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1. Introduction

Synchronization phenomena exist in almost all branches of sciences, engineering,
and social life [7]. For the definition of the synchronization, see [1,4]. When identical
dynamical systems are coupled, the diagonal in the phase space is invariant, and if
the linear invariant manifold is stable, the identical synchronization occurs [2].

In this paper, we investigate the identical synchronization for a class of coupled
nonlinear systems with asymptotically orbitally stable periodic orbit. We will show
that under suitable conditions, synchronization occurs when the periodic diagonal
solution is asymptotically orbitally stable. A solution near the periodic diagonal
solution, with an initial condition, approaches the periodic diagonal solution with
asymptotic phase. The asymptotic phase is determined by the initial condition of
the solution. We have the following theorem:

Theorem 1.1. Consider a system of coupled nonlinear equations

dx

dt
= f(x) +K(x− y) + g(t, x− y),

dy

dt
= f(y) +K(y − x) + g(t, y − x).

(1.1)

where f ∈ C1(Rn,Rn), g ∈ C1(Rn+1,Rn) and g(t,−ζ) = −g(t, ζ) with |g(t, ζ)|
= o(|ζ|) as |ζ| → 0.

If the following conditions are satisfied by system (1.1)
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(a) x = u(t) is a T -periodic solution of the nonlinear system dx
dt = f(x), and the

characteristic multipliers of the variational system dw
dt = f ′(u(t))w satisfy

µ1 = 1, 0 < |µj | < 1, j = 2, ..., n,

(b) f ′(u(t)) is s-block diagonal, 1 ≤ s ≤ n. Each block has size ni×ni, 1 ≤ i ≤ s.
K = diag{α1In1 , ..., αsIns}, where

α1 < 0 and αi < min
n1 + · · ·+ n(i−1) + 1 ≤
j ≤ n1 + · · ·+ ni−1 + ni

{
− 1

2T
(ln|µj |)

}
, 2 ≤ i ≤ s,

then

(i) the system (1.1) is synchronized;

(ii) for (x(t0), y(t0)) = (x0, y0) near the periodic diagonal solution, the solution of
the coupled system approaches the periodic diagonal solution with synchronized
asymptotic phase, i.e. (x(t, t0, x0, y0), y(t, t0, x0, y0)) → (u(t + t1), u(t + t1))
as t → ∞ for some constant t1 depending on (t0, x0, y0).

Note that in the theorem if f ′(u(t)) is s-block diagonal with s ≥ 2, then for j ≥ 2,
αj can be chosen as any negative number, zero or a positive number restricted by
(b). For the case αj = 0, a partially coupled system is formed.

The approach of proving this theorem is as follows. First, we decompose the
space into the diagonal space and it’s orthogonal complement. By using the new
bases, we rewrite the solution (x(t), y(t)) into (p(t), q(t)), where p(t) is in the diag-
onal space and q(t) is in the orthogonal complement space. We then parameterize
the periodic solution and use this parameterized function for the function p(t) in a
neighborhood of the periodic diagonal solution. Finally we use a new variational
system and the characteristic multipliers to prove the result. In the last section, we
present some examples to apply and illustrate the theorem.

2. Change of Coordinates

The diagonal space of the product space has an orthonormal base {bj = (ej , ej)/
√
2,

j = 1, 2, ..., n}, and its orthogonal complement has a base {cj = (ej ,−ej)/
√
2,

j = 1, 2, ..., n}, where ej is the j-th unit vector in Rn. Therefore for any function
(x(t), y(t)), we have

(x(t), y(t)) =
n∑

j=1

[bj · (x(t), y(t))]bj +
n∑

j=1

[cj · (x(t), y(t))]cj

=
n∑

j=1

[(xj(t) + yj(t))/
√
2]bj +

n∑
j=1

[(xj(t)− yj(t))/
√
2]cj

=((x(t) + y(t))/2, (x(t) + y(t))/2) + ((x(t)− y(t))/2, (−x(t) + y(t))/2)

=(p(t), p(t)) + (q(t),−q(t)), (2.1)

where p(t) = (x(t) + y(t))/2 and q(t) = (x(t) − y(t))/2. Since we are interesting
in the solution that is near the periodic orbit, therefore we can assume that each
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component of p(t) is close to the periodic solution, and the absolute value of each
component of q(t) is small. Equation (2.1) contains formulas from (x(t), y(t)) to
(p(t), q(t)) and vice versa.

