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CHATTER DYNAMIC ANALYSIS FOR A
PLANING MODEL WITH THE EFFECT OF

PULSE∗
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Abstract In this paper, the phenomena of chatter vibration in a typical
planing process is discussed from impulsive point of view. Considering the
instantaneous vibration as an impulse, we present the planing model as a
second-order impulsive dynamical system, which is a specific discontinuous
one. Then we investigate its chatter conditions via the method of flow theory
in discontinuous systems, analyze flow’s dynamical behaviors on separation
surface and get general results on chatter criterion. Finally, such dynamical
analysis and criterion are applied to a specific planing model of coal plough.
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1. Introduction

In traditional process of mechanical machining, there are three basic factors, tool,
workpiece and cutting motion. It is normal to encounter an instable dynamic phe-
nomena which is called self-excited vibration due to the relative motion between
tool and workpiece. Once the machining tool vibrates, the machine would cut into
the wavy material surface in further cutting process and regenerate corresponding
undulations. Such undulation of the system left by previous cut would affect the
next cutting process as a kind of instantaneous impact does, which might cause
more complicated phenomena named chatter as the most obstacle of all problems
facing machinists. For a century, various techniques and methods have developed
in mechanical manufacturing, such as turning, planing, milling, drilling and so on,
but almost in all machining processes, such undesired chatter leading to vibrational
instability is present. Therefore, a lot of work have been done to look for the cause
of such phenomena. In [3], Arnold firstly found it was not induced by external
periodic forces but the forces generated in dynamic machining process itself, which
was the most important characteristic property of chatter vibration. Since then,
several theories have been presented to interpret such phenomena, including regen-
eration theory, vibration coupling theory, negative friction theory, lag of cutting
force theory and so on. Nowadays, Wiercigroch and Budak [20] concluded that
there are two kinds of chatter vibration, primary chatter and secondary chatter.
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And primary chatter is caused by friction between tool and workpiece, mechanical
effects or mode coupling; while the latter case is caused by the regeneration of wavy
surface on the workpiece, called regenerative vibration. Actually, from the very be-
ginning, Tobias [18] had studied the modeling of the dynamic response, structural
aspects and stability limit aspects of regenerative vibration. And in [13], Merrit had
considered regenerative chatter as a closed-loop interaction between the structural
dynamics and the machining process.

For nearly fifty years, it has been a popular topic for academic and industrial
research to investigate chatter phenomena, but chatter is still one of the main ob-
stacles in achieving automation as shown in [2], because it is much more detrimental
to finished surfaces and cutting tools due to its unstable behaviors which result in
large relative displacements between tool and workpiece, especially in more compli-
cated sticking and sliding cases in [1]. As we know, excessive vibration between tool
and workpiece would bring several adverse effects to machining processes. Its catas-
trophic nature creates numerous problems to the total capacity usage of a machine
tool in production, including unsteady process, poor surface quality, inefficient pro-
ductivity rate, limited reliability and safety of the tool and so on. Since it causes so
many inconveniences, nowadays, many scholars have proposed various techniques
to avoid the occurrence of regenerative chatter in the machining process by either
predicting or detecting as soon as it occurs. Many engineers have also tried active or
passive control strategies to find conditions for chatter vibrations in order to obtain
higher productivity and better surface finish of the product. Such chatter conditions
include the alternation cutting force caused by the disturbed system, enough en-
ergy supply to keep chattering and so on. In [16], Rubenstein investigated the tool
oscillation during a planing operation with the influence of nonlinear magnitude of
the cutting stresses. In 1980, Sexton [17] indicated the proper selection of ampli-
tude and frequency of the speed signal was dependent on dynamics of the cutting
process and constrained by the drive system response. In 1993, without systematic
variation of the speed, the above technique was utilized to generate chatter in an
otherwise stable process in [19]. And some analytical treatments have been used to
deal with the effects of nonlinearity, such as perturbation method in [14]. Recently
in [4], Davies etc proposed a new stability theory for interrupted machining process
from the angle of impact. And in [11], Li etc considered the occurrence of vibration
as the instantaneous phenomena which could even regenerate chatter due to the in-
stantaneously react cutting force components and the dynamic regenerative effects
in milling process. Furthermore, Nayfeh etc [15] presented a state-of-the-art review
of chatter in machining processes and classified current methods to ensure chatter-
free cutting conditions, during which the dynamic characteristics could be obtained
through model testing by using the impulse method. Based on the fact that, chatter
phenomena arises due to the successive cutting motion between tool and workpiece
over a previously machined undulated or wavy surface at the frequency of the most
dominant mode of the machine tool structure, in [6], Fu and Zheng constructed a
set for chatter conditions and studied the regeneration process for a single degree
of freedom(SDOF) system in a turning process. If certain conditions were met,
regenerative chatter would occur when small waves in the material left by cut at
some moment during subsequent passes. By the theory of flow switchability, we
systematically investigated the occurrence condition and the energy change of chat-
ter from discontinuous point of view and extended the typical turning model into a
second-order impulsive differential system. As is well known, second-order system
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as a typical mathematical equation, has provided many important mechanical mod-
els in the field of nonlinear vibration. In [7], Fu and Zheng presented a second-order
vibration switched system and obtained several general results about chatter, also
regarding it as the effect of impulse.

