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Abstract The robust principal component analysis (RPCA) model is a pop-
ular method for solving problems with the nuclear norm and `1 norm. How-
ever, it is time-consuming since in general one has to use the singular value
decomposition in each iteration. In this paper, we introduce a novel model
to reformulate the existed model by making use of low-rank matrix factoriza-
tion to surrogate the nuclear norm for the sparse and low-rank decomposition
problem. In such case we apply the Penalty Function Method (PFM) and
Augmented Lagrangian Multipliers Method (ALMM) to solve this new non-
convex optimization problem. Theoretically, corresponding to our methods,
the convergence analysis is given respectively. Compared with classical RPCA,
some practical numerical examples are simulated to show that our methods
are much better than RPCA.
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matrix, nuclear norm, matrix decomposition.
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1. Introduction

1.1. Motivation

Suppose there is a matrix which is formed by the addition of an unknown sparse ma-
trix and a low rank matrix. Our aim is to decompose it into two parts which contain
sparse components and low-rank components. Such problem is widely applied in the
engineer fields including model selection, system identification, image and computer
vision [8,23], bioinformatics, background modeling and face recognition [26], latent
semantic indexing [11,21], machine learning [1–3] and control [20] etc.. Data matrix
generated from these applications may have a high number of dimensions, while the
vast majority of the data may have the similar (even same) structure. As we know
that the main information of the data matrix lies in low-dimensional subspace or
low-dimensional manifolds, and sometimes these key messages will be covered or in-
terfered by sparse components. Therefore, it is necessary and significant to remove
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sparse components and find a low-rank structure matrix.

1.1.1. Principal Component Analysis (PCA)

The Principal Component Analysis (PCA) [12, 16] is a common tool for high-
dimensional data processing and analysis, it has a wide range of applications in
science and engineering fields [16]. Suppose we have a high-dimensional data which
lies near a much lower-dimensional subspace, the main purpose of the PCA is to
efficiently and accurately estimate this low-dimensional subspace. We assume that
the observed data matrix D ∈ Rm×n is decomposed as

D = A+ E, (1.1)

where A ∈ Rm×n is the low-rank component of D and E ∈ Rm×n is the sparse
component of D. The classic PCA can seek the best rank-r estimation of A by
solving the following constrained optimization

min
E
‖E‖F

s.t. D = A+ E,

Rank(A) ≤ r,

(1.2)

where r � min(m,n) is the target dimension of the subspace and ‖ · ‖F is the
Frobenius norm. The PCA computes singular value decomposition (SVD) of D and
then projects the columns of D onto the subspace spanned by the r principal left
singular vectors of D. In practical applications, PCA can perform well if the noise
magnitude is not large.

1.1.2. Robust Principal Component Analysis (RPCA)

Despite its many advantages, the traditional PCA suffers from the fact that the
estimation Â can be arbitrarily far from the true A, when E is sufficiently sparse
(relative to the rank of A). We hope to recover both A and E accurately and
efficiently. According to the structure of the low-rank matrix and the property of
the sparse component, J. Wright et al. [26] have shown that one can exactly recover
the data matrix D from (1) by solving the following convex optimization problem,
as long as the matrix E is sufficiently sparse,

min
A,E

‖A‖∗ + λ‖E‖1

s.t. D = A+ E,
(1.3)

where ‖·‖∗ denotes the nuclear norm of a matrix (i.e., the sum of its singular values),
‖·‖1 denotes the `1 norm of a matrix (i.e., the sum of its absolute values), and λ is a
positive weighting parameter that provides a trade-off between the sparse and low-
rank components. From the above expression, the goal of (1.3) is to approximate
a given matrix by minimizing the addition of two matrices under the nuclear norm
and `1 norm. Due to the ability to exactly recover underlying low-rank structure
and sparse component in the data set, this optimization is referred to as the Robust
PCA (RPCA) in [26], even the sparse component have arbitrarily large magnitude.
Several applications of the RPCA have been demonstrated in [4, 5, 18,26,27].



602 Z. Liu, J. Li, G. Li, J. Bai & X. Liu

Although the RPCA performs very well, it usually costs much time to calculate
the singular value decomposition (SVD) in every iteration when the given data
matrix is big. To overcome this shortcoming, in this paper we introduce a novel
model named Sparse amd Low-Rank Factorization (SLRF) by using the low-rank
factorization of a matrix. Before continuing, we provide here a brief summary of
the notations used throughout the paper.

