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ON PERIOD-K SOLUTION FOR A
POPULATION SYSTEM WITH

STATE-DEPENDENT IMPULSIVE EFFECT∗
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Abstract The period-k solutions of population differential system with state-
dependent impulsive effect are investigated by the theory of discontinuous
dynamical system. Through G-function theory, the necessary and sufficien-
t conditions are obtained for trajectory direction of a population differential
system, and the results are better than the previous work. Also, the local
stability of period-k solutions is studied by the mapping structure and the
theory of eigenvalue analysis. Furthermore, the existence of period-1 solution
is investigated for a special impulsive population differential system, and the
analytical condition is established. Finally, the trajectory of period-1 solution
and the relationship between different parameters and the module of eigenval-
ues are illustrated.
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1. Introduction

Pest control has been the focus of all governments in the world. In 2014, the occur-
rence area of corn borer in China was 3.53 million acres. In 2015, rice planthopper,
cnaphalocrocismedinalis, corn borer, aphids in wheat spike caused a lot of damage.
Pest control affects the yield of crops and farmers’ income, which is not only in
China, but also other countries .

Pest control has a close relation with population differential system. The tradi-
tional population differential system is continuous. In production, control measures
are usually taken to make the pest population under the Economic Threshold (ET).
For example, the traditional approach for pest control relies on the seasonal use of
chemical pesticides, which have an inherent discontinuity. Usually, we describe this
discontinuity by impulse, and it is necessary to establish the model of impulsive
population differential system [21,28,33].

Since the 1990’s, impulsive systems have significant development from theory to
application [6–9, 12, 19, 20, 24, 26, 36]. Impulsive differential systems and impulsive
functional differential systems are involved. Some of the systems have impulse at
fixed time and others are with state-dependent impulse. Existence of solutions,
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stability of trivial solutions, boundedness, existence and stability of periodic solu-
tions are involved. And in many other fields, such as physics, engineering, control,
finance, economics, impulsive differential systems have wide applications [9,12,24].

In the last 20 years, many scholars devoted themselves to the study of impul-
sive population differential systems [2,4,14,16,22,29,34]. By establishing impulsive
condition according with reality, the existence, persistence and stability of periodic
solution for impulsive population differential systems were studied. In paper [4], a
predator-prey system with stocking of prey and harvesting of predator impulsively
was studied. The prey population was stocked with a constant quantity and the
predator population was harvested at a rate proportional to the species itself at
fixed moments. The existence and global asymptotic stability of the periodic solu-
tion were proved under some conditions. Liu and Zhang [22] dealt with the effects of
pulse toxicant input with constant rate on two-species Lotka-Volterra competition
system in a polluted environment. The thresholds between persistence and extinc-
tion of each population were obtained. Jiang et al. [16] considered a stage-structured
pest management system with impulsive effects and constant coefficients. The suf-
ficient conditions of the existence, uniqueness and orbitally asymptotic stability of
periodic solution were obtained.

As we can see, many scholars choose constant and fixed moment impulsive condi-
tion [4,16,22]. But in reality, state-dependent impulse are more practical. By using
the properties of the Lambert W function and Poincare map, Tang and Cheke [29]
proved that there was no periodic solution of a state-dependent impulsive models
with order larger than or equal to three, except for one special case. Jiang [14]
studied a Holling type II prey-predator impulsive system with state feedback con-
trol. The existence and stability of the semi-trivial periodic solution were presented
by Poincare map. Zeng et al. [34] got an existence theorem of order one periodic
solution for a general planar autonomous impulsive system by the qualitative the-
ory of ordinary differential equations and geometry method. By using Floquet’s
theory and comparison techniques, Baek [2] analyzed the dynamics of the Holling-
type IV two-competitive-prey one-predator system with impulsive perturbations
and seasonal effects. Sufficient conditions for the local and global stabilities of the
two-prey-free periodic solution were established. Huang and Song [13] used differ-
ential geometric theory and subsequent function studied the existence of an order-1
periodic solution for a population system with state impulsive feedback and gave the
existence of the periodic solutions for a special system. Wang et al. [31] analyzed a
model concerning biologically-based impulsive control strategy for pest control. It
showed that there existed a globally stable susceptible pest eradication periodic so-
lution when the impulsive period was less than some critical value. Liang et al. [23]
developed a novel pest population growth model incorporating the evolution of pes-
ticide resistance. Three pesticide switching methods, threshold condition-guided,
density-guided and EIL-guided were modelled to determine the best choice under
different condition. By using qualitative analysis method, Nie et al. [25] obtained
that the control model exhibited two stable positive period-1 solution under some
general conditions. For more works, one can refer to [3,10,11,15,27,32,35] and the
references therein. In the study of impulsive population differential systems, the
existence and stability of periodic solutions are particularly important. All of these
works provide a theoretical support for the production of agriculture and animal
husbandry.

