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AFFINE-PERIODIC SOLUTIONS FOR
DISCRETE DYNAMICAL SYSTEMS∗

Xin Meng1,2 and Yong Li3,4,†

Abstract The paper concerns the existence of affine-periodic solutions for
discrete dynamical systems. This kind of solutions might be periodic, har-
monic, quasi-periodic, even non-periodic. We prove the existence of affine-
periodic solutions for discrete dynamical systems by using the theory of Brouwer
degree. As applications, another existence theorem is given via Lyapnov func-
tion.
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1. Introduction and main results

Garrett Birkhoff introduced the concept of dynamical system [1], it vividly describes
the physical background of differential equations. A dynamical system might be
defined as a deterministic mathematical description of a system forward in time.
Time here either may be a continuous variable, or else it may be a discrete integer-
valued variable. An example of a dynamical system in which time is a continuous
variable is a system of m-dimensional, first-order, autonomous, ordinary differential
equations

dx

dt
= M(x), x ∈ Rm, (1.1)

where M : R× Rm → Rm is continuous. In the case of discrete and integer-valued
time, an example of a dynamical system is

xn+1 = F (n, xn), (1.2)

where xn, xn+1 are m-dimensional vectors, F : N+ ×Rm → Rm is continuous with
respect to xn.

The problem of periodic solution of continuous dynamical system has been a
main subject of investigation. By using various methods and techniques, such as
fixed point theory, the Kaplan-Yorke method, coincidence degree theory and topo-
logical degree theory [3,5–8,10]. In general, it is much more difficult to investigate
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the periodic solutions of discrete dynamical system than continuous dynamical sys-
tem, because there are probably more complicated behaviors. In 1964, Alexander
Nicoli Sharkovsky introduced his fundamental theorem on the periods of continu-
ous maps on the real line [9]. Part of Sharkovsky Theorem was later discovered
in 1975, independently, by Tianyan Li and James Yorke [14]. In addition to intro-
ducing “chaos” in mathematics, the Li-Yorke paper was instrumental in introducing
Shakovsky Theorem in English which made it accessible to more scientists. In 1978,
Mitchell Feigenbaum discovered a universal constant, the “Feigenbaum number” [2],
that is shared by unimodal continuous maps on the real line. However, the study
in higher dimensional systems is generally more difficult. Since 2000, Jianshe Yu
et al. investigated the periodic solution of discrete dynamical system by developing
Kaplan-Yorke method and using critical point theory [4, 13,15].

In recent years, the conception of affine-periodic solutions was proposed, and
the existence of solutions was studied for continuous dynamical system [11, 12, 16].
Affine-periodic solution is a kind of periodic or quasi-periodic solutions with sym-
metry, more precisely, is some quasi-periodic solutions with symmetry. In this
paper, we are concerned with the existence of affine-periodic solutions for discrete
dynamical systems.

For simplicity, we consider the following system.

xn+1 − xn = f(n, xn), (1.3)

where n ∈ N+, f : N+ × Rm → Rm is continuous with respect to xn, and for some
N ∈ N+, and Q ∈ GL(m),

f(n+N, xn) = Qf(n,Q−1xn). (1.4)

We call (1.3) a (Q,N)-affine-periodic system.
Consider system (1.3). If there is a linear transformation of coordinates B, which

makes yn = Bxn, then

yn+1 − yn = B(xn+1 − xn) = Bf(n,B−1yn).

Let g(n, yn) = Bf(n,B−1yn), we have

g(n+N, yn) = Bf(n+N,B−1yn) = BQf(n,Q−1B−1yn),

Q̂g(n, Q̂−1yn) = Q̂Bf(n,B−1Q̂−1yn) = BQf(n,Q−1B−1yn),

where Q̂ = BQB−1. Hence

g(n+N, yn) = Q̂g(n, Q̂−1yn).

It means that linear transformation of coordinates keep the affine-periodicity of
system (1.3). Obviously, for general nonlinear transformation of coordinates, the
affine-periodicity will not keep anymore. It is easy to see that this affine-periodic
invariance exhibits two characters: periodicity in time and symmetry in space.