1.2. Notations

For a matrix A ∈ Rm×n, let ‖A‖1 =
∑m
i=1

∑n
j=1 |Aij | denotes the `1 norm, ‖A‖2 and

‖A‖∗ denote the spectral norm and the nuclear norm (i.e., the sum of its singular
values), respectively. From [6,22] we know that the spectral and nuclear norms are
dual from one another. We consider the singular value decomposition (SVD) of a
matrix A of rank r

A = USV ′, S = diag({σi}), 1 ≤ i ≤ r,

where U and V are m×r and n×r matrices with orthonormal columns, respectively,
and the singular values σi are positive. We always assume that the SVD of a matrix
is given in the reduced form above. Furthermore, 〈A,B〉 = trace(A′B) denotes the
standard inner product, then the Frobenius norm is

‖A‖F =
√
〈A,A〉 =

√
tr(A′A) =

( m∑
i=1

n∑
j=1

A2
ij

) 1
2

=
( r∑
i=1

σ2
i

) 1
2

.

1.3. Contributions and Organizations

Lots of iterative algorithms to solve the nuclear minimization problems suffer from
high computation cost of singular value decompositions (SVDs) at each iteration.
The purpose of this paper is to develop an efficient sparse and low-rank decompo-
sition method, i.e., SLRF. This method offers much enhanced scalability in solving
large-scale matrix decomposition problems and speeds up effectively on some diffi-
cult applications.

The main contributions and organizations of this work are as follows. In Section
2, we introduce the idea of low-rank matrix factorization into the original RPCA
model to drastically reduce the computing time of SVDs of the involved iterations,
and propose a new model for the estimation of sparse and low-rank decomposi-
tion. Theoretically, we prove that the problem (2.1) is completely equivalent to the
problem (1.3). In Section 3, we design two iterative schemes to solve the proposed
model. In Section 4, we show some convergence results about the methods presented
in Sections 3. In Section 5, some empirical results on synthetic data and real-world
data are reported to demonstrate the efficiency and convergence behavior of our
new methods. Finally, we conclude the paper and give a short discussion.

2. Problem Formulations

2.1. Sparse and Low-Rank Factorization (SLRF)

We now concentrate on the new model that works with sparse and low-rank factor-
ization (SLRF) of D. The given observation matrix has the form D = A+E, where
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A ∈ Rm×n is a low-rank matrix of rank r and E ∈ Rm×n is the sparse component
of D. To tackle the low rank property, a popular approach is to utilize the rank
factorization of a matrix, that is, A = LR′ where L and R are m× r and n× r ma-
trices, respectively. Consequently, we can solve the following optimization problem
to find its solution

min
L,R′,E

1

2
(‖L‖2F + ‖R′‖2F ) + λ‖E‖1

s.t. D = LR′ + E.

(2.1)

The main difference between RPCA and SLRF is that in order to characterize the
rank constraint, we utilize the method of low-rank matrix factorization to surrogate
the nuclear norm for sparse and low-rank decomposition. The biggest advantage
of our method is that the model (2.1) avoids the computational burden of the
SVD for a large scale matrix, which can greatly save the computing time. Another
advantage of this formulation is that it can substantially decrease one of decision
variables from mn to (m + n)r. Therefore, this model requires less storage space
and computation time than the previous methods. This optimization also can be
rewritten as a semidefinite program (SDP) [24].

2.2. Semidefinite Program (SDP) Formulation

Let Z = UΣV ′ be a singular value decomposition of an m × n matrix Z, where U
is an m × r matrix, V is an n × r matrix, Σ is an r × r diagonal matrix, and r is
the rank of Z. We recall the fact that the spectral and nuclear norms are dual from
one another.

Proposition 2.1 ( [22]). The dual norm of the operator norm ‖ · ‖2 in Rm×n is
the nuclear norm ‖ · ‖∗.

The proof can be found in [22]. Therefore, by the Proposition 2.1, for a m× n
matrix Z, we have

‖Z‖∗ := max{tr(Z ′Y ) | ‖Y ‖2 ≤ 1}. (2.2)

From the characterization in (2.2), the optimization problem

max tr(Z ′Y )

s.t. ‖Y ‖2 ≤ 1,

can be formulated as a simple semidefinite program:

max tr(Z ′Y )

s.t.

 Im Y

Y ′ In

 � 0.
(2.3)

From duality, the nuclear norm has the following SDP characterization:

min
W1,W2

1

2
(tr(W1) + tr(W2))

s.t.

