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THE COUPLED WITHIN- AND
BETWEEN-HOST DYNAMICS IN THE
EVOLUTION OF HIV/AIDS IN CHINA∗
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and Baojun Song4,†

Abstract In this work, we develop and analyze mathematical models for the
coupled within-host and between-host dynamics caricaturing the evolution
of HIV/AIDS. The host population is divided into susceptible, the infected
without receiving treatment and the infected receiving ART treatment in ac-
cordance with China’s Four-Free-One-Care Policy. The within-host model
is a typical ODE model adopted from literatures. The between-host model
incorporates age-since-infection described by a system of integrodifferential
equations. The two models are coupled via the viral load and number of
CD4+ T cells of within the hosts. For the between-host model with an arbi-
trarily selected HIV infected individual, we focus on the analyses of the basic
reproduction number R0 and the stabilities of equilibria. Through simulations
we also find that the within-host dynamics does influence the between-host
dynamics, and the nesting of within-host and between-host play a very im-
portant role in the HIV/AIDS evolution.
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1. Introduction

Biological processes occur at several nested levels of organization. The importance
of nested levels of biological organization is particularly apparent in the evolutionary
epidemiology of infectious diseases. One of the major challenges in evolutionary
biology is to understand the evolutionary causes and consequences of these levels
of organization [19, 23]. Pathogens can have demographically significant effects at
the level of the host population, as a result of their transmission among individuals
[18,19].

In the past decades, many mathematical models have described the immunolog-
ical and epidemiological processes within their separate scales in diseases such as
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HIV, Hepatitis C and malaria. Viral and bacterial dynamic mathematical models
have contributed immensely to our understanding of the within-host interaction of
the pathogen with the host immune system [9, 15, 17], and these typically track
the dynamics of the pathogen density as well as the state of host defense mecha-
nisms (e.g. density of lymphocytes) over the course of an infection. Particularly,
these models have been used to study rapidly mutating viruses such as HIV or
hepatitis C, and to understand how the within-host dynamics affect antigenic evo-
lution [6,9,15,17,20]. On the other hand, population-level (between-host) dynamics
of many diseases have been studied by numerous articles and books [1, 13].

Recently, there have been several efforts directed toward nesting models (also
called embedded models) of within-host dynamics into models of between-host dy-
namics when studying pathogen evolution. Nested models explicitly link dynamical
processes that occur at different scales. The importance of linking mathematical
immunology and mathematical epidemiology was recognized [5]. Beginning with
Sasaki and Iwasa [24], researchers started to conceptually link within-host processes
to between-host processes. The studies of acute infections by Antia et al. [2, 4],
and Ganusov et al. [12] which included various biological aspects such as a host-
immune response, host heterogeneity, and a threshold mortality function. In 2002,
Gilchrist and Sasaki [10] nested a within-host model within a susceptible-infected-
recovery (SIR) epidemic model. Using the similar dynamical approach, there has
been considerable interest in linking within- and between-host levels of disease dy-
namics, such as in the study of HIV and HCV [7,18,19]. One important goal of the
evolutionary epidemiology of infectious diseases is to understand how such nested
processes affect the epidemiological and evolutionary dynamics of host-pathogen
interactions.

One of our specific goals is to study the HIV evolutionary epidemiology in both
individual and population levels in China. It has come to our attention that HIV
infected patients in China are receiving free treatments (through ”Four-Free-One-
Care Policy” program) on combined antiretroviral therapy which includes mainly
reverse transcriptase inhibitors (RTIs) provided by the government. One can read
from the Manuals for National AIDS Antiviral Treatment for Free in China [25] that
the treatments are based on current availability of antiviral drugs. Accordingly, we
distinguish HIV infected patients by the number of CD4+ T cells whether it is
greater than 350/ml or less than 350/ml, as this value is a criterion in Chinese
guidelines for initiating antiretroviral therapy (ART). For the MSM (men who have
sex with men) population, it is reasonable that a certain proportion of infected
MSM whose CD4+ T cell less than 350/ml will receive ART treatment offered by
the China’s Four-Free-One-Care Policy.

In this paper, we develop a coupled within- (immunological) and between-host
(epidemiological) dynamic model of HIV/AIDS. We first introduce an ordinary dif-
ferential system of HIV dynamics within an infected host. We then consider an
age-structured between-host HIV/AIDS model to describe the dynamics of host
birth and death and the transmission of HIV/AIDS within the host population.
We nest the within-host model within the epidemiological model by linking the dy-
namics of the within-host model to the additional host mortality, treatment rate,
and transmission rate of the infection. The developed multi-scale model of HIV de-
scribes the joint affections of the immunological process and the SIA epidemiological
process, which linked through age-since-infection and through the epidemiological
parameters which depend on the within-host viral load and number of CD4+ T
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cells. We theoretically analyze our mathematical models. Simulations further show
the influence of the within-host dynamics on the between-host dynamics.

This paper is organized as follows. In Section 2 we build the two models. In
Section 3 we carry out a series analyses, main focus on the derivation of the basic
reproduction number R0 and the stabilities of disease-free steady state. In Sec-
tion 4 we discuss the existence of endemic stationary steady state and its stability.
Finally, Section 5 is devoted to elucidating the connection between within-host vi-
ral dynamics and the epidemiology of HIV through extensive simulations based on
massive parameter estimations.

