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Abstract Some new travelling wave transform methods are very important
for obtaining analytical solutions of special type of nonlinear partial differ-
ential equations (NLPDEs). Some of these solutions of NLPDEs may be in
the different forms such as rational function solutions, trigonometric function
solutions, hyperbolic function solutions, exponential function solutions and
Jacobi elliptic function solutions. These forms tell us the various properties
of the NLPDEs from scientifical applications to engineering.

In this research, we have studied to obtain the analytical solution of
the nonlinear (2+1)-dimensional Burgers equation which is named from Jo-
hannes Martinus Burgers and the nonlinear special type of the Dodd-Bullough-
Mikhailov equation introduced to the literature by Roger Dodd, Robin Bul-
lough, and Alexander Mikhailov.
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1. Introduction

Some scientists have investigated the various solutions of some differential equations
such as approximate and analytical solutions for NLPDEs which are used to describe
different problems. They have attained some analytical solutions for these equations
by using various methods such as the modified simple equation method, various
trial equation methods, Sumudu transform method, the tanh function method, the
sine-cosine method, the inverse scattering method, Hirota’s bilinear transformation,
the tanh-sech method, homogeneous balance method, the Darboux transformation,
extended tanh-function method, homotopy perturbation method, G′/G-expansion
method, exp-function method, Kudryashov method, extended trial equation method
and so on [1–8,11,12,15,16,18–20,23,24,27,28].

In this paper, we have applied the generalized Kudryashov method to the special
type of Dodd-Bullough-Mikhailov equation by Roger Dodd, Robin Bullough, and
Alexander Mikhailov [26] and the nonlinear (2+1)-dimensional Burgers equation
[14] successfully for obtaining some new analytical solutions, after primarily we
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give the general structure of new generalized Kudryashov method in section 2.
In Section 3, as an application, we have solved the nonlinear special type of the
Dodd-Bullough-Mikhailov equation and the nonlinear (2+1)-dimensional Burgers
equation defined as follows, respectively;

utt − uxx + eu + e−2u = 0 (1.1)

and
ut − uux − uxx − uyy = 0. (1.2)

Burgers equation is very important for describing the travelling wave in the wa-
ter, air and others. Different versions such as inviscid Burgers’ equation, Burgers’
equations, viscous Burgers’ equation and coupled Burger’s equations have been sub-
mitted to literature before along with various solutions like approximate, numerical
and analytical. The nonlinear (2+1)-dimensional Burgers equation which is being
one of them has been investigated with the help of various methods. Khan and
Akbar have applied exp-function method for obtaining solutions for Burgers equa-
tion [14]. Shen, Sun and Xiong have obtained new travelling-wave solutions for
Dodd-Bullough Equation by new method [25]. Davodi, Ganji and Alipour have
taken into considerations some different methods such as tan, tanh, and extended
tanh and sech methods for solving the nonlinear partial differential equation, in-
cluding Dodd-Bullough-Mikhailov (DBM) equation in 2009 [9]. Bahrami, Abdol-
lahzadeh, Berijani, Ganji and Abdollahzadeh have conducted the G′/G-expansion
method some travelling solutions in 2011 [1]. Rui have reached another solution of
Dodd-Bullough-Mikhailov equation in 2013 [22]. This differential equation plays an
important role in many scientific applications like changing between fluid flow and
quantum field theory [26]. Quantum field theory, especially in theoretical physics,
is a theoretical framework for forming quantum mechanical models of subatomic
particles in particle physics. Moreover, this differential equation has been widely
used for explaining to quantum fields such as quantum electrodynamics , quantum
chromo dynamics, quantum mechanical interactions, quantum mechanical systems,
gravitational field, electromagnetic field , the thermodynamics of radiation, the
quantum nature of radiation, modern quantum optics, general theory of relativity,
the low-energy effective field theory, superstring theory and so on.

2. Fundamental Facts of the Generalized Kudryashov
Method

Recently, some authors have researched generalized Kudryashov method [10,13,17,
21]. But, in this work, we try to constitute generalized form of Kudryashov method.
We consider the following nonlinear partial differential equation for a function of
two real variables, space x and time t :

P (u, ut, ux, uxx, uxxx, · · · ) = 0. (2.1)

The basic phases of the generalized Kudryashov method are expressed as being four
steps following:

Step 1. First of all, we must get the travelling wave solution of Eq.(2.1) as
following form;

u(x, t) = u(ξ), ξ = kx− ct, (2.2)
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where k and c are arbitrary constants. Eq.(2.1) was converted into a nonlinear
ordinary differential equation of the form:

N(u, u′, u′′, u′′′, · · · ) = 0, (2.3)

where the prime indicates differentiation with respect to ξ.