Actually, it is universal for a dynamical system to experience transient phe-
nomenon in practical problems, which means the pulse occurs. Since early 1980s,
many specialists have systematically investigated the stability of impulsive differen-
tial systems ( [5]), especially from 1989 when Lakshmikantham etc [12] introduced
a ‘beating’ phenomenon for the variable-impulse case, more attentions have been
paid on this topic as it is more in line with the actual situation in virtue of the
appearance of pulse phenomena( [21]), namely the motion hits the same surface
finite or infinite number of times, which causes rhythmical ’chatter’ in differen-
tial equations. As for the conditions for pulse phenomena, traditional method was
concentrated in arguing about the relationship between the motion curve and the
impulse surfaces as well as the impulse functions, which needed detailed analysis
on the global property of impulse. To avoid these inconveniences, in 2013, Zheng
and Fu [22] first viewed the impulsive system as a global discontinuous one and
investigated its chatter dynamics, which was just what we wanted to indicate in
this paper. By noting the solution’s dynamical behaviors near the impulse surface,
some results on pulse phenomena of simple form were proposed, without discussing
the rigorous property of impulse. In this paper, we will utilize the discontinuous
theory and investigate chatter dynamics for a planing model.

Planing is a kind of machining method for the tool with relatively reciprocating
movement on the workpiece surface. The height distribution of the surface machined
by planing is homogeneous with a relatively low plough head, therefore, the process
of planing is mainly used for machining plane and groove metal shape, as well as in
mining process by breaking the coal seam in the way of planing. However, in virtue
of its close tool about the material surface, it is difficult to mine hard coal seam,
and with the frictional resistance for the plough head and conveyor, vibration even
chatter phenomena flare at times. In this paper, we will focus on the planing process,
introduce a planing model to investigate its chatter dynamics, and go along with
the research of searching for chatter conditions, utilizing our method of impulsive
system on the property of pulse phenomena. Besides, we will generalize the local
theory of discontinuous systems( [10]) and utilize the means into planing process
further. By analysing the coherence between a solution of differential equations and
the flow of dynamical systems, the model would be deemed as a discontinuous one
consisting of two sub-systems with time-varying domains and a reference dynamical
system based on the time-varying separation boundary.

The remaining contents of this paper consist of four parts. In Section 2, we
will present a planing model as a certain kind of second-order impulsive equation
and analyze its features from discontinuous point of view. In Section 3, several
conceptions of flow theory as well as a flow’s dynamical behaviors at a boundary
in the normal direction to the chatter condition set will be presented. In Section
4, by using mapping structures, the flow’s transversal property through a domain
to the adjacent one will analyzed, and some sufficient conditions for the absence of
chatter will be obtained. In Section 5, we will apply our analysis and criterion to a
specific planing model of coal plough.
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2. Model Analysis

In this section, we will discuss a typical planing model of coal plough. Take a
mining machine as the example, and the following is a diagram for a comprehensive
mechanical coal mining equipment for thin seam mining, which could not only mine
but also load and transport the coal by the conveyer belt. In Figure 1, the planing
model for the planing process with double-wheel driving has been formulated. The
coal plough system includes a double-wheel driving system, a coal planing blade
attached to the conveyer belt and a plough chain connecting the conveyer belt and
wheels.