W1 Z

Z ′ W2

 � 0.
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If we set W1 := UΣU ′ and W2 := V ΣV ′, then, the triple (W1,W2, Z) is feasible for
(2.3) since W1 Z

Z ′ W2

 =

U
V

Σ

U
V

′ � 0.

Furthermore, we have tr(W1) = tr(W2) = tr(Σ), and thus the objective function
satisfies 1

2 [tr(W1) + tr(W2)] = tr(Σ) = ‖Z‖∗.
Putting these facts together, (1.3) can be reformulated as

min
A,E,W1,W2,T

1

2
[tr(W1) + tr(W2)] + λ1TmT1n

s.t.

W1 A

A′ W2

 � 0,

− Tij ≤ Eij ≤ Tij ∀ (i, j),

D = A+ E,

(2.4)

where T is defined as Tij = sign(Eij), Eij 6= 0

Tij ∈ [−1, 1], Eij = 0
.

Here, 1m refers to the vector that has 1 in every entry.

2.3. The Equivalence Between (1.3) and (2.1)

In [22], B. Recht et al. have proved that (2.1) is equivalent to (1.3) without consid-
ering sparse matrices E. As the spectral norm and nuclear norm are dual norms,
utilizing the Semidefinite Program (SDP), in the following theorem, we prove that
the problem (2.1) is completely equivalent to the problem (1.3).

Theorem 2.1. The minimum nuclear norm relaxation (1.3) is equivalent to the
non-convex quadratic optimization problem (2.1).

Proof. For the sparse matrix E, by the Lagrange function of (1.3) and (2.1), we
have

LRPCA(A,E, µ) = ‖A‖∗ + λ‖E‖1 +
µ

2
‖D −A− E‖2F ,

LSLRF (L,R′, E, µ) =
1

2
(‖L‖2F + ‖R′‖2F ) + λ‖E‖1 +

µ

2
‖D − LR′ − E‖2F ,

respectively. If the variables A,L,R′ are fixed, then we have thatERPCA = arg minE LRPCA(A,E, µ),

ESLRF = arg minE LSLRF (L,R′, E, µ),

which is equivalent toERPCA = arg minE
λ
µ‖E‖1 + 1

2‖E − (D −A)‖2F ,

ESLRF = arg minE
λ
µ‖E‖1 + 1

2‖E − (D − LR′)‖2F .
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By [5], this implies ERPCA = Sλ
µ

(D −A),

ESLRF = Sλ
µ

(D − LR′),

where the soft thresholding (shrinkage) operator S is defined as Sλ
µ

(x) =: max{|x|−
λ
µ , 0}, x ∈ R.

Let the triple (L,R′, E) be a feasible solution of (2.1). If we define W1 := LL′,
W2 := RR′, and A := LR′ be the feasible solution of the primal SDP problem (2.4),
then they can reach the same cost of (2.1) and (2.4). Since the SDP formulation is
equivalent to the nuclear norm problem, we have that the optimal value of (2.1) is
always greater than or equal to the nuclear norm heuristic.

Conversely, from the SVD decomposition A = UΣV ′ of the optimal solution of
the nuclear norm relaxation (1.3), we can explicitly construct matrices L := UΣ

1
2

and R := V Σ
1
2 for (2.1) that yield exactly the same value of the objective. The

proof is completed.
However, the formulation (2.1) is non-convex and is thus potentially subject to

local minima that are not globally optimal. This non-convexity does not pose as
much of a problem as it could, since we present two methods that are guaranteed
to converge to a local minimum for a suitable selected r.

3. Methods for SLRF Problem

Since D is the superposition of a low-rank component A and a sparse component E,
some constraint conditions on A and E were proposed in [7] to ensure sufficiently
that the unique solution (Â, Ê) of (2.1) is accurate under the trade-off parameter
λ, if one wants to reconstruct the original matrix D, or recover each component
individually. Therefore, studying and searching efficient algorithms to recover the
sparse component and low-rank component of D becomes rather important.

In this section, we introduce two efficient methods to solve the SLRF model
proposed in section 2. One is the Penalty Function Method (PFM), and the oth-
er is the Augmented Lagrangian Multipliers Method (ALMM). Furthermore, the
efficiency and convergence behavior of the proposed methods are validated in the
experiment part.

In order to describe the optimality conditions for the norm minimization problem
(2.1), we must first characterize the set of all subgradients of the `1 norm.