Step 2. Suggest that the exact solutions to the Eq.(2.3) can be written as
following form;

u(ξ) =

∑N
i=0 aiΦ

i∑M
j=0 bjΦ

j
=

A[Φ(ξ)]

B[Φ(ξ)]
, (2.4)

where Φ is 1
1∓eξ

. We note that the function Φ is solution of equation [13]

Φ′ = Φξ = Φ2 − Φ. (2.5)

Taking into consideration Eq.(2.5), we can obtain the first, second and third deriva-
tives of u(ξ) together Eq.(2.4);

u′(ξ) =
A′BΦ′ −AB′Φ′

B2
= Φ′[

A′B −AB′

B2
] = (Φ2 − Φ)

A′B −AB′

B2
, (2.6)

u′′(ξ) =
Φ2 − Φ

B2
[(2Φ− 1)(A′B −AB′) +

Φ2 − Φ

B
[B(A′′B −AB′′) (2.7)

− 2A′B′b+ 2A(B′)2]],

u′′′(ξ) =
(Φ2 − Φ)3

B4
[(A′′′B −AB′′′ − 3A′′B′ − 3B′′A′)B2]

+
(Φ2 − Φ)3

B4
[6B2(AB′′ +A′B′)− 6A(B′)3] (2.8)

+ 3(Φ2 − Φ)2(2Φ− 1)[
B(A′′B −AB′′)− 2B′A′A+ 2A(B′)2

B3
]

+ (Φ2 − Φ)(6Φ2 − 6Φ + 1)[
A′B −AB′

B2
].

Step 3. Under the terms of proposed method, we suppose that the solution of
Eq.(2.3) can be explained in the form of following:

u(ξ) =
a0 + a1Φ+ a2Φ

2 + a3Φ
3 + · · ·+ aNΦN + · · ·

b0 + b1Φ+ b2Φ2 + b3Φ3 + · · ·+ bMΦM + · · ·
. (2.9)

To calculate the values of M and N in Eq.(2.9) that is the pole order for the general
solution of Eq.(2.3), we progress conformably as in the classical Kudryashov method
on balancing the highest order nonlinear terms in Eq.(2.3) and we can determine a
formula of M and N . Then, we can choose some values of M and N .

Step 4. Replacing Eq.(2.4) into Eq.(2.3) provides a polynomial of R(Φ) and
Φ. Establishing the coefficients of R(Φ) to zero, we acquire a system of algebraic
equations. Solving this system, we can describe ξ and the variable coefficients of
a0, a1, a2, a3, · · · , aN , b0, b1, b2, b3, · · · , bM . In this way, we attain the exact solutions
to Eq.(2.3).
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3. The Implementation of the Method

In this section, we have obtained the analytical solutions of the Eq.(1.1) and Eq.(1.2)
by using GKM.

Example 3.1. Let us consider to Eq.(1.1) to found the new travelling wave solu-
tions, and, we perform the transformation u(x, t) = u(ξ) and ξ = x − ct where c
is constant. When it comes to convert partial differential equation into ordinary
differential equation, we can perform as following;

∂2u(x, t)

∂t2
=

∂

∂t
[−c

∂u(ξ)

∂ξ
] = c2u′′, (3.1)

∂2u(x, t)

∂x2
=

∂

∂x
[
∂u(ξ)

∂ξ
] = u′′, (3.2)

so, when we use uxx and utt in the Eq.(1.1), we get the nonlinear ordinary differential
equation as following;

(c2 − 1)u′′ + eu + e−2u = 0. (3.3)

When we take into consideration as following transformations,

u = ln v, u′ =
v′

v
, u′′ =

v′′

v
− (v′)2

v2
, (3.4)

we get quickly as following nonlinear ordinary differential equation

(c2 − 1)vv′′ − (c2 − 1)(v′)2 + v3 + 1 = 0. (3.5)

When we rearrangement to Eq.(2.4), Eq.(2.6) and Eq.(2.7) for balance principle,
we obtain the term for suitability;