Figure 1. Diagram for a typical planing model of coal plough.

In [8], the mathematical dynamical system is proceeded from dynamic analysis
for characteristics of the machine tool structure for such model, which comes from an
SDOF orthogonal cutting process with a flexible tool and relatively rigid workpiece.
Except traction of the plough chain, the motivation for planing blade also comes
from several coal breaking force, such as high pressure hydraulic function equipped
with automatic control system, like plunger type cylinder in Figure 1, to realize the
full automation of coal mining. The motion equation for the planing blade in the
feed direction x is

mx
′′

= Ft(x, x
′)− f(t), (2.1)

where x represents the displacement of the planing blade, m is the mass of the
tool, Ft(x, x

′) represents the traction of the plough chain, and f(t) is the resistance
originated from the cutting force and load.

Actually, in corresponding planing model, the cutting tool is directed perpendic-
ular to the coal seam, shaving a thin piece of material as the spindle turns, especially
when the planing blade is once surrounded by hard materials, it might vibrate more
dramatically and lead to unstable chatter process in the planing operation. How-
ever, coal seam is naturally formed with nonuniform densities, making the model
experience time-varying and space-varying forces acting on the physical system and
incorporate inertia force and cutting force. As shown is Figure 2, the planing blade
is affected by three dimensional load and quantitative friction resistances, including
ploughing resistance Fx, the feed resistance Fz, lateral resistance Fy and the weight
of its own. And the ploughing resistance is related to others with larger fluctuation.
Besides, in the orthogonal planing, the cutting force is generally considered to be
proportional to the chip area which depends on cutting time and frequency, so we
denote Fµ(t) as the time-varying cutting force in feed direction. And since the coal
planer rotates along the conveyer belt, it would generate friction as

f(t) = Fx + Fµ(t), (2.2)
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where µ is the friction coefficient.

Figure 2. The main view and the lateral view for the planing blade in planing process.

Substituting equation (2.2) into equation (2.1) and dividing by m, it gives a
form of second-order differential equation as

x
′′

=
Ft(x, x

′)

m
− Fx
m
− Fµ(t)

m
. (2.3)

Instead of searching for possible chatter frequencies by scanning from the transfer
function during cutting, like [6], we denote M(t) and N(t) as two regions for the
occurrence and nonoccurrence of vibration dependent with time t. It means that
when at those moments satisfying the condition set M(t), regenerative chatter oc-
curs with a small fluctuation on displacement of the material. Subsequently, the
machine would work on according to the rule of equation (2.2) till the state next
encounters with the condition set M(t). Besides, denote function Γ(t, x, x′) = 0 por-
traying any element in set M(t) and boundary Γ between M(t) and N(t) depicting
the surface of the set, where Γ(t, x, x′) 6= 0 indicates element (x, x′) in N(t). When
the state stays in the region N(t), the vibratory condition would not be switched
on, while once the dynamic characteristics satisfy the condition, it means the state
would pass through boundary Γ and switch into region M(t).

Viewing the planing process including the occurrence of chatter vibration as a
whole dynamic system, unlike the traditional research, in this paper, we would take
a different approach of the chatter process in planing operation. Consider equation
(2.3) including vibration as the following impulsive system{

x
′′

= Ft(x,x
′)

m − Fx
m −

Fµ(t)
m , Γ(t, x, x′) 6= 0,

ϕ : x(t) −→ ϕ(x(t)), Γ(t, x, x′) = 0,
(2.4)

where M(t) ⊂ Ω, Ω ⊂ R is an open set, x ∈ Ω, and the operator ϕ ∈ C(M(t),Ω)
transfers the states in region M(t) into another with small fluctuation. It means
when the vibration happens, the small wave in the material would accumulate
during subsequent passes of the cut due to the fluctuation depending on the original
stateAs for the following planing movement, it can somewhere keep the normal proc.,
or be certain state satisfying the vibratory condition again, in which the latter case
represents the occurrence of chatter vibration.