2. The coupled within- and between-host model of
HIV

2.1. A within-host model of HIV

First, we introduce a simple within-host (immunological) model. The work in lit-
erature [21] examined a model for the interaction of HIV with CD4+ T cells that
considers four populations: uninfected T cells, latently infected T cells, actively
infected T cells, and free virus. From their model, some puzzling quantitative fea-
tures of HIV infection were explained. Here, we adapt the model in [21] for our
within-host model of HIV. The model reads

dT (τ)

dτ
= s− µTT (τ) + rT (τ)

(
1− T (τ) + T ∗(τ) + T ∗∗(τ)

Tmax

)
− k1T (τ)V (τ),

dT ∗(τ)

dτ
= k1T (τ)V (τ)− µTT

∗(τ)− k2T
∗(τ),

dT ∗∗(τ)

dτ
= k2T

∗(τ)− µbT
∗∗(τ),

dV (τ)

dτ
= NµbT

∗∗(τ)− k1T (τ)V (τ)− µV V (τ),

T (0) = T0 > 0, T ∗(0) = T ∗
0 ≥ 0, T ∗∗(0) = T ∗∗

0 ≥ 0, V (0) = V0 > 0.
(2.1)

In system (2.1), T (τ) is the concentration of uninfected T cell population along
with the time τ changing; T ∗(τ) is the concentration of latently infected T cell
population; T ∗∗(τ) is the concentration of actively infected T cell population size,
and V (τ) is the concentration of HIV population. The biological meaning of each
parameter can be found in Table 1. We do not give explanation here. System (2.1)
exhibits two steady states, an uninfected state in which no virus is present and an
endemically infected state, in which virus and infected T cells are present. Chose
parameter N , the number of infectious virus produced per actively infected T cell,
as the critical parameter and define

Ncrit =
(k2 + µT )(µV + k1T0)

k1k2T0
,

where T0 is the initial value of variable T . If N < Ncrit, then the uninfected state
is the only steady state in the nonnegative orthant, and this state is stable. For
N > Ncrit, the uninfected state is unstable and the endemically infected state can
be either stable, or unstable and surrounded by a stable limit cycle. For details of
more theory results one can find in literature [21].



734 J. Lou, H. Zhou , D. Liang, Z. Jin & B. Song

Initial values T (0), T ∗(0), T ∗∗(0), and V (0) in the within-host model (2.1) are
critical in the model since an infected individual is characterized by these initial
values as we can see in the between-host models.

2.2. A between-host model of HIV

We now introduce an epidemiological model of HIV spread in population. We denote
by S(t) the number of susceptible human individuals, where t is the chronological
time. We structure the infected individuals by age-since-infection τ . Let i(t, τ) be
the density of individuals infected by HIV at time t− τ and iA(t, τ) be the density
of individuals who are infected by HIV at time t − τ and receive ART at time t.
We suppose that susceptible hosts join the system (through birth or immigration)
at a fixed rate of Λ individuals/time and die at a fixed rate of d per time. Infected
individuals randomly contact susceptibles and new infections are generated at a
transmission rate β(τ). We emphasize that the transmission rate changes with
the age of the infection τ . After infected by HIV, some HIV positive individuals
will receive ART therapy at rate γ(τ). Along to the ”Four-Free-One-Care Policy”
in China, it is reasonable to assume that the therapy rate is a function of the
CD4+ T cells in HIV positive individual. Finally, infected individuals are subject
to additional mortality due to the infection, at a time dependent rate αI(τ) and
αA(τ) respectively.

The dynamics is thus described by the system of integrodifferential equations

dS(t)

dt
= Λ− dS(t)− S(t)

N(t)

∫ ∞

0

β(τ)[i(t, τ) + εiA(t, τ)]dτ,(
∂

∂t
+

∂

∂τ

)
i(t, τ) = −γ(τ)i(t, τ)− αI(τ)i(t, τ),

i(t, 0) =
S(t)

N(t)

∫ ∞

0

β(τ)[i(t, τ) + εiA(t, τ)]dτ,(
∂

∂t
+

∂

∂τ

)
iA(t, τ) = γ(τ)i(t, τ)− αA(τ)iA(t, τ),

iA(t, 0) = 0,

(2.2)

where N(t) = S(t) +

∫ ∞

0

[i(t, τ) + iA(t, τ)]dτ.

Here, we assume that all susceptible individuals have approximately the same
equilibrium level of healthy CD4+ T cells.

2.3. Model linkage

It is reasonable to suppose that the viral load of the transmitting host should affect
the rate at which it releases infectious inocula and, in turn, the probability of a
successful transmission of an inoculum per host-host interaction. So here we suppose
that the transmission rate of an infection should be an increasing function of viral
load, i.e., the transmission coefficient of HIV β(τ) is dependent on the within-host
viral load. We may assume that β(τ) is proportional to the Hill function of viral
load V (τ) at a given age-since-infection τ :

β(τ) = β0ρ(V (τ)) = β0

(
V (τ)

V (τ) + Ω

)
. (2.3)
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Hill function has been used in describing the effect of immunization for long time
[3, 14].