When investigating the motion in Coulomb friction oscillator, Filippov [5] pre-
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sented a differential dynamical system with discontinuous right-hand sides. Since
then, Filippov’s discontinuous theory has been applied to many other fields [1, 30].
Albert Luo in paper [17] investigated the dynamical behavior of a discontinuous
dynamical system. He gave the sufficient and necessary conditions for a flow to be
a semi-passable flow or a non-passable flow of the first kind from Ωi to Ωj at point
(Xm, tm) on the boundary ∂Ωij . On the basis of [13,17], we consider a general popu-
lation differential system and a population differential system with state-dependent
impulsive effect.

In part 2, we will establish necessary and sufficient conditions for trajectory
direction of a population differential system. Using such conditions, we consider a
special two species predator-prey differential system. And the sufficient condition
for the uniqueness of period-1 solution of the system is given. In part 3, with
mapping dynamical theory, we will present the local stability for period-k solutions
of a population differential system with state-dependent impulsive effect. In part
4, the existence and local stability will be given for a special impulsive population
differential system. The reliability of regression analysis is illustrated through the
numerical simulation at last.

2. Trajectory direction of population differential sys-
tem

Consider a general population differential system
dx

dt
= f1(x, y),

dy

dt
= f2(x, y),

(2.1)

and a population differential system with state-dependent impulsive effect

dx

dt
= f1(x, y),

dy

dt
= f2(x, y),

}
X /∈M(x, y),

∆x = g1(x, y),

∆y = g2(x, y),

}
X ∈M(x, y),

(2.2)

where X =

x

y

, X ∈ Ω, Ω is an open set in R
2

+. f1(x, y), f2(x, y), g1(x, y)

and g2(x, y) are continuous in Ω. M = M(x, y) denotes impulsive set and N =
{(x, y)|x+ g1(x, y), y + g2(x, y)} ∈ R+

2 denotes phase set.

Suppose that domain Ω is divided into several small domains Ωi, i ∈ I by the
isoclinic lines of the vector fields of system (2.1). Let Ω =

⋃
i∈I

Ωi, and the sepa-

ration boundary of adjacent domain Ωi and Ωj is defined as ∂Ωij = Ωi ∩ Ωj =
{(x, y)|φij(x, y) = 0}.
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Let F (X) =

 f1(x, y)

f2(x, y)

, then system (2.1) can be written as

dX

dt
= F (X) = F (i)(X), i ∈ I. (2.3)

Lemma 2.1. Suppose that there is a point Xm ∈ ∂Ωij at time tm between adjacent
domain Ωi and Ωj, then the trajectory of system (2.1) from Ωi will enter into Ωj if
and only if

either
nT∂Ωij

· F (i)(Xm) > 0,

nT∂Ωij
· F (j)(Xm) > 0,

}
n∂Ωij

→ Ωj ,

or
nT∂Ωij

· F (i)(Xm) < 0,

nT∂Ωij
· F (j)(Xm) < 0,

}
n∂Ωij → Ωi.