Now a basic topic is to investigate the existence of (Q,N)-affine-periodic solu-
tions xn of system (1.3), i.e.

xn+N = Qxn. (1.5)

Let I be identity matrix. If Q = I, Q = −I, QN = I, Q ∈ SO(m), then the (Q,N)-
affine-periodic solutions are periodic solutions, antiperiodic solutions, harmonic so-
lutions, quasi-periodic solutions, respectively. If Q is not orthogonal matrix, then
the (Q,N)-affine-periodic solutions might be even non-periodic.
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In fact, this problem is equivalent to proving the existence of solutions of the
BVP in the following.

Proposition 1.1. The existence of (Q,N)-affine-periodic solutions of (1.3) is equiv-
alent to the existence of solutions of (1.3) with xN = Qx0.

Indeed, for any solution xn of (1.3), let un = Q−1xn+N . Then

un+1 − un = Q−1(xn+N+1 − xn+N ) = Q−1f(n+N,xn+N )

= Q−1(Qf(n,Q−1xn+N )) = f(n, un).

This shows that un is a solution of (1.3), and u0 = Q−1xN , we know that un =
Q−1xn+N ≡ xn if and only if x0 = Q−1xN .

The purpose of this paper is to investigate the existence of affine-periodic solu-
tions for discrete dynamical system (1.3), where Q ∈ O(m).

Let us introduce our main result as follows.

Theorem 1.1. Consider the following auxiliary system

xn+1 − xn = λf(n, xn), (1.6)

where λ ∈ [0, 1].
Let D ⊂ Rm be a bounded open set. Assume the following hold for system (1.6).
(H1) For each λ ∈ [0, 1], every possible affine-periodic solution xn of (1.6) sat-

isfies
xn ̸∈ ∂D, ∀n ∈ N+;

(H2) The Brouwer degree

deg(g,D ∩ ker(I −Q), 0) ̸= 0, if ker(I −Q) ̸= {0},

where g(a) = 1
N

∑N
k=0 Pf(a), and P : Rm → ker(I −Q) is an orthogonal projection.

Then system (1.3) has at least one (Q,N)-affine-periodic solution.

The rest of the paper is organized as follows. We first give a proof of Theorem
1.1 in section 2. In section 3, we give another result, which shows that Lyapunov’s
method is applicable to study the existence of affine-periodic solutions. There we
also give an example.

2. Proof of Theorem 1.1

Proof. Consider the auxiliary system

xn+1 − xn = λf(n, xn),

with the boundary value condition xN = Qx0, where λ ∈ [0, 1]. Let xn be any
solution of (1.6) with xN = Qx0. We have

xN = x0 + λ

N∑
k=0

f(k, xk) = Qx0.

Then

(I −Q)x0 = −λ
N∑

k=0

f(k, xk), (2.1)
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where I is identity matrix.
Case 1 : Ker(I −Q) ̸= {0}.
In this case, (I − Q)−1 does not exist. By coordinate transformation, we can

just let

Q =

(
I 0
0 Q1

)
,

without loss of generality, suppose (I −Q1)
−1 exists.

Let P : Rm → Ker(I −Q) be the orthogonal projection. Then

(I −Q)x0 = (I −Q)(xker
0 − x⊥

0 )

= −λ
N∑

k=0

f(k, xk)

= −λ
N∑

k=0

Pf(k, xk)− λ
N∑

k=0

(I − P )f(k, xk).

We have

(I −Q)x0 = −λ
N∑

k=0

Pf(k, xk)− λ
N∑

k=0

(I − P )f(k, xk), (2.2)

where xker
0 ∈ ker(I −Q), x⊥

0 ∈ Im(I −Q), and x0 = xker
0 + x⊥

0 .
Let LP = (I − Q)|Im(I−Q). It is easy to see that L−1

P exists. Thus (2.2) is

equivalent to

(I −Q)xker
0 = −λ

N∑
k=0

Pf(k, xk) = 0,

(I −Q)x⊥
0 = −λ

N∑
k=0

(I − P )f(k, xk).

Thus we have

x⊥
0 = −λL−1

P (I − P )
N∑

k=0

f(k, xk).

LetX = {x : {0, 1, 2, · · · , N} → Rm}, and define the norm as ∥x∥ = maxn∈{0,1,··· ,N} |xn|.
It is easy to see that X is a Banach space with the norm ∥ · ∥.