γ(τ) is the rate of treatment for HIV positive individuals. Along to the “Four-
Free-One- Care Policy”, it is reasonable to assume that

γ(τ) =

{
γ0 for T (τ) + T ∗(τ) + T ∗∗(τ) ≤ 350,

0 for T (τ) + T ∗(τ) + T ∗∗(τ) > 350.
(2.4)

Furthermore, the infected hosts die at a variable rate dependent on their viral load or
the concentration of CD4+ T cells at αI(τ) and αA(τ) for HIV positive individuals
and these who receive ART respectively. Here we assume them be the piecewise
functions as follows:

αI(τ) =

{
αI0 for T (τ) + T ∗(τ) + T ∗∗(τ) < 350,

d for T (τ) + T ∗(τ) + T ∗∗(τ) ≥ 350,
(2.5)

and

αA(τ) =

{
αA0 for T (τ) + T ∗(τ) + T ∗∗(τ) < 350,

d for T (τ) + T ∗(τ) + T ∗∗(τ) ≥ 350.
(2.6)

Systems (2.1) and (2.2) are provided with the following initial conditions:

T (0) = T0, T ∗(0) = T ∗
0 , T ∗∗(0) = T ∗∗

0 , V (0) = V0,

S(0) = S0, i(0, τ) = i0(τ), iA(0, τ) = i0A(τ).
(2.7)

In the next section we will compute explicit expressions for the equilibria of
system (2.2) and will establish their local stability.

3. Analysis

A fundamental analysis to the adopted model (2.1) was done by Perelson et al. [21].
Treating the linkage function (2.3) as an input to model (2.2) and making use of
the known results in [21], we can analyze model (2.2), thus dealing with a lower
dimensional system. That is, when analyzing the between-host model (2.2) is a
known function. However, the linkages β(τ), γ(τ), αI(τ), αA(τ) are all associated
with a specific set of HIV infected individuals identified by the same initial values
T0, T

∗
0 , T

∗∗
0 and V0. i.e., we will analyze model (2.2) for an arbitrarily selected HIV

infected individual.
We first here introduce the following three shortcuts and give their biological

meanings.

(a) π1(τ) = e−
∫ τ
0
(γ(σ)+αI(σ))dσ is the probability that an infected individual who

receives ART survives up to age-since-infection τ .

(b) π2(τ) = e−
∫ τ
0
[αA(σ)]dσ is the probability that an infected individual who does

not receive ART survives up to age-since-infection τ .

(c) π3(τ, u) =
π2(τ)
π2(u)

= e−
∫ τ
0 αA(σ)dσ

e−
∫u
0 αA(σ)dσ = e−

∫ τ
u

αA(σ)dσ is the conditional probability

that an infected individual who does not receive ART survives from u to τ
of age-since-infection given that the individual has survived up to age-since-
infection u.
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3.1. The basic reproduction number

The disease-free steady state to system (2.2) is ε0 = (S∗
0 , 0, 0) with S∗

0 = N∗
0 = Λ

d .
We consider the local stability of the disease-free equilibrium; and in the process we
can find the basic reproductive number. First, we derive the linearized equations
about the disease-free equilibrium. To introduce the linearization at the disease-free
steady state ε0, we first make a shift S(t) = S∗

0 + x(t), i(t, τ) = z(t, τ), iA(t, τ) =
zA(t, τ), and N(t) = N∗

0 + n(t). Then the linearized system of system (2.2) about
the disease-free steady state ε0 is:

dx(t)

dt
= −dx(t)− S∗

0

N∗
0

∫ ∞

0

β(τ)[z(t, τ) + εzA(t, τ)]dτ,(
∂

∂t
+

∂

∂τ

)
z(t, τ) = −γ(τ)z(t, τ)− αI(τ)z(t, τ),

z(t, 0) =
S∗
0

N∗
0

∫ ∞

0

β(τ)[z(t, τ) + εzA(t, τ)]dτ,(
∂

∂t
+

∂

∂τ

)
zA(t, τ) = γ(τ)z(t, τ)− αA(τ)zA(t, τ),

zA(t, 0) = 0.

(3.1)

To determine the stability of the trivial steady state of system (3.1), we look for
solutions of the form x(t) = xeλt, z(t, τ) = z(τ)eλt and zA(t, τ) = zA(τ)e

λt. This
gives us the following eigenvalue problem:

λx = −dx− S∗
0

N∗
0

∫ ∞

0

β(τ)[z(τ) + εzA(τ)]dτ,

dz(τ)

dτ
= −[λ+ γ(τ) + αI(τ)]z(τ),

z(0) =
S∗
0

N∗
0

∫ ∞

0

β(τ)[z(τ) + εzA(τ)]dτ,

dzA(τ)

dτ
= −[λ+ αA(τ)]zA(τ) + γ(τ)z(τ),

zA(0) = 0.

(3.2)

The solution to the second differential equation in (3.2) is

z(τ) = z(0)e−λτπ1(τ). (3.3)

Replacing z(τ) by equation (3.3) in the fourth differential equation in (3.2), we
arrive at

dzA(τ)

dτ
= −[λ+ αA(τ)]zA(τ) + γ(τ)z(0)e−λτπ1(τ). (3.4)

Solving (3.4) by the method of constant variation, we obtain that

zA(τ) = e−λτπ2(τ)

(∫ τ

0

γ(τ)z(0)
π1(τ)

π2(τ)
dτ + C0

)
,

with zA(0) = C0 = 0. Finally, we have a closed form for zA(τ), given by

zA(τ) = e−λτπ2(τ)

∫ τ

0

γ(τ)z(0)
π1(τ)

π2(τ)
dτ. (3.5)
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Substituting (3.3) and (3.5) in the third equation in (3.2), we have

z(0) =
S∗
0

N∗
0

∫ ∞

0

β(τ)[z(0)e−λτπ1(τ) + εe−λτπ2(τ)

∫ τ

0

γ(τ)z(0)
π1(τ)

π2(τ)
dτ ]dτ.

