
Journal of Applied Analysis and Computation Website:http://jaac-online.com/

Volume 5, Number 4, November 2015, 651–661 doi:10.11948/2015051

SOME SPECIAL SOLUTIONS FOR
DIVERGENCE STRUCTURE QUASILINEAR

EQUATION

Guanghua Shi

Abstract We consider the divergence structure quasilinear equation

−diva⃗(∇u) = f(x, u,∇u),

which is not a variational equation. By applying the method of Galerkin
approximation, we give some special solutions of the above equation.

Keywords Nonvariational elliptic equations, plane-like solutions, topological
method.
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1. Introduction

The classical Aubry-Mather theory was established independently by Aubry [1]
and Mather [9] when they respectively studied the plane Hamiltonian system and
one dimensional Frenkel-Kontorova model. Moser [10] extended the Aubry-Mather
theory for high dimension and set up the relationship between this theory and the
variational problem on tori. The variational problem with integrand F : Rn ×R1 ×
Rn ∋ (x, t, p) 7→ F (x, t, p) ∈ R1 is to look for a minimal solution u : Rn → R1 such
that ∫

Rn

(F (x, u(x) + φ(x),∇(φ+ u)(x))− F (x, u(x),∇u(x)))dx ≥ 0

for every C1−function φ : Rn → R1 with compact support. The minimal solution
of the variation problem satisfies the Euler-Lagrange equation:

n∑
k=1

∂

∂xk
Fpk

(x, u,∇u) = Fu(x, u,∇u), (1.1)

which is an elliptic equation under appropriate conditions on F . Moser [10] proved
that for any ω ∈ Rn there exists a classical minimal solution, denoted by u, with
the following plane-like property:

u(x)− ω · x ∈ L∞(Rn). (1.2)

Here, ω is called the rotation vector of u. Moreover, Bangert continued studying the
lamination of the minimal solutions with the same rotation vector in [2,3]. Related
problems about minimal solutions satisfying (1.2) can be found in [5, 6, 11].
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When F (x, u,∇u) = 1
2 |∇u|2 + V (x, u), the equation (1.1) turns into

△u = ∂uV (x, u). (1.3)

In [7], de la Llave and Valdinoci made use of the method of gradient semi-flow to
get a solution satisfying (1.2),(1.3), which may not be a minimal solution. This
method can be extended to an abstract formulation to study the pseudo-differential
equations. See [7].

All the equations mentioned above are in the variational setting. Naturally it is
interesting to investigate some non-variational equations. In that direction, Berti,
Matzeu and Valdinoci [4] studied the equation:

△u = f(x, u,∇u) (1.4)

and stated that for all ω ∈ Zn there exists a special solution u such that

u(x)− ω · x ∈ H2(Tn).

The proof is based on a Galerkin approximation. There, the authors introduced
a N -length cutoff on the Fourier coefficients to construct a vector field, and proved
that the vector field has a zero denoted by X(N) when f fulfills some assumptions.
Then the approximating sequence is written as follows

UN (x) :=
∑
k∈SN

X
(N)
k sin(2πk · x).

It is easy to check that every element of the sequence satisfies the corresponding
approximating equation:

△UN = fN (x), (1.5)

where fN is defined in [4] and we omit the specific form here. Then taking advantage
of the elliptic L2-estimates in equation (1.5), they obtained that ∥ UN ∥H2(Tn) are
uniformly bounded. Hence there exist a subsequence, still denoted by UN , and a
function U ∈ H2(Tn) such that UN converges to U in H1(Tn). Thus the left part
of (1.5) weakly converges to △U in L2(Tn). On the other hand, they also verified
that the right part of (1.5) converges to f(x, ω ·x+U, ω+∇U) in distributive sense
by Vitali Convergence Theorem. Therefore, ω · x+ U is the weak solution of (1.4).