Definition 3.1. Let f : Rn 7→ R be a proper convex function. We say that a vector
d ∈ Rn is a subgradient of f at a point x ∈ Rn if

f(z) ≥ f(x) + 〈d, z − x〉, ∀z ∈ Rn.

The set of all subgradients of f at x is called the subdifferential of f at x and is
denoted by ∂f(x).

We recall that any subgradient of `1 norm is defined as

∂‖A‖1 = {sign(A) +W, Wand A have disjoint support and ‖W‖∞ ≤ 1}.

For comparison, the subdifferential of the nuclear norm at X is given by (see [25])

∂‖A‖∗ = {UV ′ +Q : Q ∈ Rm×n, U ′Q = 0, QV = 0, ‖Q‖2 ≤ 1}.
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3.1. Penalty Function Method

We first present a Penalty Function Method (PFM) for solving (2.1). The La-
grangian function of (2.1) is defined as

L(L,R′, E, µ) =
1

2
(‖L‖2F + ‖R′‖2F ) + λ‖E‖1 +

µ

2
‖D − LR′ − E‖2F , (3.1)

where λ > 0 is a constant providing a trade-off between the sparse and low-rank
components and µ > 0 is the penalty parameter. By the optimality conditions, we
have 

0 = L− µ(D − LR′ − E)R,

0 = R− µ(D − LR′ − E)′L,

0 ∈ [λ∂(‖E‖1)− µ(D − LR′ − E)].

As a consequence, we obtain

L = µ(D − E)R(Ir + µR′R)−1,

R = µ(D − E)′L(Ir + µL′L)−1,

E = arg min λ
µ‖E‖1 + 1

2‖E − (D − LR′)‖2F
= Sλ

µ
(D − LR′),

(3.2)

where Sλ
µ

(x) =: max{|x|− λ
µ , 0}, x ∈ R. More details of PFM iterative strategy can

be found in the following Algorithm 1.

Algorithm 1 Penalty Function Method (PFM)

Task: Approximate the solution of (2.1).
Input: Observation matrix D = A+E, weights λ and penalty parameter µ, rank
r.
Initialize: D = UΣV ′, L0 := UΣ

1
2 , R0 := V Σ

1
2 , E0 = 0.

while the termination criterion is not met, do
Lk = µ(D − Ek−1)Rk−1(Ir + µR′k−1Rk−1)−1;
Rk = µ(D − Ek−1)′Lk(Ir + µL′kLk)−1;
Ak = LkR

′
k;

Ek = Sλ
µ

(D − LkR′k);

end while
Output: A← Ak, E ← Ek.

3.2. Augmented Lagrangian Multipliers Method

In fact, for the beneficial structure of the well-known Augmented Lagrangian Mul-
tipliers method (ALMM), we can utilize it to solve the SLRF model which has a
high-level separable structure. As the objective function is non-convex, we next
show how to extend the classical analysis of ALMM to such a new objective func-
tion.
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One may define the Augmented Lagrangian function of (2.1):

L(L,R′, E, Y, µ) =
1

2
(‖L‖2F + ‖R′‖2F ) + λ‖E‖1 − 〈Y,D − LR′ − E〉

+
µ

2
(‖D − LR′ − E‖2F ,

(3.3)

where λ > 0 is a constant providing a trade-off between the sparse and low-rank
components and µ > 0 is the penalty parameter, and Y ∈ Rm×n is the Lagrange
multiplier corresponding to the constraint D − LR′ −E = 0. It is well-known that
the classic augmented Lagrangian method solves

min
L,R′,E

L(L,R′, E, Y, µ). (3.4)

Since it is difficult to obtain the optimal solutions L, R′ and E simultaneously
from (3.4), based on the idea of the classic alternating direction method for convex
optimization problems [14, 15], one can minimize the augmented Lagrangian func-
tion to solve each block variable at a time by fixing the other two blocks and then
update the Lagrange multiplier. Then starting with Y0 = 0 ∈ Rm×n, our method
inductively defined as the following framework:

Lk = arg min
L∈Rm×r

L(L,R′k−1, Ek−1, Yk−1, µ),

Rk = arg min
R′∈Rr×m

L(Lk, R
′, Ek−1, Yk−1, µ),

Ek = arg min
E∈Rm×n

L(Lk, R
′
k, E, Yk−1, µ),

Yk = Yk−1 − δk(D − LkR′k − Ek),

where δ > 0 is a step-length parameter.
Similarly to PFM, by the optimality condition

∇L(L,R′, E, Y, µ) = 0, (3.5)

we have 
0 = L− µ(D − LR′ − E)R+ Y R,

0 = R− µ(D − LR′ − E)′L+ Y ′L,

0 ∈ [λ∂(‖E‖1)− µ(D − LR′ − E) + Y ].