Noticing that
S∗
0

N∗
0
= 1, we obtain the following characteristic equation:

G(λ) = 1,

where

G(λ) =

∫ ∞

0

β(τ)[e−λτπ1(τ) + εe−λτπ2(τ)

∫ τ

0

γ(τ)
π1(τ)

π2(τ)
dτ ]dτ.

G(0) is used to define the basic reproduction number of infected individuals.
That is,

R0 =

∫ ∞

0

β(τ)

(
π1(τ) + ε

∫ τ

0

γ(u)π1(u)π3(τ, u)du

)
dτ. (3.6)

3.2. The stability of disease-free steady state

We have the following theorem.

Theorem 3.1. Consider model (2.2). If R0 < 1, then the disease-free equilibrium
ε0 is locally asymptotically stable. Otherwise, it is unstable.

Proof. Letting A(τ) = β(τ)π1(τ) and B(τ) = εβ(τ)
∫ τ

0
γ(u)π1(u)π3(τ, u)du, we

rewrite G(λ) as

G(λ) =

∫ ∞

0

e−λτ [A(τ) +B(τ)]dτ.

Suppose R0 < 1. Assume that λ = a + bi is a complex solution of G(λ) = 1 with
a ≥ 0. Then

|G(λ)| =|
∫ ∞

0

e−λτ [A(τ) +B(τ)]dτ |

≤|
∫ ∞

0

e−(a+bi)τA(τ)dτ | + |
∫ ∞

0

e−(a+bi)τB(τ)dτ |

=

∫ ∞

0

| e−(a+bi)τ | A(τ)dτ +

∫ ∞

0

| e−(a+bi)τ | B(τ)dτ

=

∫ ∞

0

e−aτA(τ)dτ +

∫ ∞

0

e−aτB(τ)dτ

= G(a) ≤ G(0) = R0 < 1.

Hence, the equation G(λ) = 1 has solutions with only negative real part and the
disease-free equilibrium is locally asymptotically stable.

When R0 > 1, for fixed λ real, we have G(0) = R0 > 1. Furthermore,

lim
λ→∞

G(λ) = 0.

Hence, the equationG(λ) = 1 has a real positive root. Therefore, the disease-free
equilibrium is unstable.
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4. The endemic stationary steady state and its sta-
bility

4.1. The existence of endemic stationary steady state

To find the endemic stationary steady state ε∗ = (S∗, i∗(τ), i∗A(τ)), we have to solve
the following system:

Λ− dS∗ − S∗

N∗

∫ ∞

0

β(τ)[i∗(τ) + εi∗A(τ)]dτ = 0,

di∗(τ)

dτ
= −γ(τ)i∗(τ)− αI(τ)i

∗(τ),

i∗(0) =
S∗

N∗

∫ ∞

0

β(τ)[i∗(τ) + εi∗A(τ)]dτ,

di∗A(τ)

dτ
= γ(τ)i∗(τ)− αA(τ)i

∗
A(τ),

i∗A(0) = 0.

(4.1)

Solving the second differential equation in system (4.1), we obtain

i∗(τ) = i∗(0)π1(τ). (4.2)

Replacing i∗(τ) in the fourth differential equation in (4.1) by (4.2), we obtain

di∗A(τ)

dτ
= −αA(τ)i

∗
A(τ) + γ(τ)i∗(0)π1(τ). (4.3)

Solving (4.3) by the method of constant variation, we get

i∗A(τ) = π2(τ)

(∫ τ

0

γ(τ)i∗(0)
π1(τ)

π2(τ)
dτ + C0

)
with C0 = i∗A(0) = 0.

So we have

i∗A(τ) = π2(τ)

∫ τ

0

γ(τ)i∗(0)
π1(τ)

π2(τ)
dτ. (4.4)

Substituting N∗ by S∗+
∫∞
0

i∗1(τ)dτ+
∫∞
0

i∗A(τ)dτ in the third equation in (4.1),
we get

i∗(0) =
S∗

S∗ +
∫∞
0

i∗1(τ)dτ +
∫∞
0

i∗A(τ)dτ

∫ ∞

0

β(τ)[i∗(τ) + εi∗A(τ)]dτ,

which can be rewritten as:

S∗

i∗(0)

S∗

i∗(0) +
∫∞
0

i∗(τ)
i∗(0)dτ +

∫∞
0

i∗A(τ)

i∗(0) dτ

∫ ∞

0

β(τ)

[
i∗(τ)

i∗(0)
+ ε

i∗A(τ)

i∗(0)

]
dτ = 1. (4.5)

For simplicity, let∫ ∞

0

i∗(τ)

i∗(0)
dτ = ρ1,

∫ ∞

0

i∗A(τ)

i∗(0)
dτ = ρ2.
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It is easy to check that

∫ ∞

0

β(τ)

[
i∗(τ)

i∗(0)
+ ε

i∗A(τ)

i∗(0)

]
dτ = R0.