N = M + 2. (3.6)

This resolution procedure is applied and we obtain results as follows:
Case 1: If we take M = 1 and N = 3 for using in Eq.(2.4), then, we can write

follow equations;

v(ξ) =

∑3
i=0 aiΦ

i∑1
j=0 bjΦ

j
=

a0 + a1Φ+ a2Φ
2 + a3Φ

3

b0 + b1Φ
=

A[Φ]

B[Φ]
, (3.7)

v′(ξ) = (Φ2 − Φ)[
A′B −AB′

B2
] (3.8)

and

v′′(ξ) =
Φ2 − Φ

B2
[(2Φ− 1)(A′B −AB′) +

Φ2 − Φ

B
[B(A′′B −AB′′)

− 2A′B′b+ 2A(B′)2]],

(3.9)

where a3 ̸= 0 and b1 ̸= 0. When we use Eq.(3.7), Eq.(3.8) and Eq.(3.9) into the
Eq.(3.5), we get a system of algebraic equations for Eq.(3.5). Thus, we have a
system of algebraic equations from the coefficients of polynomial of Φ. Solving
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the algebraic equation system Eq.(3.5) by using commercial Wolfram Mathematica
programming 9, us yields the following coefficients:

c = −2, a0 = −b0, a1 = 6b0 − b1, a2 = 6(−b0 + b1), a3 = −6b1, b0 = b0, b1 = b1.
(3.10)

Substituting these coefficients and Φ = 1
1∓eξ

into Eq.(3.7) , we have

v(ξ) =
−b0 + (6b0 − b1)

1
1∓eξ

+ 6(−b0 + b1)(
1

1∓eξ
)2 − 6b0(

1
1∓eξ

)3

b0 + b1
1

1∓eξ

,

v(ξ) = −1 + 6
1

1∓ eξ
− 6(

1

1∓ eξ
)2,

(3.11)

then, when we go on such process, we get the following solutions for the nonlinear
ordinary differential Eq.(3.5) as following manner;

v(ξ) = −1 + 6
1

1∓ eξ
(1− 1

1∓ eξ
). (3.12)

When we use Eq.(3.12) into the Eq.(3.4) and ξ = x − ct, we attain the soliton
solution as following;

u(x, t) = ln[−1 +
6

1∓ ex−ct
(1− 1

1∓ ex−ct
)]. (3.13)

When we take into consideration for rearrangement,

tanh(
x

2
) =

ex − 1

ex + 1
⇒ 1

1 + ex
=

1

2
− 1

2
tanh(

x

2
), (3.14)

we can write Eq.(3.13) in the form of hyperbolic function solution as following;

v(ξ) = −1 + 6(
1

2
− 1

2
tanh(

ξ

2
))(

1

2
+

1

2
tanh(

ξ

2
), (3.15)

v(ξ) =
1

2
− 3

2
tanh2

ξ

2
. (3.16)

If we use Eq.(3.16) into the Eq.(3.4) and c = 2, for simplicity, we obtain the
soliton solution as following;

u(x, t) = ln[
1

2
− 3

2
tanh2

(x− 2t)

2
]. (3.17)

Remark 3.1. The soliton solution Eq.(3.17) obtained by using GKM for Eq.(1.1)
is the same analytical solution obtained by Abdul-Majid Wazwaz by using the Tanh
Method and being solution in [26] under the special circumstance of constant for
the nonlinear Special Type of The Dodd-Bullough- Mikhailov equation, [see [26],
Eq.(45), for c = −3]. The soliton solution and Figure 1 being surfaces of Eq.(3.13)
have been checked by the programming language Mathematica 9. As we know, the
application of GKM to Eq.(1.1) has not submitted to the literature before.

