51 ∂
∂x
, y ∂

∂x
, z ∂

∂x
, x ∂

∂x
+ y ∂

∂y
+

(z − y) ∂
∂z

x′ = T1(t) + yT2(t) + zT3(t) + xT4(t),
y′ = yT4(t),
z′ = (z − y)T4(t)
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52 ∂
∂x
, y ∂

∂x
, −y ln |y| ∂

∂x
, x ∂

∂x
+

y ∂
∂y

x′ = T1(t) + yT2(t)− y ln |y|T3(t) + xT4(t),
y′ = yT4(t),
z′ = 0

XIV 53 ∂
∂x
, ∂

∂y
, ∂

∂z
, (x+ y) ∂

∂x
+ (y +

z) ∂
∂y

+ z ∂
∂z

x′ = T1(t) + (x+ y)T4(t),
y′ = T2(t) + (y + z)T4(t),
z′ = T3(t) + zT4(t)

54 ∂
∂x
, ∂

∂y
, − 1

2
z2 ∂

∂x
+ z ∂

∂y
, (x+

y) ∂
∂x

+ y ∂
∂y
− ∂

∂z

x′ = T1(t)− 1
2
z2T3(t) + (x+ y)T4(t),

y′ = T2(t) + zT3(t) + yT4(t),
z′ = −T4(t)

55 ∂
∂x
, y ∂

∂x
, ∂

∂z
, (x+ yz) ∂

∂x
−

∂
∂y

+ z ∂
∂z

x′ = T1(t) + yT2(t) + (x+ yz)T4(t),
y′ = −T4(t),
z′ = T3(t) + zT4(t)

56 ∂
∂x
, y ∂

∂x
, z ∂

∂x
, x ∂

∂x
− ∂

∂y
−y ∂

∂z

x′ = T1(t) + yT2(t) + zT3(t) + xT4(t),
y′ = −T4(t),
z′ = −yT4(t)

57 ∂
∂x
, y ∂

∂x
, 1

2
y2 ∂

∂x
, x ∂

∂x
− ∂

∂y

x′ = T1(t) + yT2(t) +
1
2
y2T3(t) + xT4(t),

y′ = −T4(t),
z′ = 0

XV 58 ∂
∂x
, ∂

∂y
, ∂

∂z
, ax ∂

∂x
+ by ∂

∂y
+

cz ∂
∂z

x′ = T1(t) + axT4(t),
y′ = T2(t) + byT4(t),
z′ = T3(t) + czT4(t)

59 ∂
∂x
, y ∂

∂x
, z ∂

∂x
, ax ∂

∂x
+

(a− b) y ∂
∂y

+ (a− c) z ∂
∂z

x′ = T1(t) + yT2(t) + zT3(t) + axT4(t),
y′ = (a− b)yT4(t),
z′ = (a− c)zT4(t)

60 ∂
∂x
, ∂
∂y
, z ∂

∂x
+ϕ(z) ∂

∂y
, x ∂

∂x
+

y ∂
∂y

x′ = T1(t) + zT3(t) + axT4(t),
y′ = T2(t) + ϕ(z)T3(t) + yT4(t),
z′ = 0

61 ∂
∂x
, ∂

∂y
, ϕ(y) ∂

∂x
, x ∂

∂x
+ ∂

∂z

x′ = T1(t) + ϕ(y)T3(t) + xT4(t),
y′ = T2(t),
z′ = T4(t)

62 ∂
∂x
, ∂

∂y
, ϕ(y) ∂

∂x
, x ∂

∂x

x′ = T1(t) + ϕ(y)T3(t) + xT4(t),
y′ = T2(t),
z′ = 0

63 ∂
∂x
, y ∂

∂x
, ∂

∂z
, x ∂

∂x
+ cz ∂

∂z

x′ = T1(t) + yT2(t) + xT4(t),
y′ = 0,
z′ = T3(t) + czT4(t)

64 ∂
∂x
, ∂

∂y
, exp((1 − c)z) ∂

∂x
,

x ∂
∂x

+ y ∂
∂y

+ ∂
∂z

x′ = T1(t) + e(1−c)zT3(t) + xT4(t),
y′ = T2(t) + yT4(t),
z′ = T4(t)