Substituting above relations in equation (4.5), we can rewrite the equation (4.5) in
the following form:

S∗R0

S∗ + (ρ1 + ρ2)i∗(0)
= 1. (4.6)

Since

Λ− dS∗ − i∗(0) = 0 (4.7)

and considering both (4.6) and(4.7), we get

S∗ =
Λ(ρ1 + ρ2)

R0 − 1 + d(ρ1 + ρ2)
,

i∗(0) =
Λ(R0 − 1)

R0 − 1 + d(ρ1 + ρ2))
. (4.8)

Then from equations (4.2), (4.4) and (4.8) we get

i∗(τ) =
Λ(R0 − 1)

R0 − 1 + d(ρ1 + ρ2))
π1(τ)

and

i∗A(τ) =
Λ(R0 − 1)

R0 − 1 + d(ρ1 + ρ2))
π2(τ)

∫ τ

0

γ(τ)
π1(τ)

π2(τ)
dτ.

Therefore, there is a unique endemic equilibrium ε∗ = (S∗, i∗(τ), i∗A(τ)) when the
basic reproduction number R0 > 1.

4.2. The stability of endemic stationary steady state

Now we consider the local stability of the endemic equilibrium ε∗. First we derive
the linearized equations of ε∗. Let

S(t) = S∗ + x(t), i(t, τ) = z(t, τ) + i∗(τ),

iA(t, τ) = zA(t, τ) + i∗A(τ), N(t) = N∗ + n(t).
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Then the linearized system at the endemic equilibrium ε∗ is:

dx(t)

dt
= −dx(t) +

S∗

N∗
n(t)

N∗

∫ ∞

0

β(τ)[i∗(τ) + εi∗A(τ)]dτ

− S∗

N∗

∫ ∞

0

β(τ)[z(t, τ) + εzA(t, τ)]dτ

− x(t)

N∗

∫ ∞

0

β(τ)[i∗(τ) + εi∗A(τ)]dτ,(
∂

∂t
+

∂

∂τ

)
z(t, τ) = −γ(τ)z(t, τ)− αI(τ)z(t, τ),

z(t, 0) = − S∗

N∗
n(t)

N∗

∫ ∞

0

β(τ)[i∗(τ) + εi∗A(τ)]dτ

+
S∗

N∗

∫ ∞

0

β(τ)[z(t, τ) + εzA(t, τ)]dτ

+
x(t)

N∗

∫ ∞

0

β(τ)[i∗(τ) + εi∗A(τ)]dτ,(
∂

∂t
+

∂

∂τ

)
zA(t, τ) = γ(τ)z(t, τ)− αA(τ)zA(t, τ),

zA(t, 0) = 0.

We look for solutions of the form x(t) = xeλt, z(t, τ) = z(τ)eλt, zA(t, τ) = zA(τ)e
λt,

and n(t) = neλt. Then we obtain the following eigenvalue problem:

λx = −dx+
S∗

N∗
n

N∗

∫ ∞

0

β(τ)[i∗(τ) + εi∗A(τ)]dτ

− S∗

N∗

∫ ∞

0

β(τ)[z(τ) + εzA(τ)]dτ

− x

N∗

∫ ∞

0

β(τ)[i∗(τ) + εi∗A(τ)]dτ,

dz(τ)

dτ
= −[λ+ γ(τ) + αI(τ)]z(τ),

z(0) = − S∗

N∗
n

N∗

∫ ∞

0

β(τ)[i∗(τ) + εi∗A(τ)]dτ

+
S∗

N∗

∫ ∞

0

β(τ)[z(τ) + εzA(τ)]dτ

+
x

N∗

∫ ∞

0

β(τ)[i∗(τ) + εi∗A(τ)]dτ,

dzA(τ)

dτ
= −[λ+ αA(τ)]zA(τ) + γ(τ)z(τ),

zA(0) = 0.

(4.9)

Solving the second differential equation in (4.9), we obtain

z(τ) = z(0)e−λτπ1(τ). (4.10)

Replacing z(τ) in the fourth differential equation in (4.9) by equation (4.10), we
have

dzA(τ)

dτ
= −[λ+ αA(τ)]zA(τ) + γ(τ)z(0)e−λτπ1(τ). (4.11)
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Solving (4.11) by the method of constant variation, we obtain

zA(τ) = e−λτπ2(τ)

(∫ τ

0

γ(τ)z(0)
π1(τ)

π2(τ)
dτ + C0

)
with zA(0) = C0 = 0. So we have

zA(τ) = e−λτπ2(τ)

∫ τ

0

γ(τ)z(0)
π1(τ)

π2(τ)
dτ.

We adopt the following notations

ρ(λ) =

∫ ∞

0

[e−λτπ1(τ) + e−λτπ2(τ)

∫ τ

0

γ(τ)
π1(τ)

π2(τ)
dτ ]dτ,

R0(λ) =

∫ ∞

0

β(τ)[e−λτπ1(τ) + εe−λτπ2(τ)

∫ τ

0

γ(τ)
π1(τ)

π2(τ)
dτ ]dτ.

From the first and third equation in Equation (4.9), we obtain λx = −Z1(0)−dx.
Therefore,

x = −Z1(0)

λ+ d
. (4.12)

Linearizing the equation for the total population size

N = S +

∫ ∞

0

i(t, τ)dτ +

∫ ∞

0

iA(t, τ)dτ,

we obtain

n = x+

∫ ∞

0

z(τ)dτ +

∫ ∞

0

zA(τ)dτ. (4.13)

Substituting equations (4.12) and (4.13) in the first equation of system (4.9), and
then cancelling z1(0) from both sides of the resulting equation, we obtain the fol-
lowing characteristic equation for λ : H(λ) = 1, where

H(λ) = − 1

λ+ d
· i

∗(0)

N∗ · R0 ·
[
1− S∗

N∗

]
+

S∗

N∗R0(λ)−
S∗

N∗ · ρ(λ) · i
∗(0)

N∗ · R0.(4.14)

Note that
S∗

N∗ =
1

R0
,

i∗(0)

N∗ =
R0 − 1

R0(ρ1 + ρ2)
.

