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Abstract In this short paper, we present some remarks on the role of the first
order Melnikov functions in studying the number of limit cycles of piecewise
smooth near-Hamiltonian systems on the plane.
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1. A fundamental result

There have been many articles concerning the problem of limit cycle bifurcations
for piecewise smooth systems on the plane. One of the main subjects studied widely
is the so-called near-Hamiltonian systems with the form

ẋ = Hy + εf(x, y), ẏ = −Hx + εg(x, y), (1.1)

where ε > 0 is a small parameter,

H(x, y) =

{
H+(x, y), x > 0,
H−(x, y), x ≤ 0,

f(x, y) =

{
f+(x, y), x > 0,
f−(x, y), x ≤ 0,

and

g(x, y) =

{
g+(x, y), x > 0,
g−(x, y), x ≤ 0,

with the functions H±, f±, g± being C∞ smooth.
To our knowledge, there are two methods which can be used to study the number

of limit cycles of (1.1). One is to use the Melnikov function established in [6], the
other averaging method developed in [1, 8, 12]. In the following we focus on the
Melnikov function method.

To establish the first order Melnikov function, one must first make the following
assumptions as in [6]:

(I) There exist an interval J = (α, β) and two points A(h) = (0, a(h)) and
A1(h) = (0, a1(h)) such that for h ∈ J

H+(A(h)) = H+(A1(h)) = h, H−(A(h)) = H−(A1(h)), a(h) > a1(h).
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(II) The equation H+(x, y) = h, x ≥ 0, defines an orbital arc L+
h starting from

A(h) and ending at A1(h); the equation H−(x, y) = H−(A1(h)), x ≤ 0,
defines an orbital arc L−

h starting from A1(h) and ending at A(h), such that
(1.1)|ε=0 has a family clockwise oriented periodic orbits Lh = L+

h

∪
L−
h , h ∈ J.

We also say that the unperturbed system (1.1)|ε=0 has a period annulus Lh, h ∈ J.
If (1.1) has a limit cycle Γε satisfying

lim
ε→0

Γε = Lh

for some h ∈ J , we say that the limit cycle is bifurcated from the period annulus.
Then a widely interested and studied problem is the following: For a given system
of the form (1.1), how many limit cycles can be bifurcated from a period annulus
of its unperturbed system?

In many cases the system (1.1) contains a vector parameter δ ∈ D ⊂ Rm with
D compact. In this case a limit cycle Γε,δ of (1.1) is said to be bifurcated from the
period annulus Lh, h ∈ J if

lim
ε→0, δ∈D

Γε,δ = Lh.

for some h ∈ J . Then we can ask the same question as above for all δ ∈ D and ε
small.

Let the inner boundary of the period annulus be a center which is the limit of
Lh as h goes to, say, α. The center can be denoted by Lα. If

lim
ε→0, δ∈D

Γε,δ = Lα,

we say the limit cycle Γε,δ is bifurcated from the center Lα. Then another problem
appears as follows:

How many limit cycles can be bifurcated from the center Lα for all δ ∈ D and ε
small? This is called the problem of Hopf bifurcation for piecewise smooth systems.
Usually, we suppose that the center Lα is elementary (see [2] for the definition of
elementary singular point for piecewise smooth systems on the plane).

Under the assumptions (I) and (II), the authors [6] established a bifurcation
function F (h, ε) for (1.1). From [6] we see that the function F has the following
properties:

(A) For any given interval [a, b] ⊂ J , there exists an ε0 = ε0(a, b) > 0 such that
F ∈ C∞ for h ∈ [a, b] and |ε| ≤ ε0.

(B) The period annulus {Lh, h ∈ J} bifurcates a limit cycle if and only if F (h, ε)
has a zero in h near some h0 ∈ J.

(C) Let F (h, 0) = M(h). Then

M(h) = M+(h) +
H+

y (A)

H−
y (A)

M−(h), (1.2)

where by Theorem 1.1 in [6] and Lemma 2.2 in [7]

M±(h) =

∫
L±

h

g±dx− f±dy.
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Based on the above conclusions (A)-(C), it is direct to obtain the following funda-
mental theorem as in the smooth case.