(2.4)

Proof. For a point Xm ∈ ∂Ωij with n∂Ωij
→ Ωj . Suppose the two flows X(i)(t)

and X(j)(t) are in domain Ωi and Ωj . For an arbitrarily small 0 < ε < 1, let
a ∈ [tm−ε, tm− ], b ∈ [tm+, tm+ε], where tm− and tm+ reflect the responses in domain
Ωi and domain Ωj . Using Taylor series, we have

X(i)(tm−ε) ≡ X(i)(tm− − ε) = X(i)(a) + Ẋ(i)(a)(tm− − ε− a) + o(tm− − ε− a),

X(j)(tm+ε) ≡ X(j)(tm+ + ε) = X(j)(b) + Ẋ(j)(b)(tm+ + ε− b) + o(tm+ + ε− b).

Let a→ tm− and b→ tm+
, the above equations lead to

X(i)(tm−ε) = X(i)(tm−)− Ẋ(i)(tm−)ε+ o(ε),

X(j)(tm+ε) = X(j)(tm+
) + Ẋ(j)(tm+

)ε+ o(ε).

Since 0 < ε < 1, the following relation exist,

nT ∂Ωij · [X(i)(tm−)−X(i)(tm−ε)] = nT ∂Ωij · Ẋ(i)(tm−)ε = nT ∂Ωij · F (i)(X(tm−))ε,

nT ∂Ωij
· [X(j)(tm+ε)−X(j)(tm+

)] = nT ∂Ωij
· Ẋ(j)(tm+)ε = nT ∂Ωij

· F (j)(X(tm+
))ε.

If the trajectory from domain Ωi enters into Ωj , we will have

nT ∂Ωij
· [X(i)(tm−)−X(i)(tm−ε)] > 0,

nT ∂Ωij
· [X(j)(tm+ε)−X(j)(tm+

)] > 0,

which implies

nT ∂Ωij · F (i)(X(tm−)) = nT ∂Ωij · F (i)(Xm) > 0,

nT ∂Ωij
· F (j)(X(tm+

)) = nT ∂Ωij
· F (j)(Xm) > 0.

In a similar manner, the flow at point (Xm, tm) to the boundary ∂Ωij with
n∂Ωij → Ωi will enter into Ωj with the second inequality equation in (2.4), and vice
versa.
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Remark 2.1. The function nT∂Ωij
· [X(i)(tm−) − X(i)(tm−ε)] is defined as a G-

function in [17]. So we call this method being the G-function method.

Now, consider the following two species predator-prey differential system
dx

dt
= x(a− rx− by),

dy

dt
= y(cx− d).

(2.5)

System (2.5) can be used to describe the interaction between predator and prey.
x(t) is the population density of prey, y(t) is the population density of predator.
a, b, c, d are positive constants, which respectively denote the growth rate of prey,
the predatory rate of predator, the conversion rate of prey into a predator and the
death rate of predator. r ≥ 0 is the population competition coefficient.

Suppose (H1): ac−dr > 0, then system (2.5) has an unique positive equilibrium

point Z = (
d

c
,
ac− dr
bc

), which is global asymptotically stable.

Figure 1. four subdomains

There are two isoclinic lines of system (2.5): a − rx − by = 0 and cx − d = 0,
which divide the first quadrant R2

+ into four domains

Ω1 = {(x, y)|cx− d > 0, a− rx− by < 0} ∩R2
+,

Ω2 = {(x, y)|cx− d < 0, a− rx− by < 0} ∩R2
+,

Ω3 = {(x, y)|cx− d < 0, a− rx− by > 0} ∩R2
+,

Ω4 = {(x, y)|cx− d > 0, a− rx− by > 0} ∩R2
+,

which are sketched in Fig. 1. The line perpendicular to the X axis is cx − d = 0,
and the other line is a− rx− by = 0.