65 ∂
∂x
, ∂

∂y
, ε1 exp((a− 1)z) ∂

∂x
+

ε2 exp((b − 1)z ∂
∂y
, ax ∂

∂x
+

by ∂
∂y

+ ∂
∂z

x′ = T1(t) + ε1e(a−1)zT3(t) + axT4(t),

y′ = T2(t) + ε2e(b−1)zT3(t) + byT4(t),
z′ = T4(t)

66 ∂
∂x
, y ∂

∂x
, ∂

∂z
, ax ∂

∂x
+

(a− b) y ∂
∂y

+ z ∂
∂z

x′ = T1(t) + yT2(t) + axT4(t),
y′ = (a− b)yT4(t),
z′ = T3(t) + zT4(t)

67 ∂
∂x
, exp((a−b)y) ∂

∂x
, exp((a−

1)y) ∂
∂x
, ax ∂

∂x
+ ∂

∂y

x′ = T1(t) + e(a−b)yT2(t)

+e(a−1)yT3(t) + axT4(t),
y′ = T4(t),
z′ = 0

XVI 68 ∂
∂x
, ∂

∂y
, ∂

∂z
, ax ∂

∂x
+

(by + z) ∂
∂y

+ (bz − y) ∂
∂z

x′ = T1(t) + axT4(t),
y′ = T2(t) + (by + z)T4(t),
z′ = T3(t) + (bz − y)T4(t)
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69

∂
∂x
, ∂

∂y
,

ε exp((b− a) arctan(z))
×
√
1 + z2 ∂

∂x
+ z ∂

∂y
,

(ax− εy exp((b− a) arctan(z))
×
√
1 + z2) ∂

∂x
+ (b− z)y ∂

∂y

−(1 + z2) ∂
∂z

x′ = T1(t)

+ε exp((b− a) arctan(z))
√
1 + z2T3(t)

+(ax− εy exp((b− a) arctan(z))
√
1 + z2)

×T4(t),
y′ = T2(t) + zT3(t) + (b− z)yT4(t),
z′ = −(1 + z2)T4(t)

70

∂
∂x
, y ∂

∂x
, z ∂

∂x
,

ax ∂
∂x

+ [(a− b)y + z] ∂
∂y

+ [(a− b)z − y] ∂
∂z

x′ = T1(t) + yT2(t) + zT3(t) + axT4(t),
y′ = [(a− b)y + z]T4(t),
z′ = [(a− b)z − y]T4(t)

71

∂
∂x
, exp((a− b)y) cos(y) ∂

∂x
,

− exp((a− b)y) sin(y) ∂
∂x
,

ax ∂
∂x

+ ∂
∂y

x′ = T1(t) + e(a−b)y cos(y)T2(t)

−e(a−b)y sin(y)T3(t) + axT4(t),
y′ = T4(t),
z′ = 0

XVII 72 ∂
∂x
, ∂

∂y
, y ∂

∂x
+ ∂

∂z
,(

2x+ 1
2
z2
)

∂
∂x

+ (y + z) ∂
∂y

+

z ∂
∂z

x′ = T1(t) + yT3(t) +
(
2x+ 1

2
z2
)
T4(t),

y′ = T2(t) + (y + z)T4(t),
z′ = T3(t) + zT4(t)

73 ∂
∂x
, ∂

∂y
, y ∂

∂x
+ z ∂

∂y
, 2x ∂

∂x
+

y ∂
∂y
− ∂

∂z

x′ = T1(t) + yT3(t) + 2xT4(t),
y′ = T2(t) + zT3(t) + yT4(t),
z′ = −T4(t)

74
∂
∂x
, y ∂

∂x
,− ∂

∂y
,(

2x+ 1
2
y2
)

∂
∂x

+ y ∂
∂y

+ ∂
∂z

x′ = T1(t) + yT3(t) +
(
2x+ 1

2
y2
)
T4(t),

y′ = −T3(t) + yT4(t),
z′ = T4(t)

75 ∂
∂x
, y ∂

∂x
,− ∂

∂y
,(

2x+ 1
2
y2
)