In this paper, we are concerned with the general divergence structure quasilinear
elliptic equation:

− (diva⃗(∇u))(x) = f(x, u(x),∇u(x)), x ∈ Rn, (1.6)

where a⃗ : Rn ∋ x 7→ (a1(x), · · · , an(x)) ∈ Rn belongs to C1 maps and f : Rn×R1×
Rn ∋ (x, t, p) 7→ f(x, t, p) ∈ R1 is a continuous function. Before giving our main
theorem, we first make some assumptions on a⃗ and f .

H1): Suppose that f is 1-periodic and odd in (x, t). Moreover, suppose that there
exist three positive constants K0,K1,K2 such that

|f(x, t, p)| ≤ K0 +K1|p| (1.7)

and
|f(x, t, p)− f(x, t, q)| ≤ K2|p− q|. (1.8)
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We can easily find an example satisfying H1 as follows:

f(x, t, p) = cos(2πx1) · · · cos(2πxn)sin(2πt)(1 + min{K1,K2}|p|).

H2): Suppose that a⃗ enjoys the following properties:

a) |⃗a(p)| ≤ K3(1 + |p|), (1.9)

b)
∑
i,j

aijξiξj ≥ λ|ξ|2 where λ > 0, aij :=
∂ai

∂xj
. (1.10)

Here (1.10) implies that a⃗ satisfies the condition of strict monotonicity, i.e., there
exists some r > 0 such that

(⃗a(p)− a⃗(q), p− q) ≥ r|p− q|2 for all p, q ∈ Rn.

Then we can obtain our main result which is similar to that of Theorem 1.1 in [4].

Theorem 1.1. If f and a⃗ in equation (1.6) satisfy H1 and H2, then there exists
a constant c > 0, depending on n, λ, such that when K1 ≤ c, for any ω ∈ Zn,
there exists u ∈ H2

loc(Rn) which is a weak solution of equation (1.6). Set U(x) :=
u(x)− ω · x, then U has the following properties:

U(x+ l) = U(x) = U(−x) for any x ∈ Rn and l ∈ Zn

and
∥ U ∥H2(Tn)≤ C(K0 +K1|ω|), (1.11)

where C depends on n, λ.

When n = 1, we can get that U ∈ L∞(Rn). Therefore, we can get the plane-like
solution of equation (1.6).

We remark that, our proof of the main theorem is also based on the method of
Galerkin approximation. However, comparing our results with Berti’s, we construct
a new vector field and claim a strong convergence statement about the sequence fN
in the right side of equation (1.12). Besides, we adopt the monotonicity method to
deal with the limit procedure in the divergence item of equation (1.6).

Finally, we give an outline of the proof. Firstly, we construct a new vector field
(see (2.1)) and prove that it has a zero by Brouwers Fixed Point Theorem (see
Lemma 2.3 and Lemma 2.4). Then an analogous approximating sequence can be
constructed and satisfies

− div a⃗(∇UN (x) + ω) = fN (x). (1.12)

Secondly, we prove the strong convergence statement, that is, fN converges to
f(x, ω · x + U, ω + ∇U) in L2(Tn), at the cost of an extra Lipschitz condition on
the p-component of f . At last, we prove our main theorem using the monotonicity
method.

2. Proof of our main theorem

In this section, firstly we will construct a finite dimension vector field by cutting off
the Fourier coefficient and prove that there exists a zero of the vector field.
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Given an odd function ϕ ∈ L2(Tn), then its Fourier expansion has the following
form:

ϕ(x) =
∑
k∈Zn

ϕk sin(2πk · x)

and we define the projection on its kth Fourier coefficient as Πk(ϕ) := ϕk. It is
clear that ∥ ϕ ∥2L2(Tn)=

1
2

∑
k∈Zn ϕ2

k.
For an given N ∈ N, we set

SN := {k ∈ Zn|1 ≤ |k1|+ · · ·+ |kn| ≤ N}

and we denote by m(N) the cardinality of SN .
Next we will construct the vector field vN : Rm(N) → Rm(N).
Given X = (X1, · · · , Xm(N)) ∈ Rm(N), we define

gX(x) := f(x, ω · x+
∑
l∈SN

Xl sin(2πl · x), ω + 2π
∑
l∈SN

lXl cos(2πl · x)).