The separation boundary of adjacent domain Ωi and Ωj is defined as

∂Ω12 = ∂Ω21 =

{
(x, y)|x =

d

c
, y ≥ ac− dr

bc

}
,

∂Ω23 = ∂Ω32 =

{
(x, y)|0 ≤ x ≤ d

c
, a− rx− by = 0

}
,

∂Ω34 = ∂Ω43 =

{
(x, y)|x =

d

c
, 0 ≤ y ≤ ac− dr

bc

}
,

∂Ω41 = ∂Ω14 =

{
(x, y)|d

c
≤ x ≤ a

r
, a− rx− by = 0

}
.



444 X. Tang & X. Fu

Let F (X) =

x(a− rx− by)

y(cx− d)

 , then system (2.5) can be described as

dX

dt
= F (X) = F (i)(X), i = 1, 2, 3, 4. (2.6)

Theorem 2.1. Suppose that system (2.5) satisfies (H1), then the trajectory of sys-
tem (2.5) starting from domain Ω1 will enter into Ω2, from domain Ω2 will enter
into Ω3, from domain Ω3 will enter into Ω4, and the trajectory of system (2.5)
starting from domain Ω4 will enter into Ω1.

Proof. The normal vectors of corresponding separation boundary are

nT∂Ω12
= (1, 0), nT∂Ω23

= (−r,−b), nT∂Ω34
= (1, 0), nT∂Ω41

= (−r,−b).

Suppose that the trajectory of system (2.5) from domain Ω1 reaches the sepa-
ration boundary ∂Ω12 at tm, then

nT∂Ω12
· F (1)(X(tm−)) = (1, 0) ·

 x(tm−) · (a− rx(tm−)− by(tm−))

y(tm−) · (cx(tm−)− d)


= x(tm−) · (a− rx(tm−)− by(tm−)) < 0.

Similarly, nT∂Ω12
· F (2)(X(tm+)) < 0, where tm− and tm+ reflect the responses

in domain Ω1 and domain Ω2 rather than the separation boundary ∂Ω12. So if the
trajectory of system (2.5) from domain Ω1 reached the separation boundary ∂Ω12,
it would enter into domain Ω2.

On the other hand,

nT∂Ω14
· F (1)(X(tn−)) = (−r,−b) ·

x(tn−) · (a− rx(tn−)− by(tn−))

y(tn−) · (cx(tn−)− d)


= (−r) · [x(tn−) · (a− rx(tn−)− by(tn−))]− by(tn−) · [cx(tn−)− d] < 0,

where tn− reflects the response in domain Ω1. So if the trajectory of system (2.5)
from domain Ω1 reached the separation boundary ∂Ω14, it would not enter into
domain Ω4. Since Z is global asymptotically stable, so the trajectory of system
(2.5) from domain Ω1 will enter into domain Ω2. Similarly, the left result is true.

Definition 2.1. Suppose P (x, y) is a point belonging to M . If the trajectory of
system (2.1) from Q : (x+ g1(x, y), y + g2(x, y)) ∈ N would enter to point P , then
system (2.2) has a period-1 solution Z(t). At this time, we can say Z(t) is after one
time impulsive effect.

If the trajectory of solution Z(t) from P (x, y) ∈M would enter to point P after
k times impulsive effect, then Z(t) is a period-k solution of system (2.2).

When the density of one species reaches the population capacity ET , people can
take measures to maintain the ecological balance, such as capturing another species
or increasing this species. Let M = {(x, y)|x = ET, y > 0}, consider the following
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two species predator-prey impulsive differential system

dx

dt
= x(a− rx− by),

dy

dt
= y(cx− d),

}
x < ET,

∆x = −px,
∆y = q,

}
x = ET,

(2.7)

where 0 < p < 1, q > 0.

Theorem 2.2. Suppose that system (2.7) has a period-1 solution and (H1), (H2),
(H3) are satisfied, where

(H2)
a

r
> ET >

d

c
,

(H3) q >
a

b
− a

r
(1− p)ET,

then the period-1 solution of system (2.7) is unique.