Actually, from the mathematical point of view, equation (2.4) originally gives
the evolution process subject to instantaneous impulsive effects, while in our model
by introducing the former vibratory threshold function Γ(t, x, x′) = 0, it means
that, when at moments that do not satisfy the vibratory condition, the solution for
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equation (2.4) would move in accordance with the second-order differential equation
(2.3), while when at those moments satisfying the threshold function, the solution
would experience a transfer in obedience to the impulse operator representing the
instantaneous changing on displacement. Those vibratory moments when the vibra-
tion occurs are also called the pulse moments, and corresponding implicit function
generated by the threshold function Γ(t, x, x′) = 0 can be regarded as a surface in
the (t, x, x′)-space and called pulse surface denoted by Γ. For the original continu-
ous solution for equation (2.3), it may be (i) a continuous function, if the integral
curve does not intersect M(t) or hits it at the fixed points of the operator ϕ; (ii)
a piecewise continuous function having countable number of discontinuities of the
first kind, if the integral curve encounters the pulse surface Γ at countable number
of non-fixed points of ϕ. The former case stands for the normal planing process or
the situation that just some little vibrations happen without any extra waves left
in the subsequent planing, and the latter represents the occurrence of chatter which
may be combined with different type of flow curves.

For a transformation, x1 = x, x2 = x
′

was used and an equivalent system of
equation (2.4) is given as x

′

1 = x2, Γ(t, x1, x2) 6= 0,

x
′

2 = 1
m [Ft(x1, x2)− Fx − Fµ(t)], Γ(t, x1, x2) 6= 0,

ϕ : xi(t) −→ ϕ(xi(t)), Γ(t, x1, x2)) = 0, i = 1, 2.

(2.5)

To obtain a standard format, we introduce vector x = (x1, x2)T, and equation (2.5)
becomes {

x
′

= F(t,x), Γ(t,x) 6= 0,
Φ : x(t) −→ Φ(x(t)), Γ(t,x) = 0,

(2.6)

where the vector field function F = (x2,
1
m [Ft(x1, x2) − Fx − Fµ(t)])T and the im-

pulsive operator Φ = (ϕ(x1(t)), ϕ(x2(t)))T ∈ C(R×R,R×R).
As for the vibratory threshold, implicit function Γ(t,x) = 0 can generate a

corresponding dynamical time-varying boundary. If Γ(t,x) = 0 has a countable
number of roots as explicit functions t = τk(x) for each x, k = 1, 2..., satisfying
necessary assumptions, those points (τk(x),x) in the whole space compose the pulse
surfaces Σks as the impulsive theory in [12] mentioned. On the other hand, the
implicit function also divides the state space into two domains M(t) and N(t)
varying as time passes. The relationship between the separation boundary and
M(t) can also be deemed that, M(t) is the kernel of the function Γ(t,x) about state
x as

M(t) = ker(Γ) = {x ∈ Ω| Γ(t,x(t)) = 0},
while the surface Γ for M(t) stands for the hyperplane-pulse surface in the whole
space.

Suppose that for any (t,x) ∈ Γ, corresponding normal vector on the time-varying
separation boundary is denoted as

tnΓ

∣∣
x

= (∇Γ(t,x))
∣∣
x
,

where ∇ = (∂/∂x1, ∂/∂x2)T is the Hamiltonian operator.
By analyzing features of the impulsive equation we presented in planing process

from discontinuous point of view, we could discuss the occurrence and nonoccurrence
of chatter vibration for its equivalent dynamical system (2.6). Next, we would give
the conception of vibration point first of all.
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Definition 2.1. Consider a solution x(t) = x(t0,x0, t) of dynamical system (2.6)
with initial condition (t0,x0). We call the point (t∗,x(t∗)) is a vibration point of
the solution x(t) for the impulse surface Γ in the whole space, if there is a t∗, such
that Γ(t∗,x(t∗)) = 0. And we call x∗ is an intersection point of the trajectory x for
M(t), where x∗

.
= x(t∗). We denote that (t∗,x∗) ∈ Γ and x∗ ∈M(t).

Then, we give definitions of regenerative chatter phenomena based on the oc-
currence of vibration.

Definition 2.2. For dynamical system (2.6), suppose (t∗,x(t∗)) is a vibration point
of the solution x(t), if there exists some certain small ε > 0, such that for any
t ∈ (t∗, t∗ + ε), it gives Γ(t,x(t)) = 0, we say that the phenomena of chatter would
be regenerated; otherwise, if such ε can not be found, we say that the phenomena
of chatter could not be regenerated.