We can easily get the conclusion that gX is odd and 1-periodic by directly check.
According to the inequality (1.7), one could also prove that gX ∈ L2(Tn). Moreover,
the following lemma which can be found in [4] will provide an useful and precise
estimate on the L2-norm of gX .

Lemma 2.1. For any X ∈ Rm(N), gX defined above and set ωk(X) := Πk(gX), we
have that ∑

k∈Zn

|ωk(X)|2 ≤ C(K2
0 +K2

1 |ω|2 +K2
1

∑
k∈SN

|k|2X2
k),

where C depend on only n.

Before giving the proof, we state that the constant C may change from line to
line in the rest part of the present paper, but depends only on n, λ.
Proof. Fix X ∈ Rm(N), let us set ηX(x) :=

∑
k∈SN

kXk cos(2πk ·x), then we have

∥ ηX ∥2L2(Tn)≤ C
∑
k∈SN

|k|2X2
k .

Also by (1.7), it is obvious to see

|gX(x)| ≤ C(K0 +K1|ω|+K1|ηX(x)|).

Therefore, ∑
k∈Zn

|ωk(X)|2 = 2 ∥ gX ∥2L2(Tn)

≤ C(K2
0 +K2

1 |ω|2 +K2
1 ∥ ηX ∥2L2(Tn))

≤ C(K2
0 +K2

1 |ω|2 +K2
1

∑
k∈SN

|k|2X2
k).

In view of the above discussion, we know that ωk(X) is well-defined for any
X ∈ Rm(N) and k ∈ Zn, hence we can define the vector field’s kth component as
below:

vNk (X) := 4π2Xk

n∑
i=1

n∑
j=1

aij(2π
∑
k∈SN

kXk cos(2πk · x) + ω)kikj − ωk(X). (2.1)
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Then we will prove that the vector field we constructed above has zeroes based
on the lemma in [8, p493]. For the reader’s convenience, we formulate the lemma
below.

Lemma 2.2. (Zeroes of a vector field). Assume the continuous function v : Rn →
Rn satisfies

v(x) · x ≥ 0 if |x| = r (2.2)

for some r > 0. Then there exists a point x ∈ B(0, r) such that v(x) = 0.

According to Lemma 2.2, we have to check that the vector field is continuous
and also satisfies (2.2). And the two lemmata below state the corresponding claim
respectively.

Lemma 2.3. Fix any N ∈ N, the vector field vN : Rm(N) → Rm(N) is continuous.

Proof. It is enough to prove vNk : Rm(N) → R to be continuous for any fixed
k ∈ SN . By the definition of vNk , we only have to prove that ωk(·) : Rm(N) → R is
continuous. Assume that {XM}M≥0 ⊆ Rm(N) and XM → X0 if M → ∞, we get

gXM (x) = f(x, ω · x+
∑
l∈SN

XM
l sin(2πl · x), ω + 2π

∑
l∈SN

lXM
l cos(2πl · x))

and

gX0(x) = f(x, ω · x+
∑
l∈SN

X0
l sin(2πl · x), ω + 2π

∑
l∈SN

lX0
l cos(2πl · x)).

We clearly know that gXM converges to gX0 pointwise when M converges to infinite.
As we know that ωk(X

M ) is the kth Fourier coefficient of gXM , hence

ωk(X
M ) = 2

∫
Tn

gXM (x) sin(2πk · x)dx, M ≥ 0. (2.3)

By (1.7), for M large enough, we get that

|gXM (x)| = |f(x, ω · x+
∑
l∈SN

XM
l sin(2πl · x), ω + 2π

∑
l∈SN

lXM
l cos(2πl · x))|

≤ K0 +K1(|ω|+ 2π
∑
l∈SN

|l||XM
l |)

≤ K0 +K1(|ω|+ 2π
∑
l∈SN

|l|(|X0
l |+ 1)).