Let u(θ) be the periodic solution as described in Theorem 1.1. Then there exists
a local moving orthonormal system [v(θ), z2(θ), ..., zn(θ)] on this periodic solution,
where v(θ) = f(u(θ))/|f(u(θ))| (see [3] for details). Denote the n by n − 1 matrix
whose columns are z2(θ), ..., zn(θ) by Z(θ). For solutions near the periodic solution
u(θ), there exists a parameterized function θ(t) such that

(p(t), q(t)) = (u(θ(t)) + Z(θ(t))ρ(t), q(t)). (2.2)

It was mentioned in [3] that we can assume dθ
dt = 1, if periodic orbit is under

consideration. Here we will be using this. In the case n = 2, one can see [6] for
more detail work.

Now we consider the system of ordinary differential equations for the vector
function (θ(t), ρ(t), q(t)) ∈ R×Rn−1 ×Rn. Since p(t) is close to the periodic orbit
u(θ), thus we can assume the norms of ρ(t) and q(t) are small. It follows from
equation (1.1) and (2.1), we have

dp

dt
=

1

2
[f(p+ q) + f(p− q)],

dq

dt
=

1

2
[f(p+ q)− f(p− q)] + 2Kq + g(t, 2q).

(2.3)

Applying (2.2) to the first equation of (2.3), we have[
du(θ)

dθ
+

dZ(θ)

dθ
ρ

]
dθ

dt
+ Z(θ)

dρ

dt

=
1

2
[f(u(θ) + Z(θ)ρ+ q) + f(u(θ) + Z(θ)ρ− q)].

(2.4)

Multiplying both sides of (2.4) by vT (θ), one has[∣∣∣∣du(θ)dθ

∣∣∣∣+ vT (θ)
dZ(θ)

dθ
ρ

]
dθ

dt

=
1

2
vT (θ)[f(u(θ) + Z(θ)ρ+ q) + f(u(θ) + Z(θ)ρ− q)].

Let

h(θ, ρ) =

[∣∣∣∣du(θ)dθ

∣∣∣∣+ vT (θ)
dZ(θ)

dθ
ρ

]−1

v(θ), (2.5)

then equation (2.4) is changed into

dθ

dt
=
1

2
hT (θ, ρ)[f(u(θ) + Z(θ)ρ+ q) + f(u(θ) + Z(θ)ρ− q)]

=1 + hT (θ, ρ)

{
−dZ(θ)

dθ
ρ

+
1

2
[f(u(θ) + Z(θ)ρ+ q) + f(u(θ) + Z(θ)ρ− q)− 2f(u(θ))]

}
. (2.6)
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Multiplying both sides of (2.4) by ZT (θ), one has

dρ

dt
=ZT (θ)

{
−dZ(θ)

dθ
ρ
dθ

dt
+

1

2
[f(u(θ) + Z(θ)ρ+ q) + f(u(θ) + Z(θ)ρ− q)]

}
.