Remark 2.1. The occurrence of regenerative chatter phenomena is that, once there
is a vibration point of any solution starting from N(t), the state in M(t) is not
the fixed points of the operator Φ, causing some fluctuations on the material and
resulting in extra waves left in subsequent planing, which accumulates vibration.
The nonoccurrence of regenerative chatter phenomena is that, when the vibration
happens, the intersection point of the trajectory in M(t) is the fixed point of Φ,
making the tool go along the original curve in subsequent planing, which remains
a continuous process.

3. Dynamical Analysis

In this section, we will introduce the flow theory of discontinuous systems. At first,
the basic flow structures including interior flow and reference flow for discontinu-
ous dynamical systems as well as their several geometric relations to the reference
surface Γ will be introduced. Consider equation (2.6) as a dynamical system, and
the solution can be treated as flow

xt = x(x0, t− t0),

where x(x0, t− t0) is C1-smooth on open subset M(t) and T ⊂ R, satisfying initial
condition

x(t0) = x(x0, 0).

Therefore, any continuous solution of the dynamical system (2.6) starting from
N(t) can be termed as interior flow xt in N(t) regarding to the equation without
encountering M(t). To analyze and predict the precise motion for the flow once
encountering separation boundary of M(t), suppose that (t∗,x(t∗)) is a vibration
point of the solution x(t) for the impulse surface Γ. To distinguish the intersection
points on the boundary out of those inside the domains, we denote that x(t∗)

.
= x ∈

M(t). Meanwhile, the time-varying boundary Γ can be employed as a well-behaved
dynamical system as a reference surface. The reference flow xt which always stays
in M(t) is determined by the interior xt at the same instant, satisfying{

Γ(t,xt) = 0,
Γ(t,Φ(xt)) = 0,

(3.1)

where the later equation means xt is the fixed element of the operator Φ in the
kernel of Γ.
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In this paper, we focus on the nonoccurrence of chatter phenomena of the im-
pulsive differential system (2.6). Next, we would subsequently introduce some con-
ceptions to utilize the flow theory in discontinuous systems( [9]).

Definition 3.1. Consider dynamical systems (2.6) and (3.1) with corresponding
flows xt and xt. Suppose that flow xt in N(t) does not contact with the reference
flow xt in M(t). For an instant moment t̃ with (t̃,xt̃) /∈ Γ and an arbitrarily small
ε > 0, consider two infinitesimal time intervals [t̃ − ε, t̃) and (t̃, t̃ + ε]. The normal
vectors on time-varying boundary Γ at three locations which vary according to
moment are given by t̃−εnΓ,

t̃nΓ and t̃+εnΓ.
(i) For time interval [t̃−ε, t̃), we say flow xt is approaching the reference surface

Γ at time t̃, if

t̃nT
Γ · (xt̃ − xt̃)− t̃−εnT

Γ · (xt̃−ε − xt̃−ε) > 0 for nT
Γ · (x− x) < 0;

or
t̃nT

Γ · (xt̃ − xt̃)− t̃−εnT
Γ · (xt̃−ε − xt̃−ε) < 0 for nT

Γ · (x− x) > 0;

(ii) For time interval (t̃, t̃ + ε], we say flow xt is leaving from the reference
surface Γ at time t̃, if

t̃nT
Γ · (xt̃ − xt̃)− t̃+εnT

Γ · (xt̃+ε − xt̃+ε) > 0 for nT
Γ · (x− x) < 0;

or
t̃nT

Γ · (xt̃ − xt̃)− t̃+εnT
Γ · (xt̃+ε − xt̃+ε) < 0 for nT

Γ · (x− x) > 0;

(iii) For time intervals [t̃− ε, t̃) and (t̃, t̃+ ε], we say flow xt is passing through
the reference surface Γ at time t̃, if

for nT
Γ · (x− x) < 0, t ∈ [t̃− ε, t̃),

t̃nT
Γ · (xt̃ − xt̃)− t̃−εnT

Γ · (xt̃−ε − xt̃−ε) > 0,

and
t̃nT

Γ · (xt̃ − xt̃)− t̃+εnT
Γ · (xt̃+ε − xt̃+ε) < 0,

or, for nT
Γ · (x− x) > 0, t ∈ [t̃− ε, t̃),

t̃nT
Γ · (xt̃ − xt̃)− t̃−εnT

Γ · (xt̃−ε − xt̃−ε) < 0,

and
t̃nT

Γ · (xt̃ − xt̃)− t̃+εnT
Γ · (xt̃+ε − xt̃+ε) > 0.