Thanks to the Lebesgue’s Dominated Convergence Theorem and (2.3), we obtain

ωk(X
M ) → ωk(X

0) for any k ∈ SN .

Lemma 2.4. Fix any N ∈ N, there exists R > 0 such that vN (X) ·X ≥ 0 as long
as |X| ≥ R.

Proof. Fix X ∈ Rm(N), we set

|X|1 :=

√ ∑
k∈SN

|k|2X2
k .
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Combining the fact that

|X|1 ≥
√ ∑

k∈SN

X2
k = |X|

with the Lemma 2.1, we get ∑
k∈Zn

|ωk(X)|2 ≤ CK2
1 |X|21,

as long as |X| ≥ R :=
√

K2
0

K2
1
+ |ω|2.

As a consequence,

vN (X) ·X =
∑
k∈SN

vNk (X)Xk

=
∑
k∈SN

4π2X2
k

n∑
i=1

n∑
j=1

aijkikj −
∑
k∈SN

ωk(X)Xk

≥ 4π2λ
∑
k∈SN

|k|2X2
k −

√ ∑
k∈SN

|ωk(X)|2
√ ∑

k∈SN

X2
k

≥ 4π2λ|X|21 − CK1|X|1|X|
≥ (4π2λ− CK1)|X|21,

where the third line dues to formula (1.10). As a result, we conclude our claim if
K1 is small enough.

Up to now, we can easily get a zero of the vector field based on above Lemmata,
that is, for any N ∈ N, there existsX(N) ∈ Rm(N) in such a way that vN (X(N)) = 0.
Then we can define the approximating sequence as follows:

UN (x) :=
∑
k∈SN

X
(N)
k sin(2πk · x).

It is obvious that UN ∈ C∞(Tn) and UN is odd. Besides, the fact that vN (X(N)) = 0
yields that

− diva⃗(∇UN (x) + ω)

=−
n∑

i=1

[ai(2π
∑
k∈SN

kX
(N)
k cos(2πk · x) + ω)]xi

=
∑
k∈SN

4π2Xk

n∑
i=1

n∑
j=1

aij(2π
∑
k∈SN

kXk cos(2πk · x) + ω)kikj sin(2πk · x)

=
∑
k∈SN

ωk(X
(N)) sin(2πk · x)

=(ΠNgX(N))(x),

where ΠN denotes the projection from L2(Tn) to its subspace

{g|g(x) =
∑
l∈SN

Xl sin(2πl · x), Xl ∈ R}.
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When N converges to infinite, ΠNg → g in L2(Tn) for any odd function g ∈ L2(Tn).

Now we have two questions: the first one is whether the approximating sequence
has a subsequence UNj converging to some U in a sense. If U exists, the second one
is whether we have

diva⃗(∇UNj + ω) → diva⃗(∇U + ω) (2.4)

and

ΠNgX(N) → f(x, ω · x+ U(x), ω +∇U(x)), (2.5)

in a weak sense.

The following lemma gives a positive answer to the first question.

Lemma 2.5. Let UN defined above, then we obtain

∥ UN ∥H2(Tn)≤ C(K0 +K1|ω|), (2.6)

where C depends on n, λ not on N .

Proof. At first, we claim that if vN (X) = 0, then√ ∑
k∈SN

|k|2X2
k ≤ C(K0 +K1|ω|),

where C is independent on N . Indeed,

4π2λ
∑
k∈SN

|k|2X2
k ≤

∑
k∈SN

4π2Xk

n∑
i=1

n∑
j=1

aijkikjXk

=
∑
k∈SN

ωk(X)Xk

≤
√ ∑

k∈SN

|ωk(X)|2
√ ∑

k∈SN

X2
k

≤ C(K0 +K1|ω|+K1

√ ∑
k∈SN

|k|2X2
k)

√ ∑
k∈SN

|k|2X2
k .