(3.6)

As a consequence, we have

L = µ(D − E − Y )R(Ir + µR′R)−1,

R = µ(D − E − Y )′L(Ir + µL′L)−1,

E = arg min λ
µ‖E‖1 + 1

2‖E − (D − LR′ − Y
µ )‖2F

= Sλ
µ

(D − LR′ − Y
µ ).

(3.7)

Summarizing the above description, for solving (2.1), the ALMM approach is de-
scribed in Algorithms 2.

Remark 3.1. It is worth noting that although the augmented Lagrangian function
(3.3) is non-convex in the pair (L,R′, E), it is convex with respect to either L, R′ or
E while fixing the other. This structure separable property allows the ADM [9,13]
scheme to be well defined.
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Algorithm 2 Augmented Lagrangian Multipliers Method (ALMM)

Task: Approximate the solution of (2.1).
Input: Observation matrix D = A+E, weights λ and penalty parameter µ, step
size δ, rank r.
Initialize: D = UΣV ′, L0 := UΣ

1
2 , R0 := V Σ

1
2 , E0 = 0, Y0 = 0.

while the termination criterion is not met, do
Lk = µ(D − Ek−1 − Yk−1)Rk−1(Ir + µR′k−1Rk−1)−1;
Rk = µ(D − Ek−1 − Yk−1)′Lk(Ir + µL′kLk)−1;
Ak = LkR

′
k;

Ek = Sλ
µ

(D −Ak − Yk−1

µ );

Yk = Yk−1 − δk(D −Ak − Ek);
end while

Output: A← Ak, E ← Ek.

4. Convergence Analysis

For PFM, we have the following theorem about the convergence of the penalty item
‖D − LR′ − E‖2F in (2.1).

Theorem 4.1. The penalty item sequence ‖D−LR′−E‖2F produced by alternative
optimizations (3.2) converge to a local minimum.

Proof. Let the penalty item value ‖D − LR′ − E‖2F after solving the three opti-
mizations (3.2) be P 1

k , P 2
k and P 3

k , respectively, in the k-th iteration. On the one
hand, we have 

P 1
k = ‖D − LkR′k−1 − Ek−1‖2F ,

P 2
k = ‖D − LkR′k − Ek−1‖2F ,

P 3
k = ‖D − LkR′k − Ek‖2F .

(4.1)

The local optimality of Lk, Rk and Ek yields P 1
k ≥ P 2

k ≥ P 3
k . On the other hand,

P 1
k+1 = ‖D − Lk+1R

′
k − Ek‖2F ,

P 2
k+1 = ‖D − Lk+1R

′
k+1 − Ek‖2F ,

P 3
k+1 = ‖D − Lk+1R

′
k+1 − Ek+1‖2F .

(4.2)

The local optimality of P 1
k+1 yields P 3

k ≥ P 1
k+1. Therefore, the penalty item values

‖D − LR′ − E‖2F keep decreasing throughout PFM (6):

P 1
1 ≥ P 2

1 ≥ P 3
1 ≥ P 1

2 ≥ P 2
2 ≥ P 3

2 . . . S
1
k ≥ P 2

k ≥ P 3
k ≥ P 1

k+1 . . . . (4.3)

Since the objective of (2.1) is monotonically decreasing and the constraints are
satisfied all the time, (3.2) produces a sequence of penalty item values that converge
to a local minimum. The proof is completed.

For ALMM, our convergence theorem requires the boundedness of some se-
quences, which results from the following theorem.

Theorem 4.2 ( [18]). Let H be a Hilbert space endowed with an inner product 〈·, ·〉
and a corresponding norm ‖ · ‖, and y ∈ ∂‖x‖, where ∂f(x) is the subgradient of
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f(x). Then ‖y‖∗ = 1 if x 6= 0, and ‖y‖∗ ≤ 1 if x = 0, where ‖ · ‖∗ is the dual norm
of ‖ · ‖.

With Theorem 4.2, we can prove the following lemma.