For x ∈ X, which satisfies xn ∈ D for all n ∈ {0, 1, · · · , N}, we define an
operator T (xker

0 , x, λ) by

T (xker
0 , x, λ) =

(
xker
0 + 1

N

∑N
k=0 Pf(k, xk)

xker
0 − λL−1

P (I − P )
∑N

k=0 f(k, xk) + λ
∑n

k=0 f(k, xk)

)
, (2.3)

where λ ∈ [0, 1].
We claim that each fixed point x of T in X is a solution of (1.6) with xN = Qx0.
In fact, if x is a fixed point of T , then(

xker
0

xn

)
=

(
xker
0 + 1

N

∑N
k=0 Pf(k, xk)

xker
0 − λL−1

P (I − P )
∑N

k=0 f(k, xk) + λ
∑n

k=0 f(k, xk)

)
.
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Thus

1

N

N∑
k=0

Pf(k, xk) = 0, (2.4)

xn = xker
0 − λL−1

P (I − P )

N∑
k=0

f(k, xk) + λ

n∑
k=0

f(k, xk). (2.5)

By (2.5) we have

x0 = xker
0 − λL−1

P (I − P )

N∑
k=0

f(k, xk).

Hence

Qx0 = Qxker
0 − λQL−1

P (I − P )
N∑

k=0

f(k, xk)

= xker
0 − λQL−1

P (I − P )
N∑

k=0

f(k, xk).

It follows from (2.4) that

(I −Q)L−1
P (I − P )

N∑
k=0

f(k, xk) = (I − P )
N∑

k=0

f(k, xk)

= (I − P )
N∑

k=0

f(k, xk) + P
N∑

k=0

f(k, xk) =
N∑

k=0

f(k, xk).

Thus

λQL−1
P (I − P )

N∑
k=0

f(k, xk) = λL−1
P (I − P )

N∑
k=0

f(k, xk)− λ
N∑

k=0

f(k, xk).

Then

Qx0 = Qxker
0 − λQL−1

P (I − P )
N∑

k=0

f(k, xk)

= xker
0 − λQL−1

P (I − P )

N∑
k=0

f(k, xk) + λ

N∑
k=0

f(k, xk)

= xN .

Thereby,
Qx0 = xN . (2.6)

By (2.5) and (2.6), we know that (2.1) holds. Thus,

x⊥
0 = −λL−1

P (I − P )
N∑

k=0

f(k, xk).
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Consequently,

xn = xker
0 − λL−1

P (I − P )

N∑
k=0

f(k, xk) + λ

n∑
k=0

f(k, xk)

= xker
0 + x⊥

0 + λ
n∑

k=0

f(k, xk)

= x0 + λ

n∑
k=0

f(k, xk).

This shows that the fixed point x is a solution of (1.6) with xN = Qx0.
Now, we are to prove the existence of fixed point of T .
Define

Xλ = {x ∈ X : |xn − xs

n− s
| ≤ λM, ∀n ̸= s},

where constant M satisfies M > sup{f(n, xn) : n ∈ {0, 1, · · · , N},xn ∈ D}, we
make a retraction αλ : X → Xλ.

Define an operator T̂ (xker
0 , x, λ) by

T̂ (xker
0 , x, λ) =

(
xker
0 + 1

N

∑N
k=0 Pf(k, αλ ◦ xk)

αλ ◦ xker
0 − λL−1

P (I − P )
∑N

k=0 f(k, αλ ◦ xk) + λ
∑n

k=0 f(k, αλ ◦ xk)

)
.

(2.7)

Note that P : Rm → ker(I −Q), we have

1

N

N∑
k=0

Pf(k, xk) ∈ ker(I −Q),

1

N

N∑
k=0

Pf(k, αλ ◦ xk) ∈ ker(I −Q).