Therefore, √ ∑
k∈SN

|k|2X2
k ≤ C(K0 +K1|ω|+K1

√ ∑
k∈SN

|k|2X2
k),

which concludes the claim if K1 is small enough.

Since UN is periodic with zero average, by Poincaré inequality, we have

∥ UN ∥H1(Tn)≤ C ∥ ∇UN ∥L2(Tn)≤ C

√ ∑
k∈SN

|k|2(X(N)
k )2 ≤ C(K0 +K1|ω|),

where the last inequality is induced by the claim.
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Combining Lemma 2.1 and the claim, we also get

∥ ΠNgX(N) ∥L2(Tn) ≤∥ gX(N) ∥L2(Tn)

=

√
1

2

∑
k∈Zn

|ωk(X(N))|2

≤ C(K0 +K1|ω|+K1

√ ∑
k∈SN

|k|2(X(N)
k )2)

≤ C(K0 +K1|ω|).

By the knowledge of elliptic estimates (you can refer to the remark in [8, 498]) on
the elliptic equations

− diva⃗(∇UN (x) + ω) = (ΠNgX(N))(x), (2.7)

ones know that

∥ UN ∥H2(Tn)≤ C(∥ UN ∥L2(Tn) + ∥ ΠNgX(N) ∥L2(Tn)) ≤ C(K0 +K1|ω|).

Then we can choose a subsequence still marked as UN and a function U ∈
H2(Tn), satisfying (1.11), such that

∇UN → ∇U and UN → U in L2(Tn).

We can also choose a subsequence from the sequence UN , still denoted by UN ,
such that UN , resp. ∇UN converges to U , resp. ∇U almost everywhere. So U is
odd and 1-periodic while ∇U is even and 1-periodic. Finally, we will prove that U
is our weak solution for equation (1.6).

Now we give the proof of (2.5).
We will give a strong L2 convergence in (2.5). Set

gN (x) := f(x, ω ·x+UN (x), ω+∇U(x)) and f1(x) := f(x, ω ·x+U(x), ω+∇U(x)),

we obtain∫
Tn

|(ΠNgX(N))(x)− f(x, ω · x+ U(x), ω +∇U(x))|2dx

≤ 3

∫
Tn

|(ΠNgX(N))(x)− (ΠNgN )(x)|2dx+ 3

∫
Tn

|(ΠNgN )(x)− (ΠNf1)(x)|2dx

+ 3

∫
Tn

|(ΠNf1)(x)− f(x, ω · x+ U(x), ω +∇U(x))|2dx

≤ 3

∫
Tn

|gX(N)(x)− gN (x)|2dx+ 3

∫
Tn

|gN (x)− f1(x)|2dx

+ 3

∫
Tn

|(ΠNf1)(x)− f1(x)|2dx

:=I + II + III,

where I, II, III respectively stand for the three parts of the right side of the second
inequality. Then we will give some estimates of I, II, III.
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By (1.8),

I = 3

∫
Tn

|gX(N)(x)− gN (x)|2dx

= 3

∫
Tn

|f(x, ω · x+ UN (x), ω +∇UN (x))− f(x, ω · x+ UN (x), ω +∇U(x))|2dx

≤ 3

∫
Tn

K2
2 |∇UN −∇U |2dx,

which implies that I converges to zero when N → +∞.
As to II, combining the fact that gN converges to f1 almost everywhere and

|gN (x)− f1(x)|2 ≤ 2(K0 +K1|ω +∇U(x)|)2,

we get that II converges to zero thanks to the Lebesgue’s Dominated Convergence
Theorem.

To estimate the third item, according to the fact that sin 2πk · x, k ∈ Zn are
an orthonormal and complete family within the space of all odd L2−functions on
Tn, it is sufficient to show that f1 ∈ L2(Tn) and it is also odd. In fact, due to
the condition (1.7), it is obvious to know that f1 ∈ L2(Tn). And recall that f is
1-periodic and odd in (x, t) in the assumption H1, we could check that f1 is odd.
Then we give the proof of (2.4). The proof will take advantage of the monotonicity
methods introduced in the ninth chapter of [8].