Lemma 4.1 ( [18]). The Lagrange multiplier sequence {Yk} produced by ALMM is
bounded, where Yk = Yk−1 − δk(D − LkR′k − Ek).

For convenience, let A(Y ) = µ(D − LR′ − E) − Y , we have the following con-
vergence theorem.

Theorem 4.3. Suppose that (Lk, Rk, Ek, Yk) is the optimal solution output by
ALMM at each iteration. Assume that the sequence {Yk} is bounded. If (Lk, Rk, Ek)
converges to (L̂, R̂, Ê) and the linear map

Λk(Y ) =


A(Y )Lk

A′(Y )Rk

A(Y )

 = 0

for all k, then there exists a matrix Ŷ such that

∇L(L̂, R̂, Ê, Ŷ , µ) = 0.

Proof. Since (Lk, R
′
k, Ek) minimizes the ALMM at iteration k andA(Yk) = µ(D−

LkR
′
k − Ek)− Yk, from (3.5) and (3.6) we have

∇LL = 0 ⇒ Lk −A(Yk)Rk = 0,

∇RL = 0 ⇒ Rk −A′(Yk)Lk = 0,

∇EL = 0⇒ 0 ∈ [λ∂(‖Ek‖1)−A(Yk)],

(4.4)

which can be reformed as

Λk(Yk) =


Lk

Rk

Zk

 ,
where Z = λ

µT + (D − LR′ − Y ).Tij = sign[D − LR′ − Y ]ij , [D − LR′ − Y ]ij 6= 0,

Tij ∈ [−1, 1], [D − LR′ − Y ]ij = 0.

Since we have assumed that there is no nonzero Y with Λk(Y ) = 0, there exists a
left inverse and we can solve for Yk:

Yk = Λ†k


Lk

Rk

Zk

 ,
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where

Λk(Yk) =


A(Yk)Lk

A′(Yk)Rk

A(Yk)

 . (4.5)

Based on assumptions that the sequence {Yk} is bounded and (Lk, Rk, Ek) converges
to (L̂, R̂, Ê), then we deduce that the right-hand side of (4.5) is bounded. Therefore,
we must have that Yk converge to some Ŷ . Taking the limit of (4.4) completes the
proof.

5. Experiments

In this section, some numerical examples demonstrate the performance and effec-
tiveness of the proposed methods. Three cases will be discussed to illustrate the
effectiveness of our methods. One is exact recovery of the sparse and low-rank ma-
trix. The second one is to evaluate the recoverability of our methods for solving
SLRF problem. The third one is an application of the sparse and low-rank decom-
position problem. All experiments are performed under Windows 7 and MATLAB
v7.8 (R2009a) running on a Lenovo desktop with an Intel Core(TM)i5-3470, CPU
at 3.2 GHz and 4 GB of memory.

5.1. Exact Recovery of Sparse and Low-rank Matrix

Let D = A+E be the available data, where A and E are, respectively, the original
low-rank and sparse matrices that we wish to recover. For the SLRF model, we
demonstrate the efficiency of the proposed algorithms on randomly generated ma-
trices. Simply, we restrict our examples to square matrices. We draw A according
to the independent random matrices and generate E satisfying the i.i.d.Gaussian
distribution. The sparse component of the constructed E can have arbitrarily large
magnitude. Specially, the rank of the matrix A and the sparse entries of the matrix
E are selected to be 5%m and 5%m2, respectively. We apply our proposed methods
PFM and ALMM on the matrix D to recover A and E. The parameters are set as
λ = 10√

m
, µ = 0.5m and δ = 10−2. The relative errors are respectively denoted by

rel.err(D) = ‖D −Ak − Ek‖F /‖D‖F ,

rel.err(A) = ‖A−Ak‖F /‖A‖F ,

rel.err(E) = ‖E − Ek‖F /‖E‖F .

(5.1)

In our experiments, we compare RPCA (∗LRSD: Low Rank and Sparse matrix
Decomposition (see [27] for more details)) with SLRF (PFM, ALMM). A brief com-
parison of the two methods are presented in Tab.1. We set methods are terminated
at relatively constant iteration steps. From the aspect of cost time, PFM has a
small advantage. For example, PFM recovers a 800× 800 matrix of rank 40 in less
than 26 seconds and recovers a 3, 000 × 3, 000 matrix of rank 250 in just 418.26
seconds, while, ALMM needs a little more seconds than PFM. But compared with

∗http://perception.csl.illinois.edu/matrix-rank/
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the relative error, the ALMM is superior to the PFM. No matter which method is
used to solve the SLRF problem, the relative error of D,A,E can achieve a very
low error magnitude. In Tab.2, as the matrix dimension is up to m = 1, 000, both
of our methods for SLRF problem are at least 12 times faster than the LRSD for
RPCA.