Proof. Let

Ω5 =

{
(x, y)|d

c
< x < ET, a− rx− by < 0

}
∩R2

+,

Ω6 =

{
(x, y)|d

c
< x < ET, a− rx− by > 0

}
∩R2

+.

Suppose Z1(t) and Z2(t) are two period-1 solutions of system (2.7). Point A =
(ET, y1) and point B = (ET, y2) are on the respective trajectories. Let y1 < y2.
After one time impulsive effect, we get point A = ((1 − p)ET, y1 + q) and point
B = ((1− p)ET, y2 + q).

Since y1 + q < y2 + q, by Theorem 2.1, Z1(t) and Z2(t) must intersect in domain
Ω2,Ω3 or Ω6, which is impossible. Then the period-1 solution of system (2.7) is
unique.

3. Mapping structure and local stability analysis of
state-dependent impulsive population system

Definition 3.1. Assume that X(t) =

x(t)

y(t)

 is a period-k solution of system

(2.2). If there exists a neighborhood U sufficiently small such that W limit set of
trajectory starting from any point Q ∈ U is always X(t), then the period-k solution
X(t) of system (2.2) is stable, otherwise X(t) is unstable.

Let X(t) is a period-k solution of system (2.2) from point P = (x0, y0) ∈ M ,
whose period is T . Obviously, X(t) reaches the impulsive set M finite times in a
period T . Let impulsive time be t1, t2, . . . , tk, and impulsive point set {(xi, yi), i =
1, 2, · · · , k}, then tk = t0 + T.

Let Ω = {(x, y)|(x, y) /∈M} ∩R2
+. Making mapping P+

i+1 and Pi+1 as followed:
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P+
i+1 : M → Ω, satisfying

P+
i+1(xi, yi) ≡ (x+

i , y
+
i ) = (xi + g1(xi, yi), yi + g2(xi, yi)), i = 0, 1, 2, . . . , k − 1.

Then the governing equations of mapping P+
i+1 can be expressed by

x+
i = xi + g1(xi, yi),

y+
i = yi + g2(xi, yi),

t+i = ti.

(3.1)

Pi+1 : Ω→M, satisfying

Pi+1(x+
i , y

+
i ) = (xi+1, yi+1), i = 0, 1, 2, . . . , k − 1,

where (xi+1, yi+1) is the point on the trajectory of system (2.1) starting from
(x+

i
, y+

i
, ti). Then the governing equations of mapping Pi+1 can be expressed byH(t+i , x

+
i
, y+

i
, ti+1, xi+1, yi+1) = 0,

G(t+i , x
+
i
, y+

i
, ti+1, xi+1, yi+1) = 0.

(3.2)

If system (2.1) is a linear differential system, Eq. (3.2) can be obtained quickly
through elementary integral method. If system (2.1) is a nonlinear differential
system, using the method in paper [18], we also can get Eq. (3.2) which is an
implicit function.

Theorem 3.1. The local stability for the period-k solution X(t) of system (2.2)
can be obtained by generalized eigenvalue analysis.

Proof. For the above period-k solution X(t), let

P = (P1 ◦ P+
1 ) ◦ (P2 ◦ P+

2 ) ◦ . . . ◦ (Pk ◦ P+
k )︸ ︷︷ ︸

k−terms

,

then the mapping structure P satisfying

P (x0, ET ) = (x0, ET ). (3.3)

For a little perturbation ∆Xi = ∆(xi, yi)
T , the variational equation of X(t) for

the local stability analysis is

∆Xi+T = DP ·∆Xi,

where

DP+
i+1

=

 ∂x+
i

∂xi

∂x+
i

∂yi
∂y+i
∂xi

∂y+i
∂yi

∣∣∣∣∣
(xi,yi,x

+
i ,y

+
i )