(2.7)

Therefore the system (2.3) becomes

dθ

dt
=1 + S1(θ, ρ) + S2(θ, ρ, q),

dρ

dt
=R1(θ, ρ) +R2(θ, ρ, q),

dq

dt
=Q1(θ, q) +Q2(θ, ρ, q, t),

(2.8)

where

S1(θ, ρ) = hT (θ, ρ)

(
−dZ(θ)

dθ
+ f ′(u(θ))Z(θ)

)
ρ = O(|ρ|),

S2(θ, ρ, q) =
1

2
hT (θ, ρ){f(u(θ) + Z(θ)ρ+ q) + f(u(θ) + Z(θ)ρ− q)

− 2f(u(θ))− 2f ′(u(θ))Z(θ)ρ} = o(|(ρ, q)|),

R1(θ, ρ) = ZT (θ)

(
−dZ(θ)

dθ
+ f ′(u(θ))Z(θ)

)
ρ = O(|ρ|),

R2(θ, ρ, q) =
1

2
ZT (θ){f(u(θ) + Z(θ)ρ+ q) + f(u(θ) + Z(θ)ρ− q)

− 2f(u(θ))− 2f ′(u(θ))Z(θ)ρ}

− ZT (θ)
dZ(θ)

dθ
ρ(S1(θ, ρ) + S2(θ, ρ, q)) = o(|(ρ, q)|),

Q1(θ, q) = [f ′(u(θ)) + 2K]q = O(|q|),

Q2(θ, ρ, q, t) =
1

2
[f(u(θ) + Z(θ)ρ+ q)− f(u(θ) + Z(θ)ρ− q)

− 2f ′(u(θ))q + 2g(t, 2q)] = o(|(ρ, q)|).

(2.9)

The orders here refer to those when the limits go to zero.
Since S1 is O(|ρ|) and S2 is o(|(ρ, q)|), thus one can choose |(ρ, q)| to be small

enough so that
1

2
≤ dθ

dt
≤ 2. (2.10)

This condition allows us to rewrite the last two equations of the system (2.8) into
a system of the variable θ, which is as follows.

dρ

dθ
=R1(θ, ρ) + R̃2(θ, ρ, q),

dq

dθ
=Q1(θ, q) + Q̃2(θ, ρ, q, t),

(2.11)

where

R̃2(θ, ρ, q) =
R2(θ, ρ, q)−R1(θ, ρ)(S1(θ, ρ) + S2(θ, ρ, q))

1 + S1(θ, ρ) + S2(θ, ρ, q)
= o(|(ρ, q)|),

Q̃2(θ, ρ, q, t) =
Q2(θ, ρ, q, t)−Q1(θ, q)(S1(θ, ρ) + S2(θ, ρ, q))

1 + S1(θ, ρ) + S2(θ, ρ, q)
= o(|(ρ, q)|).

(2.12)
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Now, one can see that the linear system of (2.11) can be decoupled for the variables
ρ and q in the spaces Rn−1 and Rn, we have the following

dρ

dθ
=R1(θ, ρ) = ZT (θ, ρ)

(
−dZ(θ)

dθ
+ f ′(u(θ))Z(θ)

)
ρ,

dq

dθ
=Q1(θ, q) = [f ′(u(θ)) + 2K]q.

(2.13)

If the characteristic multipliers of linear system (2.13) is to satisfy the conditions (a)
and (b) of Theorem 1.1, then one can use it to prove the synchronization theorem
of system (1.1). We describe these results in the next section. For simplicity, we
use the same (ρ, q) to denote the functions of t and of θ.

3. Synchronization

Let A be an n × n monodromy matrix of the linear system dw
dt = f ′(u(t))w. Since

du
dt is a solution of the system, thus A can be chosen in the following form

A =

[
1 B2

0 B1

]
,

where B1 is an (n− 1)× (n− 1) matrix whose eigenvalues are µ2, ..., µn. If f
′(u(t))

is block diagonal, then A and a fundamental matrix Φ(t) can be chosen as block
diagonal with same sizes for their related blocks. We start with the following lemma:

Lemma 3.1. Suppose f ∈ C1(Rn,Rn) and the conditions (a) and (b) of Theorem
1.1 are satisfied. Suppose A is to be chosen as block diagonal matrix as the same
size of f ′(u(t)), ie A = diag{A1, ..., As}. Let M be a monodromy matrix of (2.13),
then

(i) M = diag{B1, e
2α1TA1, ..., e

2αsTAs};
(ii) 2n− 1 characteristic multipliers of M are

µ2, ..., µn, e2α1T , e2α1Tµ2, ..., e2α1Tµn1 , ...,

e2αiTµn1+···+n(i−1)+1, ..., e2αiTµn1+···+ni , ... for 2 ≤ i ≤ s.