By (1.9), {a⃗(∇UN + ω)}N≥1 is bounded in L2(Tn,Rn). Hence we can suppose

a⃗(∇UN + ω) ⇀ ξ

for some ξ ∈ L2(Rn,Rn).
Due to (2.7), for any ϕ ∈ H1(Tn), it is clear that∫

Tn

a⃗(∇UN + ω) · ∇ϕdx =

∫
Tn

(ΠNgX(N))ϕdx. (2.8)

Let N → ∞, combining with the convergence (2.5), we get∫
Tn

ξ · ∇ϕdx =

∫
Tn

f1ϕdx. (2.9)

In the following part, in view of (2.9), it is enough to show that ξ = a⃗(∇U +ω).
Using the monotone condition on a⃗, it is easy to know that∫

Tn

[⃗a(∇UN + ω)− a⃗(∇V + ω)] · (∇UN −∇V )dx ≥ 0 (2.10)

for any V ∈ H1(Tn) and N ≥ 1.
Replace ϕ in (2.8) by UN and substitute into (2.10), one gets∫

Tn

[ΠNgX(N)UN − a⃗(∇UN + ω) · ∇V − a⃗(∇V + ω) · (∇UN −∇V )]dx ≥ 0.

Let N → ∞, we are aiming to obtain∫
Tn

[f1U − ξ · ∇V − a⃗(∇V + ω) · (∇U −∇V )]dx ≥ 0. (2.11)
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When taking limits above (N → +∞), the most difficult part is to show

lim
N→+∞

∫
Tn

ΠNgX(N)UNdx =

∫
Tn

f1Udx.

Indeed, using Lemma 2.5, we can get∫
Tn

|(ΠNgX(N))(x)UN (x)− f1(x)U(x)|dx

≤
∫
Tn

|(ΠNgX(N))(x)− f1(x)||UN (x)|dx+

∫
Tn

|f1(x)||UN (x)− U(x)|dx

≤(

∫
Tn

|(ΠNgX(N))(x)− f1(x)|2dx)
1
2 (

∫
Tn

|UN (x)|2dx) 1
2

+ (

∫
Tn

|f1(x)|2dx)
1
2 (

∫
Tn

|UN (x)− U(x)|2dx) 1
2 → 0.

By (2.9) (replace ϕ by U) and (2.11), we deduce∫
Tn

(ξ − a⃗(∇V + ω)) · (∇U −∇V )dx ≥ 0 for any V ∈ H1(Tn). (2.12)

Choose V := U − rW (r > 0) in (2.12), we get∫
Tn

(ξ − a⃗(∇U − r∇W + ω)) · ∇Wdx ≥ 0.

Let r → 0, to find∫
Tn

(ξ − a⃗(∇U + ω)) · ∇Wdx ≥ 0 for any W ∈ H1(Tn). (2.13)

Replacing W by −W , in fact, the equality holds above. At last, due to (2.9) and
(2.13), we conclude∫

Tn

a⃗(∇U + ω) · ∇Wdx =

∫
Tn

f1Wdx for any W ∈ H1(Tn).

Finally, we have proved not only the statement (2.4) but also the main theorem.

Corollary 2.1. When n = 1, U ∈ L∞.

Proof. Since

|UN (x)| = |
∑
k∈SN

X
(N)
k sin(2πk · x)|

≤
∑
k∈SN

|X(N)
k |

≤
∑
k∈SN

|X(N)
k ||k| 1

|k|

≤ (
∑
k∈SN

|k|2|X(N)
k |2) 1

2 (
∑
k∈SN

1

|k|2
)

1
2 ,

we obtain that UN is uniformly bounded. Indeed, when n = 1,
∑

k∈SN

1
|k|2 is con-

vergent as N → +∞, while
∑

k∈SN
|k|2|X(N)

k |2 is uniformly bounded (see Lemma
2.5). Therefore, U is bounded because of UN ’s converging to U almost everywhere.
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