Case 2: In this case, especially, If we take M = 0, of course N = 2, for Eq.(3.4),
it gives us the Kudryashov method, nevertheless, when we keep on in the same way,



618 H.M. Baskonus & H.Bulut

we write follow equations;

v(ξ) =

∑2
i=0 aiΦ

i∑0
j=0 bjΦ

j
=

a0 + a1Φ+ a2Φ
2

b0
=

A[Φ]

B[Φ]
, (3.18)

v′(ξ) = (Φ2 − Φ)[
A′B −AB′

B2
] (3.19)

and

v′′(ξ) =
Φ2 − Φ

B2
[(2Φ− 1)(A′B −AB′) +

Φ2 − Φ

B
[B(A′′B −AB′′)

− 2A′B′b+ 2A(B′)2]],

(3.20)

where a2 ̸= 0 and b0 ̸= 0. When we use Eq.(3.18), Eq.(3.19) and Eq.(3.20) into
the Eq.(3.5), we get a system of algebraic equations for Eq.(3.5). Thus, we have a
system of algebraic equations from the coefficients of polynomial of Φ. Solving the
algebraic equation system Eq.(3.5) by using Mathematica programming yields the
following coefficients:

c = ∓2, a0 = −b0, a1 = 6b0, a2 = −6b0, b0 = b0. (3.21)

If it substitutes these coefficients and Φ = 1
1∓eξ

, ξ = x − ct into Eq.(3.18) , we
attain;

v(ξ) = −1 + 6Φ− 6Φ2 = −1 + 6(
1

1∓ eξ
)− 6(

1

1∓ eξ
)2, (3.22)

then, when we keep on this procedure, we get the following solutions for the non-
linear ordinary differential Eq.(3.5) as following manner;

v(ξ) = −1 + 6(
1

1∓ eξ
)(1− 1

1∓ eξ
). (3.23)

When we consider Eq.(3.23) along with the Eq.(3.4), we attain the hyperbolic func-
tion solution as following;

u(x, t) = ln[−1 +
6

1∓ e−x+2t
(1− 1

1∓ e−x+2t
)], (3.24)

u(x, t) = ln[−1 +
3

2
sech2(

−x+ 2t

2
)]. (3.25)

When we take into consideration for rearrangement Eq.(3.14), we can found the
another soliton solution as following for Eq.(3.25);

u(x, t) = ln[
1

2
− 3

2
tanh2(

−x+ 2t

2
)]. (3.26)

Example 3.2. Let us consider the nonlinear (2+1)-dimensional Burgers equation
defined by following equation for obtaining the new travelling wave solutions;

ut − uux − uxx − uyy = 0. (3.27)
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When we perform the transformation u(x, y, t) = u(ξ) and ξ = k(x+y−ct), it gives
us follows;

∂u

∂t
= −cku′,

∂u

∂x
= ku′,

∂u

∂y
= ku′,

∂2u

∂x2
= k2u′′,

∂2u

∂y2
= k2u′′, (3.28)

so, when we use Eq.(3.28) into Eq.(3.27) by integrating the resulting equation with
respect to ξ and setting the integration constant to zero, we obtain the nonlinear
ordinary differential equation as following;

2cu+ u2 + 4ku′ = 0. (3.29)

When we rearrangement to Eq.(2.4) and Eq.(2.6) due to considering balance princi-
ple to determine relationship between M and N , we obtain the term for suitability;

N = M + 1. (3.30)

This resolution procedure is applied and we obtain results as follows:
Case 1: If we take M = 1 and N = 2 for Eq.(2.4), then, we write follow

equations;

v(ξ) =

∑2
i=0 aiΦ

i∑1
j=0 bjΦ

j
=

a0 + a1Φ+ a2Φ
2

b0 + b1Φ
=

A[Φ]

B[Φ]
, (3.31)

v′(ξ) = (Φ2 − Φ)[
A′B −AB′

B2
] (3.32)

and

v′′(ξ) =
Φ2 − Φ

B2
[(2Φ− 1)(A′B −AB′) +

Φ2 − Φ

B
[B(A′′B −AB′′)

− 2A′B′b+ 2A(B′)2]],

(3.33)

where a2 ̸= 0 and b1 ̸= 0. When we use Eq.(3.31) and Eq.(3.32) into the Eq.(3.29),
we get a system of algebraic equations for Eq.(3.29). Thus, we have a system of
algebraic equations from the coefficients of polynomial of Φ. Solving the algebraic
equation system Eq.(3.29) by using software commercial programming Mathematica
9 yields the following coefficients:

c = −4k, a0 = 8kb0, a1 = −16kb0, a2 = 8kb0, b0 = b0, b1 = −2b0, (3.34)

c = −2k, a0 = 0, a1 = 4kb1, a2 = −4kb1, b0 = 0, b1 = b1, (3.35)

c = −2k, a0 = 0, a1 = a1, a2 = −4kb1, b0 =
−a1
4k

, b1 = b1. (3.36)