Consider the homotopy

H(xker
0 , x, λ) = T̂ (xker

0 , x, λ), (xker
0 , x, λ) ∈ (D ∩ ker(I −Q))× D̃ × [0, 1], (2.8)

where D̃ = {x ∈ X : xn ∈ D,n ∈ {0, 1, · · · , N}}.
We claim that

0 ̸∈ (id−H)(∂((D ∩ ker(I −Q))× D̃)× [0, 1]). (2.9)

Suppose on the contrary that there exists (x̄ker
0 , x̄, λ̄) ∈ ∂((D ∩ ker(I −Q))× D̃ × [0, 1]),

such that (id − H)(x̄ker
0 , x̄, λ̄) = 0. Since x̄ker

0 ∈ ∂D is contrary to (H1), and

∂(D ∩ ker(I −Q)) ⊂ ∂D, we have that x̄ker
0 ̸∈ ∂(D ∩ ker(I −Q)). Hence x̄ ∈ ∂D̃.

We discuss it by two cases as follows.
(a) When λ̄ = 0, we have

X0 = {x ∈ X : |xn − xs

n− s
| ≤ 0, ∀n ̸= s},
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which implies that α0 ◦ xn ≡ α0 ◦ x0,n ∈ {0, 1, · · · , N}. It follows from (id −
H)(x̄ker

0 , x̄, λ̄) = 0 that(
x̄ker
0

x̄n

)
=

(
x̄ker
0 + 1

N

∑N
k=0 Pf(k, α0 ◦ xk)
α0 ◦ x̄ker

0

)
.

It means that x̄n ≡ x̄0, for all n ∈ {0, 1, · · · , N}. Putting x̄0 = p, we have

α0 ◦ x̄ker
0 = x̄n = p,

g(p) =
1

N

N∑
k=0

Pf(p) = 0.

Notice that x̄ ∈ ∂D̃, and D̃ = {x ∈ X : xn ∈ D,n ∈ {0, 1, · · · , N}}. Then there
exists k0 ∈ {0, 1, · · · , N}, such that x̄k0 ∈ ∂D. As x̄n ≡ p, n ∈ {0, 1, · · · , N}, we
obtain that p ∈ ∂D, and g(p) = 0, which contradicts (H2).

(b) When λ̄ ∈ (0, 1], noticing that (id−H)(x̄ker
0 , x̄, λ̄) = 0, it follows that(

x̄ker
0

x̄n

)
=

(
x̄ker
0 + 1

N

∑N
k=0 Pf(k, α0 ◦ xk)

α0 ◦ x̄ker
0 − λ̄L−1

p (I − P )
∑N

k=0 f(k, α0 ◦ xk) + λ̄
∑n

k=0 f(k, α0 ◦ xk)

)
.

Thus

1

N

N∑
k=0

Pf(k, α0 ◦ xk) = 0,

x̄n = α0 ◦ x̄ker
0 − λ̄L−1

p (I − P )

N∑
k=0

f(k, α0 ◦ xk) + λ̄

n∑
k=0

f(k, α0 ◦ xk). (2.10)

Note that

| x̄n − x̄s

n− s
| = 1

|n− s|
|λ̄

n∑
k=s

f(k, α0 ◦ xk)| ≤ λ̄M.

Hence x̄ ∈ Xλ̄, which implies that αλ̄ ◦ x̄ = x̄. Therefore we can rewrite (2.10) as

x̄n = x̄ker
0 − λ̄L−1

p (I − P )
N∑

k=0

f(k, xk) + λ̄
n∑

k=0

f(k, xk).

Similarly to(2.5), we can prove that x̄n is a solution of (1.6). Now the solution

x̄ ∈ ∂D̃, which contradicts (H1).
By (a) and (b), we have

0 ̸∈ (id−H)(∂((D ∩ ker(I −Q))× D̃)× [0, 1]).

Thus by the homotopy invariance and the theory of Brouwer degree, we have

deg(id−H(xker
0 , x, 1), (D ∩ ker(I −Q))× D̃, 0)

=deg(id−H(xker
0 , x, 0), (D ∩ ker(I −Q))× D̃, 0)

=deg(g,D ∩ ker(I −Q), 0)

̸=0.
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By the regularity of Brouwer degree, there exists x̄∗ ∈ D̃, such that(
x̄∗ ker
0

x̄∗
n

)
= T̂ (x̄∗ ker

0 , x̄∗
n, 1). (2.11)

A similar proof in (b) yields that x̄∗ ∈ X1, that is

T̂ (x̄∗ ker
0 , x̄∗

n, 1) = T (x̄∗ ker
0 , x̄∗

n, 1). (2.12)

By (2.11)and (2.12), we obtain that x̄∗ is a fixed point of T in X. Then x̄∗ is a
solution of system (1.3) with xN = Qx0.