Proof. Since w = du(θ)
dθ is a solution of dw

dθ = f ′(u(θ))w, one can choose a

fundamental matrix solution in the form of [du(θ)dθ , ξ2(θ), ..., ξn(θ)], where ξj(θ) =

aj(θ)
du
dθ +Z(θ)ρj(θ), 2 ≤ j ≤ n. Here Z(θ) is the n by n− 1 matrix whose columns

are z2(θ), ..., zn(θ). By using the fact that each ξj(θ) is a solution of dw
dθ = f ′(u(θ))w,

one has

dξj(θ)

dθ
=a′j(θ)

du(θ)

dθ
+ aj(θ)

d2u(θ)

dθ2
+

dZ(θ)

dθ
ρj(θ) + Z(θ)

dρj(θ)

dθ

=f ′(u(θ))[aj(θ)
du(θ)

dθ
+ Z(θ)ρj(θ)].

Multiply both sides of previous equation by ZT (θ) and use d2u(θ)
dθ2 = f ′(u(θ))dudθ , we

have
dρj(θ)

dθ
= ZT (θ)

(
−dZ(θ)

dθ
+ f ′(u(θ))Z(θ)

)
ρj(θ). (3.1)
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Therefor ρj(θ) satisfies the first equation of (2.13) for each j. This implies that
Γ(θ) ≡ [ρ2(θ), ..., ρn(θ)] is a fundamental solution of the first equation of (2.13). By
using the definition of the monodromy matrix and both du

dθ and Z(θ) are T -periodic,
we have[

du(T )

dθ
, Z(T )

] [
1 C(T )
0 Γ(T )

]
=

[
du(0)

dθ
, Z(0)

] [
1 C(0)
0 Γ(0)

] [
1 B2

0 B1

]
, (3.2)

where C(θ) ≡ [c2(θ), · · · , cn(θ)] is a 1×(n−1) matrix. Thus we have Γ(T ) = Γ(0)B1.
Hence B1 is a monodromy matrix of the first equation of (2.13).

Let A = diag{A1, ..., As} and Φ(θ) = diag{Φ1(θ), ...,Φs(θ)} be as defined in the
beginning of this section and have the same block diagonal structure of f ′(u(θ)).
Since each block of e2Kθ is diagonal with constant entries e2αjθ and

d

dθ
(e2KθΦ(θ)) = e2Kθf ′(u(θ))Φ(θ) + 2Ke2KθΦ(θ) = (f ′(u(θ)) + 2K)e2KθΦ(θ).

This show that e2KθΦ(θ) is a fundamental matrix solution of dw
dθ = [f ′(u(θ))+2K]w.

Therefore, we obtain

e2KTΦ(T ) =Φ(T )e2KT = Φ(0)Ae2KT

=Φ(0)diag{e2α1TA1, ..., e
2αsTAs}. (3.3)

Equation (3.3) implies diag{e2α1TA1, ..., e
2αsTAs} is a monodromy matrix of the

second equation of (2.13). This concludes (i). (ii) follows directly from (i).
Now we are ready to prove the Theorem 1.1.

Proof of Theorem 1.1. Let Ψ(t) be a fundamental matrix solution of (2.13).
Suppose that the conditions (a) and (b) are satisfied, then it follows from Lemma
3.1 that all the characteristic multipliers are less than 1. Therefore there exist
positive constants γ1 and β1 such that

|Ψ(θ)Ψ−1(θ0)| ≤ γ1e
−β1(θ−θ0). (3.4)

By applying the variation of constant formula to equation (2.11), we obtain[
ρ(θ)
q(θ)

]
= Ψ(θ)Ψ−1(θ0)

[
ρ0
q0

]
+

∫ θ

θ0

Ψ(θ)Ψ−1(η)

[
R̃2(η, ρ(η), q(η))

Q̃2(η, ρ(η), q(ρ), t(η))

]
dη.