Table 1. The relative error and time cost comparison on synthetic data. Iterations=300.

Algs m Rank(A) ‖E‖0 rel.err(D) rel.err(A) rel.err(E) Time(s)
PFM 200 10 1981 5.25× 10−4 1.93× 10−4 7.95× 10−3 0.62
ALMM 10 1981 5.04× 10−4 1.70× 10−4 7.69× 10−3 0.75
PFM 400 20 7983 1.34× 10−4 4.91× 10−5 2.81× 10−3 6.39
ALMM 20 7984 1.29× 10−4 3.80× 10−5 2.71× 10−3 7.20
PFM 800 40 31944 3.31× 10−5 1.20× 10−5 9.90× 10−4 25.77
ALMM 40 31946 3.15× 10−5 6.97× 10−6 9.07× 10−4 26.63
PFM 1000 50 49818 2.12× 10−5 7.67× 10−6 7.05× 10−4 38.21
ALMM 40 49821 2.08× 10−5 6.95× 10−6 6.15× 10−4 40.39
PFM 2000 100 199803 5.28× 10−5 1.84× 10−5 2.50× 10−3 152.56
ALMM 100 199815 5.16× 10−5 1.46× 10−5 2.43× 10−3 161.16
PFM 3000 250 449838 1.88× 10−5 8.75× 10−6 1.47× 10−3 418.26
ALMM 250 449847 1.78× 10−5 5.36× 10−6 1.33× 10−3 425.79

Table 2. The relative error and time cost comparison on synthetic data. Iterations=80.

Algs m Rank(A) ‖E‖0 rel.err(D) rel.err(A) rel.err(E) Time(s)
PFM 200 10 1981 5.05× 10−4 1.84× 10−4 8.22× 10−3 0.37
ALMM 10 1981 4.83× 10−4 1.08× 10−4 7.69× 10−3 0.75
RPCA 10 1973 7.19× 10−5 2.61× 10−5 1.18× 10−3 0.57
PFM 400 20 7983 1.30× 10−4 4.72× 10−5 2.81× 10−3 1.77
ALMM 20 7980 1.37× 10−4 6.95× 10−5 2.35× 10−3 2.19
RPCA 10 7825 1.73× 10−4 6.61× 10−5 2.76× 10−3 11.60
PFM 800 40 31744 3.28× 10−4 1.15× 10−4 9.86× 10−3 5.54
ALMM 40 31746 3.18× 10−4 7.58× 10−5 9.39× 10−3 6.33
RPCA 40 30555 1.88× 10−4 3.28× 10−4 1.07× 10−2 59.89
PFM 1000 50 49718 2.10× 10−4 7.33× 10−5 7.04× 10−3 9.02
ALMM 50 49716 2.02× 10−4 4.45× 10−5 6.58× 10−3 9.29
RPCA 50 44255 3.02× 10−4 3.45× 10−3 1.09× 10−1 120.48

Fig.1 shows the comparison between SLRF and RPCA. There are two reasons
for our acceleration:

a) Since the RPCA needs SVDs in each step, which is a high time-consuming
operation, then the improvement of speed is due to that the SLRF is searching a
low-rank matrix A by using rank factorization.

b) In the process of solving the Lagrangian function (3.1) and (3.3), we split
them into three sub-problems and obtain (3.2) and (3.7), respectively. Using an
alternate method to solve sub-problems can speed up effectively.

Therefore, in terms of running time, our methods for solving SLRF model out-
perform the method for RPCA model. In particular, existing subroutines for effi-
cient SVD (e.g. [17, 19]) guarantees the efficiency of RPCA model for sparse and
low-rank recovery problem.