Case 2 : ker(I −Q) = {0}.
In this case, (I −Q)−1 exists, and

x0 = −λQL−1
P (I − P )

N∑
k=0

f(k, xk).

Consider the homotopy

H(x, λ) = −λL−1
P (I − P )

N∑
k=0

f(k, αλ ◦ xk) + λ

N∑
k=0

f(k, αλ ◦ xk).

Similar to the proof when Ker(I − Q) ̸= {0}, we have 0 ̸∈ (id−H)(∂D̃ × [0, 1]).
Thereby

deg(id−H(·, 1), D̃, 0) = deg(id−H(·, 0), D̃, 0)

= deg(id, D̃, 0)

= 1.

Thus there exists x̄∗
n with x̄∗

n ∈ D,∀n ∈ {0, 1, · · · , N} such that

x̄∗
n = x̄∗

0 +

n∑
k=0

f(k, x̄∗
k).

This shows that x̄∗
n is a solution of system (1.3) with boundary condition xN = Qx0.

By Proposition 1.1 system (1.3) has a (Q,N)-affine-periodic solution. This fin-
ishes the proof of Theorem 1.1.

3. Applications

Theorem 1.1 offers a topological method to study the existence of affine-periodic
solutions in theory. When dealing with some specific problems, we hope to have a
more directly method. The Lyapunov function method is a useful instrument in the
study of solutions. In this section, we give a result on basis of Lyapnov functions.

Theorem 3.1. Consider system (1.3) , assume that there exist functions Vi : Rm →
R, i = 1, 2, · · · , l and σ > 0, such that
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(H3) For Mi large enough,

|⟨∇Vi(xn), f(n, xn)⟩| ≥ σ > 0, ∀|xn| ≥ Mi, i = 1, 2, · · · , l, n ∈ N+.

And if Ker(I −Q) ̸= {0},

|⟨∇Vi(xn), Pf(n, xn)⟩| ≥ σ > 0,∀xn ∈ ker(I −Q) and |xn| ≥ Mi, i = 1, 2, · · · , l, n ∈ N+,

where P : Rm → ker(I −Q) is an orthogonal projection;

(H4) If ⟨∇Vi(xn), f(n, xn)⟩ > 0, then Hessian matrix ( ∂2V
∂xi∂xj

) is positive semidef-

inite, and if ⟨∇Vi(xn), f(n, xn)⟩ < 0, then Hessian matrix ( ∂2V
∂xi∂xj

) is negative

semidefinite;
(H5)

l∑
i=0

|Vi(xn)| → ∞, as|xn| → ∞;

(H6) The Brouwer degree

deg(∇V0, BM0 ∩ ker(I −Q), 0) ̸= 0, if ker(I −Q) ̸= {0},

where Bρ = {p ∈ Rm : |p| < ρ}.
Then system (1.3) has at least one (Q,N)-affine-periodic solution.

Proof. Consider the auxiliary system

xn+1 − xn = λf(n, xn),

where λ ∈ [0, 1]. Set

Li = sup{|Vi(xn)| : |xn| ≤ Mi},

L =

l∑
i=0

Li,

D = {p ∈ Rm :
l∑

i=0

|Vi(p)| < L+ 1},

V (xn) =
l∑

i=0

|Vi(xn)|.

By (H5), we claim that D is bounded for λ ∈ (0, 1], and every possible (Q,N)-
affine-periodic solution xn of (1.6) satisfies

xn ∈ D, ∀n ∈ N+.

In fact, since xn is a (Q,N)-affine-periodic solution of (1.6) and Q ∈ O(m),
there exists a sequence {nj} ⊂ N+, such that

V (xnj ) → sup
N+

V (xn) < ∞, as j → ∞. (3.1)

Hence for some i,
|Vi(xnj )| → sup

N+

|Vi(xn)|, as j → ∞.
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By (H4) and Taylor’s theorem we know that

Vi(xnj+1)− Vi(xnj )

=⟨∇Vi(xnj ), f(nj , xnj )⟩+
1

2!
⟨(
∂2Vi(xnj + θ(xnj+1 − xnj ))

∂xk∂xs
) · (xnj+1 − xnj ), xnj+1 − xnj ⟩ → 0, as j → ∞,

where θ ∈ (0, 1). By (H3), this result yields

|xnj | < Mi, as j → ∞.