Theorem 1.1. Under the assumptions (I) and (II), we have

(1) if M(h) has k zeros in h on the interval J with each having an odd multiplicity,
then (1.1) has at least k limit cycles bifurcating from the period annulus for ε
small;

(2) if the function M(h) has at most k zeros in h on the interval J , taking into
multiplicities account, then there exist at most k limit cycles of (1.1) bifur-
cating from the period annulus.

The theorem can be proved by contradiction. It tells us that when M(h) is
not zero identically it can be used to find the maximum number of limit cycles
bifurcated from the period annulus.

This theorem has also many applications to Hopf bifurcation and homoclinic
and heteroclinic bifurcations, see [4,10,11,14] for instance. In the following section
we proceed a further study on Hopf bifurcation.

2. Hopf bifurcation

Now let

H±
x (0, 0) = H±

y (0, 0) = 0,

det
∂(H±

y ,−H±
x )

∂(x, y)
(0, 0) > 0. (2.1)

This ensures that the origin is an elementary singular point of (1.1)|ε=0. Consider

ẋ = Hy + εf(x, y, δ),

ẏ = −Hx + εg(x, y, δ), (2.2)

where H is as before, ε is small, δ ∈ Rm,

f(x, y, δ) =

{
f+(x, y, δ), x > 0,
f−(x, y, δ), x ≤ 0,

and

g(x, y, δ) =

{
g+(x, y, δ), x > 0,
g−(x, y, δ), x ≤ 0.

For (2.2), the first order Melnikov M depends on δ, denoted by M(h, δ). The
following theorem was obtained in [6].

Theorem 2.1. Let the assumptions (I) and (II) and (2.1) hold with J = (0, β), β >
0. If further,

f±(0, 0, δ) = g±(0, 0, δ) = 0, (2.3)

then
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(1) the function M(h, δ) has an expansion of the form

M(h, δ) =
∑
j≥2

bj−1(δ)h
j
2 ; (2.4)

(2) system (2.2) has at most k limit cycles in a neighborhood of the origin for all
(ε, δ) near (0, δ0) if

bj(δ0) = 0, j = 1, · · · , k, bk+1(δ0) ̸= 0; (2.5)

(3) system (2.2) has k limit cycles in an arbitrary neighborhood of the origin for
some (ε, δ) near (0, δ0) if (2.5) holds and

rank
∂(b1, · · · , bk)
∂(δ1, · · · , δm)

(δ0) = k.

The proof of the above theorem depends on the formula of M and the fact below
under the conditions f±(0, 0, δ) = g±(0, 0, δ) = 0:

F (h, ε) =
∑
j≥2

b̃j−1(ε, δ)h
j
2 , b̃j−1(0, δ) = bj−1(δ). (2.6)

By using the above formula we can obtain more results on the maximum number
of limit cycles near the origin. For example, similar to the proof of Theorems 2.4.2
and 2.4.3 in [5], we have

Theorem 2.2. Let the assumptions (I), (II) and (2.1) hold with J = (0, β), β > 0,
also let (2.3) hold. If

(i) H±, f±, g± are analytic in (x, y) at the origin, and f±, g± depend on δ lin-
early;

(ii) there exists an integer k such that (2.2) has a center at the origin as b1 =
· · · = bk = 0, where {bj} are the coefficients appeared in (2.4);

(iii) b1(δ0) = · · · = bk(δ0) = 0 for some δ0 ∈ Rm and

rank
∂(b1, · · · , bk)
∂(δ1, · · · , δm)

= k,

then for any given N > 0, there exists ε0 > 0 such that (2.2) has at most k−1 limit
cycles near a neighborhood of the origin for all 0 < |ε| ≤ ε0, ∥δ∥ ≤ N . Moreover,
k − 1 limit cycles can appear in an arbitrary neighborhood of the origin.

In fact, under our assumptions, we have

b̃j = bj(1 +O(ε)), j = 1, · · · , k,

b̃j = b1φ1j(ε, δ) + · · ·+ bkφkj(ε, δ), j ≥ k + 1.