For a small time interval, the displacement difference between interior flow in
N(t) and reference flow in M(t) in normal direction(i.e., normal component) of
the reference surface is used in the above conceptions. Utilizing the same idea, we
introduce a new function describing the time-changing rate as follows.

Definition 3.2. Consider dynamical systems (2.6) and (3.1) with corresponding
flows xt and xt. Suppose that for any (t,xt) ∈ Γ, corresponding normal vector on
the separation boundary is denoted as nΓ(t,xt). Hence, define G-function as

GΓ(t) = nT
Γ (t,xt) · ẋt.
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Remark 3.1. The G-function is the normal component of relative vector field
function between M(t) and N(t), which means the relative speed of the flow in the
normal direction of Γ. Once flow xt experiences a vibration with boundary Γ at
instant t∗(i.e. xt∗ = xt∗), the foregoing definitions can be simplified by deleting
corresponding factors. Especially, for a flow passing through the surface Γ, since
flow xt always stays in M(t), the flow xt is called transversal to such surface at
instant t∗. This case is flexibly related to the definition of vibration point.

4. Chatter Criterion

In this section, we will utilize the method of flow theory by considering the state-
dependent impulse surface as a time-varying boundary which obstructs the flow. As
mentioned above, in this paper, we focus on looking for conditions to guarantee the
nonoccurrence of chatter from impulsive point of view. Here we present a general
result of the nonoccurrence of regenerative chatter phenomena.

Theorem 4.1. Consider dynamical systems (2.6) and (3.1) with corresponding
flows xt and xt. Suppose that for the separation boundary Γ, corresponding normal
vector is nΓ. If

for nT
Γ · (x− x) < 0, nT

Γ · F (t,x) < 0,
or

for nT
Γ · (x− x) > 0, nT

Γ · F (t,x) > 0.
Then for any solution of equation (2.6) starting from (t0,x0) in N(t), there is at
most only one vibration point for the impulse surface Γ, i.e., chatter phenomena
would not be regenerated.

Proof. First we consider any solution of equation (2.6) starting from (t0,x0) in
N(t), denoted by x(t) = x(t, t0,x0). According to the definition of N(t), we have
Γ(t0,x0) > 0, or Γ(t0,x0) < 0. Before discussing the motion of the solutions, we
can describe the derivative of the foregoing threshold function Γ(t,x) along equation
(2.6) as

DΓ(t,x)

∣∣∣∣
(2.6)

=
∂Γ(t,x)

∂x
· x
′
∣∣∣∣
(2.6)

,

where the Hamiltonian operator denotes ∂Γ(t,x)
∂x = (∇Γ(t,x))T = (∂Γ(t,x)

∂x1
, ∂Γ(t,x)

∂x2
).

Then for the first case, let us suppose Γ(t0,x0) < 0. When the solution stays in
N(t),

(i) for nT
Γ · (x − x) < 0, according to equation (2.6) and the definition of the

normal vector of the separation boundary, it is obvious that

nT
Γ · F(t,x) = (∇Γ(t,x))T · F(t,x)

= (
∂Γ(t,x)

∂x1
,
∂Γ(t,x)

∂x2
) · (x

′

1, x
′

2)T

= DΓ(t,x)

∣∣∣∣
(2.6)

.

(4.1)

Therefore, together with the negative initial value and the condition nT
Γ ·F(t,x) <

0, we know that, for any solution x(t) starting from N(t), once the solution stays
in it, we have Γ(t,x(t)) < Γ(t0,x0) < 0, for ∀t > t0 in terms of the derivative of
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Γ(t,x). That is, the solution would not get to a vibration point with the impulse
surface Γ, so that chatter phenomena would not be regenerated.

(ii) for nT
Γ ·(x−x) > 0, since that Γ(t0,x0) < 0, while the derivative of Γ(t,x) is

positive referred to the condition nT
Γ ·F(t,x) > 0 with the similar discussing process

as stage (i). Hence, Γ(t,x(t)) would increase until there is a moment tm > t0, such
that Γ(tm,x(tm)) = 0, i.e., when at the instant moment tm, flow xt would encounter
the vibratory condition set M(t) with xtm = xtm , which lies on the reference surface
Γ. That is, the solution experiences a vibration point with the impulse surface with
x(tm) = x(tm).