Substituting Eq.(3.34), Eq.(3.35), Eq.(3.36) coefficients and Φ = 1
1∓eξ

into
Eq.(3.31), we have the traveling wave solution, hyperbolic function solution, another
new traveling wave solution for the nonlinear (2+1)-dimensional Burgers equation
as following, respectively;

u(x, y, t) = 4k[1 + coth(4tk2 + kx+ ky)], (3.37)

u(x, y, t) = 2k[1 + tanh(
2tk2 + kx+ ky

2
)], (3.38)

u(x, y, t) = −2k[1 + tanh(
−2tk2 + kx+ ky

2
)]. (3.39)
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Case 2: If we take M = 2 and N = 3 for Eq.(2.4), then, we can write follow
equations;

v(ξ) =

∑3
i=0 aiΦ

i∑2
j=0 bjΦ

j
=

a0 + a1Φ+ a2Φ
2 + a3Φ

3

b0 + b1Φ+ b2Φ2
=

A[Φ]

B[Φ]
(3.40)

and

v′(ξ) = (Φ2 − Φ)[
A′B −AB′

B2
], (3.41)

where a3 ̸= 0 and b2 ̸= 0. When we use Eq.(3.40) and Eq.(3.41) into the Eq.(3.29),
we get a system of algebraic equations for Eq.(3.29). Thus, we have a system of
algebraic equations from the coefficients of polynomial of Φ. Solving this algebraic
equation system Eq.(3.29) by using Wolfram Mathematica programming 9 yields
the following coefficients:

c = −6k, a0 =
−a1
3

, a1 = a1, a2 = −a1, a3 =
a1
3
, b0 =

−a1
36k

, b1 =
a1
12k

, b2 = −b1.

(3.42)

Substituting Eq.(3.42) coefficients and Φ = 1
1∓eξ

into Eq.(3.40), we have the an-
other new hyperbolic function solution for the nonlinear (2+1)-dimensional Burgers
equation as following;

u(x, y, t) = 6k[1 + tanh(
3k

2
(6kt+ x+ y)]. (3.43)

Case 3: If we take M = 3 and N = 4 for Eq.(2.4), then, we write follow
equations;

v(ξ) =

∑4
i=0 aiΦ

i∑3
j=0 bjΦ

j
=

a0 + a1Φ+ a2Φ
2 + a3Φ

3 + a4Φ
4

b0 + b1Φ+ b2Φ2 + b3Φ3
=

A[Φ]

B[Φ]
(3.44)

and

v′(ξ) = (Φ2 − Φ)[
A′B −AB′

B2
]. (3.45)

When we use Eq.(3.44) and Eq.(3.45) into the Eq.(3.29), we get a system of
algebraic equations for Eq.(3.29). Thus, we have a system of algebraic equations
from the coefficients of polynomial of Φ. Solving the algebraic equation system
Eq.(3.29) by using Wolfram commercial computer programming Mathematica 9
yields the following coefficients:

c = −4k, a0 = 8kb0, a1 = 8kb1, a2 = −8k(3b0 + 2b1), a3 = 8k(2b0 + b1),

a4 = 0, b0 = b0, b1 = b1, b2 = b2, b3 =
(2b0 + b1)(4b0 + 2b1 + b2)

b0
, (3.46)

c = 4k, a0 = a1 = 0, a2 = 8kb0, a3 = 8k(2b0 + b1), a4 = 8k(4b0 + 2b1 + b2)

b0 = b0, b1 = b1, b2 = b2, b3 = −2(4b0 + 2b1 + b2), (3.47)

c = 4k, a0 = a1 = 0, a2 = a2, a3 =
2a2b0 + a2b1

b0
, a4 = 0, b0 = b0, b1 = b1,

b2 =
−a2
8k

− 3b0 − 2b1, b3 =
−(a2 − 8kb0)(2b0 + b1)

8kb0
. (3.48)
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Substituting Eq.(3.46), Eq.(3.47), Eq.(3.48) coefficients and Φ = 1
1∓eξ

into
Eq.(3.44), we obtain the exponential function, hyperbolic function and new an-
other exponential rational function solutions for the nonlinear (2+1)-dimensional
Burgers equation as follows, respectively;

u(x, y, t) =
8kb0e

2k(4kt+x+y)