Now take the norms on both sides of previous equation and use the facts that
|(ρ(θ), q(θ))| is small and (2.12), inequality (3.4) leads to

eβ1θ|(ρ(θ), q(θ))| ≤ γ1e
β1θ0 |(ρ0, q0)|+

∫ θ

θ0

γ1δe
β1η|(ρ(η), q(η))|dη,

for some small positive value δ. By applying Gronwall’s inequality to the previous
inequality, one has

eβ1θ|(ρ(θ), q(θ))| ≤ γ1e
β1θ0 |(ρ0, q0)|eγ1δ(θ−θ0).

These two inequalities lead to

|(ρ(θ), q(θ))| ≤ γ1|(ρ0, q0)|e−(β1−γ1δ)(θ−θ0) ≡ γe−β(θ−θ0), (3.5)
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for some positive constants γ, β. Letting θ go to infinity on equation (3.5), we
obtain the synchronization of x(t) and y(t). To show they approach to the periodic
orbit with asymptotic phase, we use inequality (3.5) on the first equation of (2.8)
to obtain ∫ t

t0

∣∣∣ [S1(θ(s), ρ(θ(s))) + S2(θ(s), ρ(θ(s)), q(θ(s)))]
∣∣∣ds

≤
∫ θ

θ0

2L(γe−β(θ−θ0))dθ < ∞

for some positive constant L. Now, apply the variation of constant formula on the
first equation of (2.8), one has

θ(t)− t =θ0 − t0 +

∫ t

t0

[S1(θ(s), ρ(θ(s))) + S2(θ(s), ρ(θ(s)), q(θ(s)))]ds → t1

for some constant t1 as t → ∞. Combine all the results, we have

(x(t), y(t)) =(u(θ(t)) + Z(θ(t))ρ(t) + q(t), u(θ(t)) + Z(θ(t))ρ(t)− q(t))

→ (u(t+ t1), u(t+ t1))

as t → ∞. This completes the proof.
In the case that K is a simple diagonal matrix, we have

Corollary 3.1. If K = αI for any constant α < 0 in condition (b) of Theorem 1.1,
then the same conclusions of the theorem hold.

4. Examples

In this section, we will give two examples to apply and illustrate the theorem.
Example 4.1 is for one block (s = 1) and Example 4.2 is for two blocks (s = 2). For
numerical computation of the systems of ordinary differential equations, we use the
Runge-Kutta method of order four with a step size h = 10−3.

Example 4.1. In this example, we consider the coupling of two identical Van der

Pol equations with nonlinear function g(t, q1, q2) = −
[

sin(q1)− q1
sin(q2)− q2

]
. It is well

known that the variational system at the periodic orbit of the Van der Pol equation
is one-block and its characteristic multipliers are µ1 = 1, µ2 < 1. For more detail,
see [5]. Here we consider the following coupled system

dx1

dt
=x2 + α1(x1 − y1)− (sin(x1 − y1)− (x1 − y1)),

dx2

dt
=− x1 − (x2

1 − 1)x2 + α1(x2 − y2)− (sin(x2 − y2)− (x2 − y2)),

dy1
dt

=y2 + α1(y1 − x1)− (sin(y1 − x1)− (y1 − x1)),

dy2
dt

=− y1 − (y21 − 1)y2 + α1(y2 − x2)− (sin(y2 − x2)− (y2 − x2)).

(4.1)

By letting α1 = −1 and initial data be (−1, 3, 0, 2), we observe synchronization.
The result of this data is given in Figure 1 for 0 ≤ t ≤ 10, where the x− and y−
planes are drawn separately in the same space.
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Figure 1. x(t) and y(t) for Example 4.1.