Fig.2 and Fig.3 reflect the relative errors intuitively with different matrix size. To
be specific, Fig.2 shows the result with the matrix of size 200×200. At the beginning
of the iterations, RPCA has a poor performance, after about 30 iterations, we find
that it achieves a better results than the SLRF, however, it is very clear that our
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Figure 1. The recovery time for matrices of different size and different rank.

approach has a faster convergence rate than the RPCA. When the matrices size
is up to 1, 000 × 1, 000, Fig.3 demonstrates that our methods perform better than
RPCA, regardless of the relative error D or the relative errors of matrices A and
E. As a summary, our approach in dealing with big data problems performs much
better than the traditional RPCA method.
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Figure 2. Relative error results of the sparse and low-rank decomposition tasks where the size of matrix
is 200× 200.
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Figure 3. Relative error results of the sparse and low-rank decomposition tasks where the size of matrix
is 1, 000× 1, 000.
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5.2. Evaluation of the Recoverability

We list numerical results to illustrate the accuracy of our methods for SLRF. Specif-
ically, we set m = n = 100 and test (r, spr) for which the decomposition problem
roughly changes. Here the sparsity ratio is defined as

spr =
number-of-non-zero-entries

m2
× 100%.

For each pair (r, spr), the maximal iteration is set to 300. The relative error is
defined as

Rel.Err =
‖(Ak, Ek)− (A,E)‖F
‖(A,E)‖F + 1

.

The following results show the recoverability of the PFM and ALMM methods when
r varies from 1 to 30 and spr varies from 1% to 30%.
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Figure 4. Recoverability results from varying rank and sparsity ratioby PFM(a) and ALMM(b).

For each choice of r and spr, by applying the proposed methods for SLRF mod-
el, we give a recoverability test. Fig.4 shows exact recoverability when either the
sparsity ratio of E or the rank of A are properly small. Specifically, for Gaussian
sparse matrices, the relative errors are as small as 10−3 for a pair (10, 10%). When
r ≤ 5, the PFM (Fig.4(a)) and ALMM (Fig.4(b)) methods result to faithful recov-
eries with spr as high as 20%, meanwhile, high accuracy recovery is attainable for
r as high as 20 when spr ≤ 5%.

5.3. Background Modeling from Surveillance Video

Since background modeling [5, 10, 26] can reveal the correlation between video
frames, then, an important application of sparse and low-rank decomposition is
proposed to separate model background variations and foreground moving objects
of the supervision video. If the individual frames are stacked as columns of a ma-
trix D, then D can be expressed as the sum of a low-rank background matrix and
a sparse error matrix representing the activity in the scene.

We apply ALMM to surveillance videos which consist of 200 frames of a scene.
Then, the matrix D is composed of these frames with the resolution 144× 176. We
convert each frame as a vector and thus the matrix D is of size 25344 × 200. The
decomposition results of one frame in each video sequence are shown in Fig.5. As
is observed, the background and moving objects are precisely separated (the person
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in A of Fig.5 does not move throughout the video). Therefore, we find that our
methods are very effective in separating the background from the activity.

Figure 5. Background modeling results of the 200-frame surveillance video sequences in D = A + E
mode. (Left Column) Video sequence of a scene in an airport. (Middle Column) Static background
recovered by ALMM. (Right Column) Sparse error recovered by ALMM represents activity in the frame.

6. Conclusion and Future Development

RPCA can be viewed as the combination of the convex relaxation of a sparse prob-
lem and a rank minimization problem. The main disadvantages of the optimization
problem (1.3) is to cost much time on the calculation of SVDs for large matrices.
In order to overcome this shortcoming, we propose a new strategy by introduc-
ing rank factorization into RPCA framework. Then in this paper, a novel model
for matrices decomposition problem named as Sparse and Low-Rank Factorization
(SLRF) is presented, which is fast to be solved and surprisingly effective in terms
of computation cost and storage requirement. Furthermore, we also develop two
efficient iterative schemes to solve the problem (2.1). The efficiency and conver-
gence behavior of the proposed methods are validated through the comprehensive
numerical experimental results on synthetic data and real-world data.

Our results in this paper address only the case of exact (noiseless) measurements
or observations. In some real applications, most data matrices are corrupted by
some dense noise (i.e., Gaussian). Alternatively to (1.1), we can consider that the
matrix D is generated by adding both sparse errors and small but dense noise to a
perfectly low-rank matrix A:

D = A+ E +N,

where N is a Gaussian matrix whose entries have small variance. For instance, one
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could start with the following relaxed version of the non-convex program

min
L,R′,E

1

2
(‖L‖F + ‖R′‖F ) + λ‖E‖1

s.t. ‖D − LR′ − E‖2F ≤ ε2,

where ε is a upper bound on the noise level ‖N‖F . For the noise case, we may
consider the stability analysis of the methods. In particular, we need to estimate
the error bounds for the sparse and low-rank decomposition problem.
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