∂
∂x

+ y ∂
∂y

x′ = T1(t) + yT3(t) +
(
2x+ 1

2
y2
)
T4(t),

y′ = −T3(t) + yT4(t),
z′ = 0

XVIII 76
∂
∂x
, ∂
∂y
, y ∂

∂x
+ ∂

∂z
,

(1 + b)x ∂
∂x

+ y ∂
∂y

+ bz ∂
∂z

x′ = T1(t) + yT3(t) + (1 + b)xT4(t),
y′ = T2(t) + yT4(t),
z′ = T3(t) + bzT4(t)

77 ∂
∂x
, ∂

∂y
, y ∂

∂x
+ z ∂

∂y
,

(1 + b)x ∂
∂x

+ y ∂
∂y

+

(1− b) z ∂
∂z

x′ = T1(t) + yT3(t) + (1 + b)xT4(t),
y′ = T2(t) + zT3(t) + yT4(t),
z′ = (1− b)zT4(t)

78 ∂
∂x
, ∂

∂y
, y ∂

∂x
, (1 + b)x ∂

∂x
+

y ∂
∂y

+ ∂
∂z

x′ = T1(t) + yT3(t) + (1 + b)xT4(t),
y′ = T2(t) + yT4(t),
z′ = T4(t)

79 ∂
∂x
, ∂

∂y
, y ∂

∂x
, (1 + b)x ∂

∂x
+

y ∂
∂y

x′ = T1(t) + yT3(t) + (1 + b)xT4(t),
y′ = T2(t) + yT4(t),
z′ = 0

80 ∂
∂x
, ∂

∂y
, y ∂

∂x
, z ∂

∂x
+ y ∂

∂y

x′ = T1(t) + yT3(t) + zT4(t),
y′ = T2(t) + yT4(t),
z′ = 0

81 ∂
∂x
, y ∂

∂x
, − ∂

∂y
, (1 + b)x ∂

∂x
+

by ∂
∂y

+ ∂
∂z

x′ = T1(t) + yT2(t) + (1 + b)xT4(t),
y′ = −T3(t) + byT4(t),
z′ = T4(t)

82 ∂
∂x
, y ∂

∂x
, − ∂

∂y
, (1 + b)x ∂

∂x
+

by ∂
∂y

x′ = T1(t) + yT2(t) + (1 + b)xT4(t),
y′ = −T3(t) + byT4(t),
z′ = 0

83 ∂
∂x
, ∂

∂y
, y ∂

∂x
+ ∂

∂z
, x ∂

∂x
+

y ∂
∂y

+ C ∂
∂z

x′ = T1(t) + yT3(t) + xT4(t),
y′ = T2(t) + yT4(t),
z′ = T3(t) + CT4(t)
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XIX 84

∂
∂x
, ∂
∂y
, y ∂

∂x
+ ∂

∂z
,

1
2

(
4ax+ z2 − y2

)
∂
∂x

+(ay + z) ∂
∂y

+ (az − y) ∂
∂z

x′ = T1(t) + yT3(t) +
1
2
(4ax− y2 + z2)T4(t),

y′ = T2(t) + (ay + z)T4(t),
z′ = T3(t) + (az − y)T4(t)

XX 85 ∂
∂x
, ∂

∂y
, x ∂

∂x
+ y ∂

∂y
+ ∂

∂z
,

y ∂
∂x
− x ∂

∂y
+ C ∂

∂z

x′ = T1(t) + xT3(t) + yT4(t),
y′ = T2(t) + yT3(t)− xT4(t),
z′ = T3(t) + CT4(t)

86 ∂
∂x
, ∂

∂y
, x ∂

∂x
+ ∂

∂z
, −xy ∂

∂x
−(

1 + y2
)

∂
∂y

x′ = T1(t) + xT3(t)− xyT4(t),
y′ = T2(t)− (1 + y2)T4(t),
z′ = T3(t)

87 ∂
∂x
, ∂

∂y
, x ∂

∂x
+ y ∂

∂y
, y ∂

∂x
−

x ∂
∂y

+ ∂
∂z

x′ = T1(t) + xT3(t) + yT4(t),
y′ = T2(t) + yT3(t)− xT4(t),
z′ = T4(t)