2b1 + b2 + b0(3 + e2k(4kt+x+y))
, (3.49)

u(x, y, t) = 4k[−1 + coth(k(−4tk + x+ y))], (3.50)

u(x, y, t) =
8ka2

−a2 + 8kb0e2k(−4kt+x+y))
. (3.51)

Remark 3.2. The analytical solutions Eq.(3.37), Eq.(3.38), Eq.(3.39), Eq.(3.43),
Eq.(3.49), Eq.(3.50), Eq.(3.51) obtained by using GKM are the new exponential,
rational and hyperbolic function solutions for Eq.(1.2). These analytical solutions
have been checked by using the programming language Mathematica 9. As our
knowledge, this application of GKM to Eq.(1.2) has not submitted to the literature
before.

4. Conclusions

Figure 1. The 3D and 2D surfaces of the solution Eq.(3.13) by corresponding to the values −2 < x <
3,−2 < t < 2 for 3D graphics and −3 < x < 1, c = −2, t=0.35 for 2D graphics.

Figure 2. The 3D and 2D surfaces of the solution Eq.(3.25) by corresponding to the values −5 < x <
1,−2 < t < 0 for 3D graphics and −3 < x < 2, c = −2, t=0.35 for 2D graphics.

When we consider the analytical solutions Eq.(3.13), Eq.(3.25), Eq.(3.37), Eq.(3.38),
Eq.(3.39), Eq.(3.43), Eq.(3.49), Eq.(3.50),Eq.(3.51) obtained by using GKM and
Figure.1, Figure.2, Figure.3, Figure.4, Figure.5, Figure.6, Figure.7, Figure.8, Fig-
ure.9 gotten by the programming language Mathematica 9, this method supplies
us with the priceless info about Eq.(1.1) and Eq.(1.2). Under the terms of these
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Figure 3. The 3D and 2D surfaces of the solution Eq.(3.37) by corresponding to the values k = 1, y =
0.1,−11 < x < 11,−1 < t < 2, for 3D graphics and t=0.1 for 2D graphics.

Figure 4. The 3D and 2D surfaces of the solution Eq.(3.38) by corresponding to the values k = 1, y =
0.1,−11 < x < 11,−1 < t < 2, for 3D graphics and t=0.1 for 2D graphics.

Figure 5. The 3D and 2D surfaces of the solution Eq.(3.39) by corresponding to the values k = 1, y =
0.1,−11 < x < 11,−1 < t < 2, for 3D graphics and t=0.1 for 2D graphics.

Figure 6. The 3D and 2D surfaces of the solution Eq.(3.43) by corresponding to the values k = 1, y =
0.1,−11 < x < 11,−1 < t < 2, for 3D graphics and t=0.1 for 2D graphics.

informations, it can be seen that several solutions obtained by GKM are new. The
main goals of this work to find new analytical solutions such as rational function
solutions, hyperbolic function solutions and exponential function solutions and to
emphasize the power of the GKM, have been carried. These analytical solutions
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Figure 7. The 3D and 2D surfaces of the solution Eq.(3.49) by corresponding to the values k = 1, y =
0.1, b0 = 0.2, b1 = 0.5, b2 = −0.2,−11 < x < 11,−1 < t < 2, for 3D graphics and t=0.1 for 2D graphics.

Figure 8. The 3D and 2D surfaces of the solution Eq.(3.50) by corresponding to the values k = 1, y =
0.1,−11 < x < 11,−1 < t < 2, for 3D graphics and t=0.1 for 2D graphics.

Figure 9. The 3D and 2D surfaces of the solution Eq.(3.51) by corresponding to the values k = 1, y =
0.1, a2 = 0.2, b0 = −0.2,−11 < x < 11,−1 < t < 2, for 3D graphics and t=0.1 for 2D graphics.

are important to determine the long wave of problem, range of them, and velocity
of wave in terms of various aspects. The more analytical solutions can be gained
by using different approaches, the more they equip us with different ideas like new
versions interpretations of problems solved. The method suggested can also be
conducted to many other nonlinear partial differential equations in mathematical
physics because the method submitted to literature in this paper has some new
advantages such as easily calculations, writing programme for being obtained coef-
ficients and others. Therefore, we want to apply the same approach to nonlinear
differential equations with fractional order (of course, other partial and ordinary
differential equations with powerful nonlinearity) in the near future.
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