,

DPi+1 =

 ∂xi+1

∂x+
i

∂xi+1

∂y+i
∂yi+1

∂x+
i

∂yi+1

∂y+i

∣∣∣∣∣
(x+

i ,y
+
i ,xi+1,yi+1)

, i = 0, 1, 2, . . . , k − 1,

DP = (DP+
1 ·DP1) · (DP+

2 ·DP2) · . . . · (DP+
k ·DPk)︸ ︷︷ ︸

k−terms

.
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From Eq. (3.1) and Eq. (3.2), the generalized characteristic equation of mapping
structure P is

det(DP − λI) = 0, (3.4)

where I is an unit matrix. Suppose the eigenvalues for the mapping structure of
the period-k solution X(t) are λ1 and λ2. Without the local singularity involving
with discontinuity causing by impulse, the eigenvalue analysis can give an accurate
prediction:

(i) If |λi| < 1, i = 1, 2, then the period-k solution X(t) of system (2.2) is stable.

(ii) If |λi| > 1, i = 1 or 2, then the period-k solution X(t) of system (2.2) is
unstable.

(iii) If |λi| = 1, i = 1 or 2, then the bifurcation phenomenon occurs.

4. Existence of period-k solution for a special im-
pulsive population system

Let M = {(x, y)|x > 0, y = ET}, consider a population differential system with
state-dependent impulsive effect

dx

dt
= −ax+ by,

dy

dt
= cx− dy,

}
y < ET,

∆x = px,

∆y = qy,

}
y = ET,

(4.1)

where −1 < p < 0,−1 < q < 0 are constant. Take insect pest population as an
example. x = x(t) is the population density of larvae and y = y(t) is the population
density of adult. b > 0 is the birth rate of adult , d > 0 is the death rate of adult.
Let b > d, a = c1 + c , where c is the conversion rate from larvae to adult, and c1
is the death rate of larvae, a > c > 0.

From Eq. (3.1)and Eq. (3.2), the governing equations of mapping P+
i+1 and

Pi+1 are 
x+
i = (1 + p)xi,

y+
i = (1 + q)yi,

t+i = ti,

and 

xi+1 =
d+ α1

α1 − α2
(x+
i −

d+ α2

c
y+
i )eα1(ti+1−t+i )

+
d+ α2

α2 − α1
(x+
i −

d+ α1

c
y+
i )eα2(ti+1−t+i ),

yi+1 =
c

α1 − α2
(x+
i −

d+ α2

c
y+
i )eα1(ti+1−t+i )

+
c

α2 − α1
(x+
i −

d+ α1

c
y+
i )eα2(ti+1−t+i ),
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where α1 =
−a−d+

√
(a−d)2+4bc

2 , α2 =
−a−d−

√
(a−d)2+4bc

2 .
Suppose that X(t) is a period-k solution of system (4.1) starting from (x0, ET ),

then

x+
0 = (1 + p)x0, y

+
0 = (1 + q)ET, t+0 = t0,

x1 =
d+ α1

α1 − α2
(x+

0 −
d+ α2

c
y+

0 )eα1(t1−t+0 ) +
d+ α2

α2 − α1
(x+

0 −
d+ α1

c
y+

0 )eα2(t1−t+0 ),

ET =
c

α1 − α2
(x+

0 −
d+ α2

c
y+

0 )eα1(t1−t+0 ) +
c

α2 − α1
(x+

0 −
d+ α1

c
y+

0 )eα2(t1−t+0 ),

x+
1 = (1 + p)x1, y

+
1 = (1 + q)ET, t+1 = t1,

x2 =
d+ α1

α1 − α2
(x+

1 −
d+ α2

c
y+

1 )eα1(t2−t+1 ) +
d+ α2

α2 − α1
(x+

1 −
d+ α1

c
y+

0 )eα2(t2−t+1 ),

ET =
c

α1 − α2
(x+

1 −
d+ α2

c
y+

1 )eα1(t2−t+1 ) +
c

α2 − α1
(x+

1 −
d+ α1

c
y+

1 )eα2(t2−t+1 ),

...