Substituting above relations in equation (4.14) we can rewrite the characteristic
equation in the following form:

R0(λ)

R0
= 1 +

i∗(0)

λ+ d
·
[
1

S∗ − 1

N∗

]
+

R0 − 1

R0(ρ1 + ρ2)
· ρ(λ).

For λ with ℜλ ≥ 0 we have ∣∣∣∣R0(λ)

R0

∣∣∣∣ ≤ 1.
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On the other hand, the following inequality holds since R0 > 1:∣∣∣∣1 + i∗(0)

λ+ d
·
[
1

S∗ − 1

N∗

]
+

R0 − 1

R0(ρ1 + ρ2)
· ρ(λ)

∣∣∣∣ > 1.

Hence, for λ with ℜλ ≥ 0, the characteristic equation H(λ) = 1 has only solutions
with negative real parts. Thus, the equilibrium ε∗ is locally asymptotically stable.
This concludes the existence of stationary steady state. We collect this discussion
in the following theorem

For the existence and stability of the endemic equilibrium, we have the following
Theorem :

Theorem 4.1. When R0 > 1, one unique endemic stationary steady state ε∗ exists
and it is locally asymptotically stable. When R0 < 1, there is not an endemic
stationary steady state.

5. Simulations

Using the data of men who have sex with men (MSM) in Beijing of 2010 as initial
values, we present some simulations in this section. The observed HIV prevalence
rates among MSM in Beijing is 7.8% in 2010 [16]. In order to set the initial condi-
tions, we have to estimate the target population of MSM living in Beijing in 2010.
The national census in 2010 [26] showed that the population data for Beijing is
about 19 million. 51.6% of them are male and 82.7% of them were of 15 years to
65 years. We suppose 3% of males in Beijing in 2005 are MSM, of which 86% live
in the city [26]. Also, we suppose that 20% of HIV infected MSM accepted ART
in 2010. For simplicity, we suppose the initial values of i and iA (i0(τ) and i0A(τ))
follow uniform distribution. But as a comparison, we will show that there is no big
difference if i0(τ) and i0A(τ) follow normal distribution. The relative infectiousness
of ART MSM+ to non-ART MSM+ has several quite different values [11,22]. ART
can reduce HIV transmission from 60% [22] to 99% [11]. Here we choose ε = 0.4.
For threshold constant of Hill function, we choose the highest concentration of HIV
virus during the infection in vivo to be the value of Ω. A summary of the parameter
values used in this paper is given in Table 1.

We, however, have to honestly say that choosing parameter values in vivo situa-
tion is very difficult. Many of the parameters in our model have not been measured.
For those parameters, we borrow the similar ones from literature [21]. A list of the
parameter values used in this paper is shown in Tables 1, 2 and 3. But nevertheless
we believe that other sets of parameters can give similar outcomes.

To study the time course of the infection, we numerically integrate system (1)
and (2). For the within-host system (1) we choose initial conditions of an uninfected
individual; T (0) = 1000, T ∗(0) = T ∗∗(0) = 0, infected with free virus, V (0) = V0.
Here we consider the case of exposure to one infectious virion per milliliter, which
corresponds to V0 = 10−3 mm−3 [21]. For parameter values in vivo in Table 1
and Table 2, the infected steady state is stable. In parameter regimes where the
infected state is unstable, the system undergoes sustained oscillations around the
infected state. The parameter regime of oscillations is necessarily different from
that in Table 1 and Table 2. Table 3 gives the default parameters used in our study
of oscillations. We study the influence of behaviors of the within-host system in
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Table 1. Parameters of the within-host model and the between-host model

Paras Description Values

s Rate of supply of T cells from precursors 10/day/mm3

r Rate of growth for the T cell population 0.03/day
Tmax Maximum T cell population level 1500/mm3

µT Death rate of uninfected and latently infected T cells 0.02/day
µb Death rate of actively infected T cells 0.24/day
µV Death rate of free virus 2.4/day
k1 Rate constant for T cells becoming infected 2.4× 10−5

/day/mm3

k2 Rate latently T cells convert to actively infected 3× 10−2/day
N No. of free virus produced by lysing a T cell 1500
Λ Recruitment rate into target population per year 4318/year
d Natural removal rate of MSM- per year 0.0213/year
ε The reduction of infectivity due to ART 0.4
β0 Probability of transmission 0.27
αI0 Death rate of infected MSM 0.1786/year
αA0 Death rate of ART MSM 0.0893/year
γ0 ART rate of MSM+ 0.3
Ω Threshold constant of Hill function 12560

Table 2. Parameters for polymodal curve

Paras Description Values

s Rate of supply of T cells from precursors 1/day/mm3

N No. of free virus produced by lysing a T cell 1000
β0 Probability of transmission 0.07
Ω Threshold constant of Hill function 2500

Table 3. Parameters for oscillations

Paras Description Values
r Rate of growth for the T cell population 12/day
µT Death rate of uninfected and latently infected T cells 0.06/day
µV Death rate of free virus 5/day
k1 Rate constant for T cells becoming infected 3.2/day/mm3

k2 Rate latently T cells convert to actively infected 1.2× 10−4/day
N No. of free virus produced by lysing a T cell 1200
β0 Probability of transmission 34
Ω Threshold constant of Hill function 32

these regimes to the between-host system by numerical integration, using Matlab
R008b.