88 ∂
∂x
, ∂
∂y
, x ∂

∂x
+y ∂

∂y
, y ∂

∂x
−x ∂

∂y

x′ = T1(t) + xT3(t) + yT4(t),
y′ = T2(t) + yT3(t)− xT4(t),
z′ = 0

89
∂
∂x
, ∂
∂y
, x ∂

∂x
,

−xy ∂
∂x
−
(
1 + y2

)
∂
∂y

x′ = T1(t) + xT3(t)− xyT4(t),
y′ = T2(t)− (1 + y2)T4(t),
z′ = 0

Table 3. Dynamical systems with nonsolvable L4

Type # Operators Systems

IX 90 ∂
∂x
, x ∂

∂x
+ y ∂

∂y
, x2 ∂

∂x
+

2xy ∂
∂y

+ y ∂
∂z
, y ∂

∂x
+2yz ∂

∂y
+(

z2 + c
)

∂
∂z
, c ∈ {−1; 0; 1}

x′ = T1(t) + xT2(t) + x2T3(t) + yT4(t),
y′ = yT2(t) + 2xyT3(t) + 2yzT4(t),
z′ = yT3(t) + (z2 + c)T4(t)

91
∂
∂x
, x ∂

∂x
+ y ∂

∂y
,(

x2 + y2
)

∂
∂x

+ 2xy ∂
∂y
, ∂

∂z

x′ = T1(t) + xT2(t) + (x2 + y2)T3(t),
y′ = yT2(t) + 2xyT3(t),
z′ = T4(t)

92
∂
∂x
, x ∂

∂x
+ y ∂

∂y
,(

x2 − y2
)

∂
∂x

+ 2xy ∂
∂y
, ∂

∂z

x′ = T1(t) + xT2(t) + (x2 − y2)T3(t),
y′ = yT2(t) + 2xyT3(t),
z′ = T4(t)

93
∂
∂x
, x ∂

∂x
+ y ∂

∂y
,

x2 ∂
∂x

+ 2xy ∂
∂y
, ∂

∂z

x′ = T1(t) + xT2(t) + x2T3(t),
y′ = yT2(t) + 2xyT3(t),
z′ = T4(t)

94
∂
∂x
, x ∂

∂x
+ y ∂

∂y
,

x2 ∂
∂x

+ 2xy ∂
∂y
, yz ∂

∂y

x′ = T1(t) + xT2(t) + x2T3(t),
y′ = yT2(t) + 2xyT3(t) + yzT4(t),
z′ = 0

95
∂
∂x
, x ∂

∂x
+ y ∂

∂y
,

x2 ∂
∂x

+ 2xy ∂
∂y
, y ∂

∂y

x′ = T1(t) + xT2(t) + x2T3(t),
y′ = yT2(t) + 2xyT3(t) + yT4(t),
z′ = 0

96 ∂
∂x
, x ∂

∂x
, x2 ∂

∂x
, ∂

∂y

x′ = T1(t) + xT2(t) + x2T3(t),
y′ = T4(t),
z′ = 0

X 97

− sin(x) tan(y) ∂
∂x
− cos(x) ∂

∂y
,

∂
∂x
,

sin(x) ∂
∂y
− cos(x) tan(y) ∂

∂x
,

∂
∂z

x′ = T2(t)− sin(x) tan(y)T1(t)
− cos(x) tan(y)T3(t),

y′ = sin(x)T3(t)− cos(x)T1(t),
z′ = T4(t)

98

sin(x) sec(y) ∂
∂z

− sin(x) tan(y) ∂
∂x
− cos(x) ∂

∂y
,

sin(x) ∂
∂y
− cos(x) tan(y) ∂

∂x

+cos(x) sec(y) ∂
∂z
,

∂
∂x
, ∂

∂z

x′ = T3(t)− sin(x) tan(y)T1(t)
− cos(x) tan(y)T2(t),

y′ = sin(x)T2(t)− cos(x)T1(t),
z′ = T4(t) + sin(x) sec(y)T1(t)

+ cos(x) sec(y)T2(t)
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