x+
k−1 = (1 + p)xk−1, y

+
1 = (1 + q)ET, t+k−1 = tk−1,

x0 =
d+ α1

α1 − α2
(x+
k−1 −

d+ α2

c
y+
k−1)eα1(tk−t+k−1)

+
d+ α2

α2 − α1
(x+
k−1 −

d+ α1

c
y+
k−1)eα2(tk−t+k−1),

ET =
c

α1 − α2
(x+
k−1 −

d+ α2

c
y+
k−1)eα1(tk−t+k−1)

+
c

α2 − α1
(x+
k−1 −

d+ α1

c
y+
k−1)eα2(tk−t+k−1).

(4.2)
If Eq. (4.2) has a solution, then there must be a period-k solution of system

(4.1). Especially, if X(t) is a periodic solution of system (4.1), whose period is T ,
we will have the following theorem.

Theorem 4.1. Suppose that X(t) is a periodic solution of system (4.1) starting
from (xi, ET ), then X(t) is a period-1 solution unless (4.3) is satisfied, where

(d+ α1)(d+ α2)

c(α1 − α2)
(1 + q)(eα1T − eα2T )

d+ α1

α1 − α2
(1 + p)eα1T +

d+ α2

α2 − α1
(1 + p)eα2T − 1

=
1 +

1 + q

α1 − α2
[(d+ α2)eα1T − (d+ α1)eα2T ]

c(1 + p)

α1 − α2
(eα1T − eα2T )

. (4.3)

At the same time,

DP =

 (1 + p)( d+α1

α1−α2
eα1T + d+α2

α2−α1
eα2T )

−(1 + p)[ (d+α1)(d+α2)
c(α1−α2) eα1T

+ (d+α1)(d+α2)
c(α2−α1) eα2T ]

(1 + q)( c
α1−α2

eα1T + c
α2−α1

eα2T ) −(1 + q)( d+α2

α1−α2
eα1T + d+λ1

α2−α1
eα2T )


2×2

.
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Proof. If X(t) is a period-k solution of system (4.1) starting from (xi, ET ), then
from Eq. (4.2), we have

xi+1 =
d+ α1

α1 − α2
[(1 + p)xi −

d+ α2

c
(1 + q)ET ]eα1(ti+1−t+i )

+
d+ α2

α2 − α1
[(1 + p)xi −

d+ α1

c
(1 + q)ET ]eα2(ti+1−t+i ),

ET =
c

α1 − α2
[(1 + p)xi −

d+ α2

c
(1 + q)ET ]eα1(ti+1−t+i )

+
c

α2 − α1
[(1 + p)xi −

d+ α1

c
(1 + q)ET ]eα2(ti+1−t+i ).

(4.4)

Combining with Eq. (4.3), we have xi+1 = xi and ti+1 = ti + T , so X(t) is a
period-1 solution of system (4.1). And we can compute DP easily by the governing
equations.

Remark 4.1. Eq. (4.3) is also

α1 − α2 = [(d+ α1)(1 + p)− (d+ α2)(1 + q)]eα1T

+[(1 + q)(d+ α1)− (1 + p)(d+ α2)]eα2T

−[(1 + p)(1 + q)(α1 − α2)]e(α1+α2)T .

(4.5)

Remark 4.2. Eq. (4.3) and Eq. (4.5) describe the relationship between p, q and
T . If Eq. (4.3) or Eq. (4.5) is satisfied, there must be a period-1 periodic solution
of system (4.1).