Hence, by (2.6), the function F can be rewritten as

F (h, ε) = h
k∑

j=1

bj(1 + Pj(h
1
2 , ε, δ))h

j−1
2 ,
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where {Pj} are analytic functions with Pj(0, 0, δ) = 0, j = 1, · · · , k. It implies from
the above form of F that F has at most k−1 positive zeros in h. Also, k−1 positive
zeros can appear.

The condition (2.3) means that the origin is always a singular point under per-
turbation. If we do not require it, we have

Theorem 2.3. Consider (2.2). Let the assumptions (I) and (II) and (2.1) hold
with J = (0, β), β > 0. Then

(1) We have formally

M(h, δ) =
∑
j≥1

bj−1(δ)h
j
2 .

(2) If there exist k and δ0 such that

b0(δ0) = · · · = bk(δ0) = 0, bk+1(δ0) ̸= 0,

and

rank
∂(b0, · · · , bk)
∂(δ1, · · · , δm)

(δ0) = k + 1,

then (2.2) can have at least k + 1 limit cycles in an arbitrary neighborhood of the
origin.

Proof. By (1.2), the function M(h, δ) has the following formula

M(h, δ) = M+(h, δ) +N(h)M−(h, δ), (2.7)

where

M±(h, δ) =

∫
L±

h

g±dx− f±dy, N(h) =
H+

y (A)

H−
y (A)

, A = (0, a(h)).

By [6], there is a C∞ function φ(v) =
∑
i≥1

eiv
i, e1 > 0, such that

a(h) = φ(h
1
2 ), a1(h) = φ(−h

1
2 ).

It follows from (2.1) that

N(h) =
∑
j≥0

njh
j
2 , n0 > 0. (2.8)

Introduce four functions f̃± and g̃± as follows

f̃±(x, y, δ) = f±(x, y, δ)− f±(0, 0, δ),

g̃±(x, y, δ) = g±(x, y, δ)− g±(0, 0, δ).

Then

M±(h, δ) = M̃±(h, δ) + g±(0, 0, δ)

∫
L±

h

dx− f±(0, 0, δ)

∫
L±

h

dy, (2.9)
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where

M̃±(h, δ) =

∫
L±

h

g̃±dx− f̃±dy.

By the proof of Theorem 1.2 in [6], the functions M̃± have the expansions

M̃±(h, δ) =
∑
j≥2

m̃±
j−1(δ)h

j
2 .

Further, we have
∫
L±

h
dx = 0, and∫

L±
h

dy = ±(a1(h)− a(h)) = ±[φ(−h
j
2 )− φ(h

j
2 )] = ±

∑
j≥1

((−1)j − 1)ejh
j
2 .

Therefore, by (2.9)

M±(h, δ) = ±2e1f
±(0, 0, δ)h

1
2 +

∑
j≥2

m±
j−1(δ)h

j
2 ,

where

m±
j−1(δ) = m̃±

j−1(δ)± f±(0, 0, δ)[1− (−1)j ]ej .

Then the first conclusion follows by substituting (2.8) and (2.9) into (2.7). The
proof for conclusion (2) is direct. The proof is completed.

We remark that since the origin may no longer be a singular point of (2.2), the
system may have more than k + 1 limit cycles near the origin under the condition
of conclusion (2). See [2].

If the functions H, f and g in (2.2) depend on another small parameter λ, then
the function M also depends on λ. In this case, we have

M(h, δ, λ) = M0(h, δ) + λM1(h, δ) + λ2M2(h, δ) +O(λ3).

The formulas of M1(h, δ) and M2(h, δ) were obtained in [3] for smooth case and
in [13] for nonsmooth case. When M0 = 0,M1 ̸= 0, then for 0 < |ε| ≪ λ ≪ 1, we
can study the number of limit cycles by using M1(h, δ). Frequently, we can find
more limit cycle using M1 than using M0 only. Similarly, when M0 = M1 = 0,
we can find limit cycles by using M2. The functions can be used to study not
only Poincaré bifurcation (that is, bifurcation of limit cycles from period annulus)
but also Hopf bifurcation and homoclinic and heteroclinic bifurcations. For more
details, see [3, 13].
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