Consequently, by the definition of D and (3.1), we have

xn ∈ D, ∀n ∈ N+.

Thus hypothesis (H1) holds.
If ker(I −Q) = {0}, by the proof of Theorem 1.1, we know that (1.3) admits a

(Q,N)-affine-periodic solution.
Now we prove that if ker(I −Q) ̸= {0},

deg(g,D ∩ ker(I −Q), 0) ̸= 0.

Indeed, consider the homotopy

H(p, λ) = λsgn(⟨∇V0(xn), Pf(n, xn)⟩|∂(BM0
∩ker(I−Q)))∇V0(p) + (1− λ)g(p),

where (p, λ) ∈ (BM0 ∩ ker(I −Q))× [0, 1].
It follows that

⟨∇V0(p),H(p, λ)⟩
=λsgn(⟨∇V0(xn), Pf(n, xn)⟩|∂(BM0∩ker(I−Q)))|∇V0(p)|2 + (1− λ)⟨∇V0(p), g(p)⟩.

(3.2)

For any (p, n) ∈ (BM0 ∩ ker(I −Q))× N+, by (H3), we know that the sign of
⟨∇V0(p), Pf(n, p)⟩ does not change. And by the definition of g(a), we have

⟨∇V0(p), g(p)⟩ =⟨∇V0(p),
1

N

N∑
k=1

Pf(k, p)⟩

=
1

N
⟨∇V0(p),

N∑
k=1

Pf(k, p)⟩.

It means that ⟨∇V0(p), g(p)⟩ always has the same sign with ⟨∇V0(p),
∑N

k=1 Pf(k, p)⟩.
Also, by (H3), we know that |∇V0(p)| ̸= 0, when p ∈ ∂(BM0 ∩ ker(I −Q)). Conse-
quently, the right hand of (3.2) is nonzero.

Thus

⟨∇V0(p),H(p, λ)⟩ ̸= 0,∀(p, λ) ∈ ∂(BM0 ∩ ker(I −Q))× [0, 1],

which implies that 0 ̸∈ H(∂(BM0 ∩ ker(I −Q))× [0, 1]) .
The homotopy invariance of the Brouwer degree implies

0 ̸=deg(g,D ∩ ker(I −Q), 0)

=deg(sgn(⟨∇V0(xn), Pf(n, xn)⟩|∂(BM0
∩ker(I−Q)))∇V0(p), BM0 ∩ ker(I −Q), 0).

Hence hypothesis (H2) holds. Thus Theorem 3.1 follows from Theorem 1.1.
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Example 3.1. Consider the following system

xn+1 − xn = ∇V (xn)− yn, (3.3)

where V : Rm → R is an even function, and yn+N = Qyn, Q ∈ O(m).

Also if ⟨∇Vi(xn), f(n, xn)⟩ > 0, then Hessian matrix ( ∂2V
∂xi∂xj

) is positive semidef-

inite, and if ⟨∇Vi(xn), f(n, xn)⟩ < 0, then Hessian matrix ( ∂2V
∂xi∂xj

) is negative

semidefinite.
In addition,

|V (xn)| → ∞, |∇V (xn)| → ∞, as |xn| → ∞.

Then the system xn+1 − xn = ∇V (xn)− yn has an affine-periodic solution.

Proof. Let V0(xn) = V (xn). Then if xn ≫ 1, we have

⟨∇V (xn),∇V (xn)− yn⟩ = |∇V (xn)|2 − ⟨∇V (xn), yn⟩

≥ |∇V (xn)|2 −
1

2
|∇V (xn)|2 −

1

2
|yn|2

=
1

2
|∇V (xn)|2 −

1

2
|yn|2

> 0.

As V (xn) is even, it is clear that ∇V (xn) is odd. According to Borsuk Theorem,
for M large enough, we have

deg(∇V (xn), BM , 0) ̸= 0.

The conclusion follows from Theorem 3.1.
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