Three kinds of dynamics of the nested models are shown. In Figure 1, HIV
infection dynamics in vivo (the left figure) and HIV prevalence among MSM (the
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right figure). Parameters are given in Table 1. R0 = 1.371 under this situation.
The left figure shows the free virus population and CD4+ T cells in vivo versus
infection time and the right figure shows the HIV prevalence in MSM population
versus time. The free virus population in vivo shows a single peak. Along with this
trend in vivo, HIV prevalence among MSM population arrives a steady state in a
simple way, regardless of i0(τ) and i0A(τ) follow uniform distribution or follow normal
distribution (the shape parameter σ = 30 and the location parameter µ = 5 year).
Since the dynamics has very small difference regardless of i0(τ) and i0A(τ) follow
uniform distribution or follow normal distribution, so in this section we suppose i
and iA follow uniform distribution for simplicity.

Figure 2 shows a multi-peak situation in vivo. Along with the oscillation of the
dynamics in vivo, HIV prevalence in MSM population shocks rise to the steady state.
Parameter values are chosen from Table 2 and the reproduction number R0 = 1.429
under this situation. As a special situation, figure 3 shows the osicillatory behavior
in vivo (the left subfigure), which leads to a strong shocks of the HIV prevalence in
MSM population (the right subfigure). But amplitudes of curves in MSM population
increase first and then decrease along with time. R0 = 1.428 under this situation.
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Figure 1. Dynamics of HIV infection in vivo (the left figure) and HIV prevalence in MSM (the right
figure) under uniform distribution and normal distribution respectively. Parameters are given in Table
1.

To show more influence of the within-host dynamics to the between-host dy-
namics, we plot the relation of R0 (Figure 4) along with the parameters k1 and N
(the left-above figure), s and µv (the right-above figure); N and the initial value
of virus V0 (the left-bottom figure) ; β0 (in vitro) and N (the right-bottom figure)
respectively. It is obvious that parameters in vivo have directly effect to the repro-
duction number R0 in population level. From the left-above figure of Figure 4 we
find that R0 increases along with the increase of k1 (and N). On the other hand,
the right-above figure of Figure 4 shows that R0 increases along with the increase of
s and decreases along with the increase of µv and the initial value of HIV virus V0

(the left-bottom figure). As a comparison, Figure 5 shows that the HIV prevalence
increases with k1 and the HIV initial values in vivo, V0, respectively, which is con-
sistent with the relations of reproduction number R0 and k1 and V0 respectively.
In short words, the epidemiological reproduction number and the prevalence are
sensitive to the within-host parameters.
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Figure 2. Dynamics of HIV infection in vivo (the left figure) and HIV prevalence in MSM (the right
figure) shown by polymodal curve. Parameters are given in Table 2.
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Figure 3. Dynamics of the systems with parameters set in the oscillatory region given in Table 3 (the
left figure) and HIV prevalence in MSM population versus time (the right figure).

6. Discussion

Linking different scales of biological organization with nested models has recently
paid more attention, focusing on nesting a model of within-host dynamics into
a model of between-host epidemiological dynamics. In this paper, we developed
a nested dynamical models in the evolution of HIV/AIDS in China. Our main
objective is to evaluate whether or not the nesting of models has been important in
developing our understanding of HIV/AIDS evolution. As we have seen, our answer
is a qualified ‘yes’. Plotting the epidemiological reproduction number against each
within-host parameter reveals that the reproduction number is a monotone function
of the parameter when the remaining parameters are fixed as in Table 1. Also,
the dependence of the HIV prevalence on each immunological parameter is also
monotone when the remaining parameters are fixed at values listed in Table 1. As
shown in the right figure in Figure 1, there is no big difference in results when i0(τ)
and i0A(τ) follow uniform distribution or follow normal distribution. Also, we find
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Figure 4. The relation of R0 along with the parameters k1 and N (the left-above figure); s and µv
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figure) change in vivo respectively. Other parameters are chosen in Table 1.
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HIV prevalence increases with increased infection rate k1 and viral load V0.
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without surprise that HIV total prevalence is increasing with increasing k1, which
is consistent with the relation of reproduction number R0 and k1. On the contrary
in literature [18], authors state that increasing infection rate in vivo decreases the
HIV prevalence in vitro. It is also explained in [18] that this phenomenon,indeed,
captured the trade-off between treatment in vivo and prevalence in HIV. But we do
not observe this result in our model.

A model in which nesting is essential is one whereby there is reciprocal feedback
between levels of organization. The nesting of models will be essential for studying
the evolution of diseases in which the inoculum size affects the progression of the
disease, because this will likely lead to a reciprocal feedback between within- and
between-host dynamics. Unfortunately, our model consider only within-host dy-
namics influencing between-host processes but not vice versa. Until now, we have
no a clear idea about how to consider the reciprocal feedback of HIV evolution.