Example 4.2. Let

f(x) =

 x1 − x2 − x1(x
2
1 + x2

2)
x1 + x2 − x2(x

2
1 + x2

2)
−3x3

 , g(t, q1, q2, q3) = sin(t)

 q31
q32
q33

 .

A periodic solution of dx
dt = f(x) is u(t) =

 cos(t)
sin(t)
0

 and its variational equa-

tion is

dx

dt
= f ′(u(t))x =

 −2 cos2(t) −1− 2 cos(t) sin(t) 0
1− 2 cos(t) sin(t) −2 sin2(t) 0

0 0 −3

x, (4.2)

which has fundamental solution − sin(t) e−2t cos(t) 0
cos(t) e−2t sin(t) 0
0 0 e−3t


=

 − sin(t) cos(t) 0
cos(t) sin(t) 0
0 0 1

 1 0 0
0 e−2t 0
0 0 e−3t

 .

(4.3)

It is clear from equation (4.2) that the variational equation at the periodic solution
is two-block, therefore in this example we consider the following coupled system

dx1

dt
=x1 − x2 − x1(x

2
1 + x2

2) + α1(x1 − y1) + sin(t)(x1 − y1)
3,

dx2

dt
=x1 + x2 − x2(x

2
1 + x2

2) + α1(x2 − y2) + sin(t)(x2 − y2)
3,

dx3

dt
=− 3x3 + α2(x3 − y3) + sin(t)(x3 − y3)

3, (4.4)

dy1
dt

=y1 − y2 − y1(y
2
1 + y22) + α1(y1 − x1) + sin(t)(y1 − x1)

3,
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dy2
dt

=y1 + y2 − y2(y
2
1 + y22) + α1(y2 − x2) + sin(t)(y2 − x2)

3,

dy3
dt

=− 3y3 + α2(y3 − x3) + sin(t)(y3 − x3)
3.

It follows from equation (4.3) and the definition that the characteristic multipliers
are µ1 = 1, µ2 = e−4π < 1, µ3 = e−6π < 1. Therefore according to Theorem 1.1,
the requirements for the conditions are α1 < 0, α2 < − 1

4π (ln|µ3|)} = 1.5. Here we
choose α1 = −0.1, α2 = 1.4 and initial data (1.2, 1.3, 0.2, 1.1, 1.4, 0.1). By using the
inverse sine function or the inverse cosine function, we can compute t1 ≈ 0.86511377.
In Figure 2, x(t) and y(t) of the solution curve are give separatively for 0 ≤ t ≤ 10.

It also shows that both x(t) and y(t) go to u(t+ t1) =

 cos(t+ t1)
sin(t+ t1)

0

 as t → ∞.
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y(1)y(2)
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Figure 2. x(t) and y(t) for Example 4.2.

We list in Table 1 the asymptotic behavior of the curves for x(t) and y(t), where

dj(x) = xj(t)− uj(t+ t1), dj(y) = yj(t)− uj(t+ t1), 1 ≤ j ≤ 3.

From the table, we can see the behavior of the synchronized asymptotic phase
described in Theorem 1.1.

Table 1. Data for Example 4.2

t d1(x) d2(x) d3(x) d1(y) d2(y) d3(y)

0 0.5514 0.5388 0.2000 0.4514 0.6388 0.1000
5 -0.0061 -0.0134 0.0187 0.0059 0.0135 -0.0187
10 -0.0054 0.0007 0.0069 0.0054 -0.0007 -0.0069
15 -0.0003 0.0020 0.0025 0.0003 -0.0020 -0.0025
20 0.0007 0.0003 0.0009 -0.0007 -0.0003 -0.0009
25 0.0002 -0.0002 0.0003 -0.0002 0.0002 -0.0003
30 -0.0001 -0.0001 0.0001 0.0001 0.0001 -0.0001
35 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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