Remark 4.3. The initial value (xi, ET ) of the order-1 periodic solution X(t) sat-
isfies

xi =

(d+ α1)(d+ α2)

c(α1 − α2)
(1 + q)(eα1T − eα2T )

d+ α1

α1 − α2
(1 + p)eα1T +

d+ α2

α2 − α1
(1 + p)eα2T − 1

(4.6)

or

xi =
1 +

1 + q

α1 − α2
[(d+ α2)eα1T − (d+ α1)eα2T ]

c(1 + p)

α1 − α2
(eα1T − eα2T )

. (4.7)

Now let a = 1, b = 2, c = 0.8, d = 0.5, ET = 5. We give the relationship
of p(q) and T in Figs. 2(a)-2(f) first. The blue (red) curve represents that there
is (not) a period-1 solution of system (4.1) with corresponding parameters. And
horizontal coordinate is the period T of the period-1 solution for system (4.1),
vertical coordinate is the parameter p or q, respectively. (a)-(c) describe the relation
between T and p. (d)-(f) depict the relationship between T and p. With the
parameter q = −0.2, q = −0.5, q = −0.8 and p = −0.2, p = −0.5, p = −0.8, the
range of period T for system (II-2) are (0.2016,1.33), (0.5968,2.2238), (1.148,3.94),
(0.1008,2.086), (0.2982,2.986) and (0.5705,4.668) in (a)-(f).

Let p = −0.5, q = −0.8, x0 = 6.518, ET = y0 = 5, the period-1 solution of
system (4.1) is sketched in Fig. 3. x0 is decided by Eq. (4.6) or Eq. (4.7). We
also can choose other p, q and x0. Here, we won’t describe more. Let p = −0.5,
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(a) (b) (c)

(d) (e) (f)

Figure 2. The relationship between T and p with parameter q = −0.2, q = −0.5, q = −0.8 in (a)-
(c). The relationship between T and q with parameter p = −0.2, p = −0.5 and p = −0.8 in (d)-(f).
(a = 1, b = 2, c = 0.8, d = 0.5.)

(a) (b)

Figure 3. The trajectory of the period-1 solution of system (II-2) with parameter a = 1, b = 2, c =
0.8, d = 0.5, p = −0.5, q = −0.8, x0 = 6.518, ET = 5.

the relationship between q and |λ1| , |λ2| is sketched in Fig. 4. We can also choose
other p, such p = −0.2, p = −0.8. Similarly, we can describe the relation between
p and |λ1| , |λ2| for given q.

When q ∈ (−1,−0.159), both |λ1| , |λ2| are smaller than 1, so the period-1
solution of system (II-2) is stable. When q ∈ (−0.159, 0), one of |λ1| , |λ2| is greater
than 1, so the period-1 solution of system (II-2) is unstable,which are sketched in
Fig. 4. When q = −0.159, one of |λ1| , |λ2| is 1, bifurcation phenomenon will
occur. Let p = −0.5, q = −0.8, x0 = 6.518, x′0 = 6.5, ET = y0 = y′0 = 5, the
corresponding trajectories are sketched in Fig. 5, in which we can see that the
period-1 solution starting from (6.518, 5) is stable.
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(a)

(b) (c)

Figure 4. The relationship between q and |λ1| , |λ2| with parameter a = 1, b = 2, c = 0.8, d =
0.5, p = −0.5, ET = 5 in (a), (b) and (c) are partial enlarged details.

(a) (b)

Figure 5. Trajectories of the period-1 solution of system (II-2) starting from different points. The red
curve is the trajectory from (6.5,5) and the blue one is (6.518,5) with parameter a = 1, b = 2, c =
0.8, d = 0.5, p = −0.5, q = −0.8, ET = 5.

5. Conclusion

The conditions we have obtained in part 2 are sufficient and necessary, which are
better than the sufficient conditions in [4,32]. With the G-function method, we also
can give conditions for a flow tangential to the boundary. The dynamical behav-
ior of the population differential can be described more profound. With mapping
structure, we analyze the period-k solution of a population differential system with
state-dependent impulsive effect. This mapping structure can be used more widely.
And the local stability of periodic solution can be obtained by eigenvalue analy-
sis. Comparing with Lyapunov function method, this method is more intuitive and
simpler.
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