Since the linkages are determined by a specific set of HIV infected individuals
identified by T0, T

∗
0 , T

∗∗
0 and V0, functions β(τ), γ(τ), αI(τ), and αA(τ) vary as

the initial values change.Consequently, (6.1) varies with T0, T
∗
0 , T

∗∗
0 and V0. When

substituting the linkages into between-host model from the within-host model, we
automatically consider the epidemiological behavior of (T0, T

∗
0 , T

∗∗
0 , V0)-type of HIV

infected individuals. Therefore, (6.1) finds the basic reproductive number for these
specific infected individuals, but it is not for a typical HIV infected individual be-
cause the initial values are not allowed to change. If these values can be var-
ied, one has to find the expected value for R0(T0, T

∗
0 , T

∗∗
0 , V0). Ideally, given that

F (T0, T
∗
0 , T

∗∗
0 , V0) is the joint probability distribution of T0, T

∗
0 , T

∗∗
0 , and V0, then

the basic reproductive number is given by

R̃0 =

∫ ∞

0

∫ ∞

0

R0(T0, T
∗
0 , T

∗∗
0 , V0)dF (T0, T

∗
0 , T

∗∗
0 , V0).

Unfortunately, models (2.1) and (2.2) cannot access to any information about joint
probability distribution F (T0, T

∗
0 , T

∗∗
0 , V0). We, however, can avoid this difficulty

by considering models (2.1) and (2.2) as a whole system, thus getting rid of the
restrictions from the arbitrary fixed initial conditions. Using the common used
approach, we will linearize the whole system about a disease-free steady state.
That is, if one wants to get rid of the joint probability distribution of T0, T

∗
0 , T

∗∗
0 ,

and V0, one has to collectively linearize model (2.1) and (2.2) at a proper steady
state. By virtue of dynamical behaviors of system (2.1), it is enough to deai with
the following three interesting cases.

6.1. Virus have not established within hosts

If the virus does not establish within hosts, we linearize system (2.1-2.2) about

the steady state
(

s
µT

, 0, 0, 0, Λ
d , 0, 0

)
. We pay a closed attention to that since

β(τ)[i(t, τ) + εiA(t, τ)] are non-linear terms, they will be dropped in the linearized
equations. Repeat the exact same computation in our derivation forR0(T0, T

∗
0 , T

∗∗
0 , V0),

we end up R0(T0, T
∗
0 , T

∗∗
0 , V0) = 0; and hence, R0 = 0. The biological meaning of

this case is extremely trivial that the disease cannot establish in population level if
virus cannot establish themselves within hosts.
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6.2. Virus have established in an endemic equilibrium

Our work advances current research on R0 for the coupled within-host and between-
host dynamical models by distinguishing a individual infection and the set of all
infections.
If the virus within hosts has established in an endemic equilibrium (T∞, T ∗

∞, T ∗∗
∞ , V∞),

we linearize system (2.1-2.2) about the steady state
(
T∞, T ∗

∞, T ∗∗
∞ , V∞, Λ

d , 0, 0
)
.

In this case, the linkage becomes β(τ) = β0V∞
V∞+Ω . We linearize system (2.1-

2.2) about the steady state
(
T∞, T ∗

∞, T ∗∗
∞ , V∞, Λ

d , 0, 0
)
. Again, a completely similar

manipulation to our computation for R0 in subsection 3.1 gives us the expression
for the basic reproduction number, which is given by

R̃0 =

∫ ∞

0

β0V∞

V∞ +Ω

(
π1(τ) + ε

∫ τ

0

γ(u)π1(u)π3(τ, u)du

)
dτ. (6.1)∫∞

0
β0V∞
V∞+Ωπ1(τ)dτ is the expected secondary cases produced by a typical HIV

infected individual who does not receive ART during the entire infection life. Sim-
ilarly,

∫∞
0

β0V∞
V∞+Ωε

∫ τ

0
γ(u)π1(u)π3(τ, u)dudτ is the expected secondary cases pro-

duced by the typical HIV infected individual who does receive ART during the
entire infection life. The sum of this two gives us the basic reproductive number for
the coupled within-host and between host dynamical model (2.1-2.2).

Since CD4+ T cells and virus evolve much faster than HIV spreads between
hosts, system (2.1) and system (2.2) have distinct time scales. Hence we can soundly
assume that system (2.1) has already stabilized around the endemic steady state
when studying the coupled dynamics. Then (6.1) is the proper the expression for
the basic reproduction number. In this work, the basic reproduction number (6.1),
if changes in the initial values (T0, T

∗
0 , T

∗∗
0 , V0) are allowed, is a proper one.

Following the approach of next generation operator [8], if we set β(τ), γ(τ),
αI(τ), αA(τ) all to be respective constants, formula (6.1) reduce to β

γ+αI
+ βγε

αA(γ+αI)
.

This is exactly the same R0 for the reduced between-host model (without incorpo-
rating age-since-infection).

6.3. Virus have established in a sustainable oscillation

The third dynamical behavior of system (2.1) is the appearance of a stable periodic
trajectory. For this case we are also be able to find the basic reproductive number
for the coupled system (2.1) and (2.2). Let (Tp(τ), T

∗
p (τ), T

∗∗
p (τ), Vp(τ)) be the

stable periodic solution to system (2.1). To find the basic reproduction number,
we linearize system (2.1-2.2) about the stable periodic solution. Applying the same

approach used in subsection 3.1 and setting β(τ) =
β0Vp(τ)
Vp(τ)+Ω , we find the basic

reproductive number is

R̃0 =

∫ ∞

0

β0Vp(τ)

Vp(τ) + Ω

(
π1(τ) + ε

∫ τ

0

γ(u)π1(u)π3(τ, u)du

)
dτ.
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