Next, we would show that the state x(tm) is a fixed point of the operator Φ.
Actually, in virtue of the property of increase for Γ(t,x(t)) just before the so-

lution encounters the boundary such that Γ(tm,x(tm)) = 0, we know the flow is
approaching the reference surface Γ for a small time interval [tm − ε, tm), when
nT

Γ · (x− x) > 0,

nT
Γ · (x− x)

∣∣∣∣
tm

−nT
Γ · (x− x)

∣∣∣∣
tm−ε

< 0. (4.2)

With the Taylor series expansions of nT
Γ · (x − x) at tm − ε with tm up to the

ε-term, and because in the small interval the reference surface is time-independent,
it gives

nT
Γ · (x− x)

∣∣∣∣
tm−ε

= nT
Γ · (x− x)

∣∣∣∣
tm

− εD(nT
Γ · (x− x))

∣∣∣∣
tm

+ o(ε)

= nT
Γ · (x− x)

∣∣∣∣
tm

− ε[(DnΓ)T · (x− x)

+ nT
Γ · (ẋ−Dx)]

∣∣∣∣
tm

+ o(ε)

= nT
Γ · (x− x)

∣∣∣∣
tm

− ε[(DnΓ)T

∣∣∣∣
tm

· (x− x)

+ nT
Γ · ẋ

∣∣∣∣
tm

−nT
Γ · ẋ

∣∣∣∣
tm

] + o(ε)

= −εGΓ(tm) + o(ε),

where D(·) = d(·)/dt.
As the positive ε→ 0, together with the former equation (4.2),it gives that

−εGΓ(tm) > nT
Γ · (x− x)

∣∣∣∣
tm

= 0,

which implies GΓ(tm) < 0. Refer to the definition of G-function in 3.2, it gives

nT
Γ (tm,xtm) · x

′

tm = nT
Γ (tm,xtm) · F(tm,x(tm)) < 0.

Similarly discussing as the former equation (4.1) in stage (i), the derivative of
Γ(t,x(t)) in any infinitesimal time interval (tm, tm + ε) (ε > 0) would be nega-
tive. Since that Γ(tm,x(tm)) = 0, it gives

Γ(t,x(t)) < 0, for t ∈ (tm, tm + ε).
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That is, for those moments after the vibration, corresponding states of the cutting
displacement all among belong to N(t), in which the certain small interval keeping
the states in the kernel of Γ(t,x(t)) could not be found out, i.e., the state x(tm) is
a fixed point of the operator Φ. Therefore, by repeating the process of (i) and (ii),
the phenomena of chatter would not be regenerated.

On the other hand, for the second case, if Γ(t0,x0) > 0, the proceeding of the
proof is just like the first case. When the solution stays in N(t),

(i
′
) for nT

Γ ·(x−x) > 0, according to the positive initial value and the condition,
we know that, once the solution stays in the state of N(t), we have Γ(t,x(t)) >
Γ(t0,x0) > 0, for ∀t > t0 in terms of the derivative of Γ(t,x) similarly as equation
(4.1) demonstrated. Hence, the solution would not get to a vibration point with
the impulse surface Γ, that is chatter phenomena would not be regenerated.

(ii
′
) for nT

Γ ·(x−x) < 0, we could conclude from the process of (ii) and reveal the

fact that once we find out the vibration point (t
′

m,x(t
′

m)), it is the only vibration
point for Γ. That is, we will manifest that at the instant moment t

′

m, flow xt is
transversal to the boundary Γ, which means the state x(t

′

m) is a fixed point of the
operator Φ. Actually, the similar equation like equation (4.2) could also be obtained
as

nT
Γ · (x− x)

∣∣∣∣
t′m

−nT
Γ · (x− x)

∣∣∣∣
t′m−ε

> 0,

due to the monotonicity property of Γ(t,x(t)) among the same domain and the
flow’s approaching to the reference surface for a small time interval [t

′

m − ε, t
′

m).
Also with the Taylor series expansions of nT

Γ · (x− x) up to the ε-term, it gives

nT
Γ · (x− x)

∣∣∣∣
t′m−ε

= −εGΓ(t
′

m) < 0,

which implies GΓ(t
′

m) > 0. Similarly discussing as the former analysis, for any
infinitesimal time interval (t

′

m, t
′

m + ε
′
),

Γ(t,x(t)) > 0, for t ∈ (t
′

m, t
′

m + ε
′
),

which is against the definition of the phenomena of regenerative chatter.
Therefore, together the two cases, we could obtain the nonoccurrence of the

regenerative chatter phenomena.

Remark 4.1. From the condition of the above result, we can obviously find the
convenience of flow theory, which comes from the idea of the specific discontinuous
dynamical system, i.e., impulsive differential system. From the introductory of the
instantaneous impact, i.e., impulse, we can get a more general mathematical model
for the process of machining, and obtain a more concise result avoiding the complex
testing on the parameters. Besides, we would modify the conditions and improve
the results involving more cases further.

5. Applications

In this section, we will apply our analysis and criterion to a specific planing model
of coal plough.
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Figure 3. An orthogonal ploughing process with a coal planer tool with double-wheel driving.

Example 5.1. Figure 3 shows a double-wheel driving coal plough system(driving
wheel I and driven wheel II), with a simplified form of traction Fi(i = 1, 2) de-
scribing by two spring damping systems, where ci, ki(i = 1, 2) are corresponding
damping and stiffness coefficients. Firstly, we give traction of this double-wheel
driving system {

F1 = k1(x− ωRt) + c1(x′ − ωR),
F2 = k2(ωRt− x) + c2(ωR− x′), (5.1)

where F1 represents the chain traction between driving wheel I and the plough tool,
F2 represents another traction with a reverse direction in virtue of the driven wheel
II. And ω is the angular velocity of the driving wheel, R is the radius of the sprocket
pitch wheel.

Besides, for simplicity, denote Fb(t) as the cutting force in the feed direction
and friction Fµ(t) is

Fµ = µmg, (5.2)

where g is the acceleration of gravity.
Therefore, according to equations (2.1) and (2.2), the force analysis in the feed

direction x is
mx

′′
= F1 − F2 − Fµ − Fb(t), (5.3)

in virtue of equations (5.1) and (5.2).
In Figure 3, the planing blade would run along the coal seam surface back

and forth, in the traction of the plough chain, making such dynamical system a
discontinuous one, including the free-vibration area and the impact area. Especially
in this model, the plough would vibrate more intensely in a transverse, which is the
velocity direction but not the feed, so we consider the variable speed boundary
on which the displacement of feed shows a linear correlation with the threshold
function.

To apply the analysis and criterion in Section 4, we consider following parameters
for numerical illustrations of periodic motions,

µ = 0.3, R = 0.243m, ω = 1.5/R rad/s, c1 = c2 = 500Ns/m, m = 3400kg.

Besides, we take k1 = K/(L0 + x), k2 = K/(L − L0 − x) as the time-varying
stiffness coefficients in virtue of Hooke’s law with K = 6.95× 107N , and L = 200m
represents the length of the chain, L0 = 2m represents the remaining length of the
chain between the plough and the driven wheel II when the planing blade is excited.

Also we take the traction difference between the plough chain as a simplified
stationary stochastic process with a fixed average according to equation (5.1). Then
the following figures illustrate that how different types of cutting force and its
alternation in feed direction would influence the transverse vibration.
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Figure 4. A ploughing process without the phenomena of chatter.

Figure 5. A ploughing process which would lead to chatter phenomena.

When we take the stationary stochastic ploughing resistance average of 2×103N
to ignore the perturbation of state x, which means the normal vector of the variable
speed separation boundary is irrelevant with the state. And in equation (5.3), the
G-function reduces only the second item which just offsets to zero according to
equation (5.2). Therefore, Figure 4 shows an almost smooth free motion of the
ploughing process as transverse vibration.

When the ploughing resistance shows a periodic motion but an abrupt increase
when the oscillation state reaches the separation boundary, making the G-function
zero. Hence in Figure 5, we can see some complex perturbation as impact in the
velocity direction which would lead to unsteadiness after certain time scale, even
more complicated phenomena such as chatter.
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