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1. Introduction and Preliminaries

In 1906, Frechet [13] was first presented the concept of metric space. The notion
of partial metric space was introduced by Matthew [17,18], which is generalization
of the metric space. Matthews [17] generalized the Banach contraction principle to
the class of complete partial metric space as follows: a self mapping f on a complete
partial metric space (X, p) has a unique fixed point, if there exist 0 ≤ k < 1 such
that

p(fx, fy) ≤ kp(x, y), ∀ x, y ∈ X.

Several authors have been focused on partial metric spaces and its topological
properties (see [4, 5, 7, 19, 23, 28] and references therein). Some interesting work
related to generalization of the contraction mapping and metric space can be seen
in [10–12, 20–22, 26, 27] and its references. Also, some authors have to generalized
fixed point theorems from class of metric space to the class of partial metric space.

First, we recall some useful definitions and results, which is useful throughout
the paper.

Definition 1.1 ( [17, 18]). A partial metric p on a nonempty set X is a function
p : X ×X → [0,∞) such that:
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(P1) p(x, x) = p(x, y) = p(y, y) if and only if x = y (equality),
(P2) p(x, x) ≤ p(x, y) (small self distance),
(P3) p(x, y) = p(y, x) (symmetry),
(P4) p(x, y) + p(z, z) ≤ p(x, z) + p(z, y) (triangularity)

for all x, y, z ∈ X. Then the pair (X, p) is called a partial metric space. Throughout
this paper, (X, p) represent a partial metric space equipped with a partial metric
p, unless or otherwise stated.

Example 1.1 ( [5,19]). Consider a mapping p : [0,∞)× [0,∞) → [0,∞) such that
p(x, y) = max{x, y} for all x, y ∈ [0,∞). Then p will be satisfy all the property
of partial metric, and hence ([0,∞), p) is a partial metric space, but fails to the
condition of p(x, x) = 0 for all non zero x ∈ [0,∞). Therefore ([0,∞), p) is not a
metric space.

Remark 1.1 ( [14]). (1) If p(x, y) = 0, then x = y but if x = y, then p(x, y) may
not be zero. (2) x ̸= y, then p(x, y) > 0.

Also, each partial metric p on X generates a T0 topology τp on X with a base
of the family of open p-balls {Bp(x, ε), x ∈ X, ε > 0}, where Bp(x, ε) = {y ∈ X :
p(x, y) < p(x, x) + ε}, for all x ∈ X and ε > 0 [7]. Let (X, p) be a partial metric
space on X, then a function dp : X ×X → [0,∞) defined as

dp(x, y) = 2p(x, y)− p(x, x)− p(y, y)

is a (usual) metric on X [7]. Furthermore, it is possible to observe that the following

dm(x, y) = max{p(x, y)− p(x, x), p(x, y)− p(y, y)}

= p(x, y)−min{p(x, x), p(y, y)},
also defines a metric on X. In fact dp and dm are equivalent [5].

Definition 1.2 ( [15]). In a partial metric space (X, p),
(1) a sequence {xn} is said to be convergent to a point x ∈ X if and only if
limn→∞ p(xn, x) = p(x, x).
(2) a sequence {xn} is called Cauchy sequence if and only if limn,m→∞ p(xn, xm) is
finite.
(3) if every Cauchy sequence {xn} is converges to a point x ∈ X such that

lim
n,m→∞

p(xn, xm) = p(x, x),

then (X, p) is known as complete partial metric space.

Chatterjea [6] has been generalized the concept of contractive mappings into
C-contractive mappings and Choudhury [9] introduced the weak C-contraction or
weakly C-contractive mapping, which is more generalization of C-contractive map-
pings, as follows:

Definition 1.3 ( [9, 24]). Let (X, d) be a metric space, then a self mapping f on
X, satisfying

d(fx, fy) ≤ 1

2
[d(x, fy) + d(fx, y)]− ϕ(d(x, fy), d(fx, y))

for all x, y ∈ X and ϕ : [0,∞)2 → [0,∞) is a continuous function with ϕ(x, y) = 0
if and only if x = y = 0, is called weakly C-contractive.



602 L. N. Mishra, S. K. Tiwari & V. N. Mishra

In the parallel consequences of weakly C-contractive mapping [9, 24], Shukla
and Tiwari [25] has been introduced the concept of S-contractive mapping and
generalization its, known as weakly S-contractive mapping, as follows:

Definition 1.4 ( [25]). Let (X, d) be a metric space, then a self mapping f on X
is said to be weakly S-contractive mapping or a weak S-contraction, if the following
inequality holds:

d(fx, fy) ≤ 1

3
[d(x, fy) + d(fx, y) + d(x, y)]− ϕ(d(x, fy), d(fx, y), d(x, y))

for all x, y ∈ X and ϕ : [0,∞)3 → [0,∞) is a continuous mapping with ϕ(x, y, z) = 0
if and only if x = y = z = 0.

Definition 1.5. A self mapping f on a partial metric space X is called nondecreas-
ing, if for all x1, x2 ∈ X, such that

x1 ≤ x2 ⇒ f(x1) ≤ f(x2).

Definition 1.6 ( [3]). In a partial metric space (X, p), two self mappings f and g
are said to be weakly increasing mappings, if for all x ∈ X such that

g(x) ≤ fg(x) and f(x) ≤ gf(x).

Lemma 1.1 ( [1,8]). In a partial metric space (X, p), if a sequence {xn} convergent
to a point x ∈ X, then limn→∞ p(xn, x) ≤ p(x, z) for all z ∈ X. Also, if p(x, x) = 0,
then

lim
n→∞

p(xn, z) = p(x, z), ∀ z ∈ X.

Lemma 1.2 ( [7]). If {x2n} is not a Cauchy sequence in (X, p), and two sequences
{m(k)} and {n(k)} of positive integers such that n(k) > m(k) > k, then the follow-
ing four sequences

p(x2m(k), x2n(k)+1), p(x2m(k), x2n(k)), p(x2m(k)−1, x2n(k)+1), p(x2m(k)−1, x2n(k))

tend to ε > 0, when k → ∞.

Lemma 1.3 ( [5, 19]). In a partial metric space (X, p),
(a) a sequence {xn} is a Cauchy if and only if, it is a Cauchy (X, dp).
(b) X is complete if and only if it is complete in (X, dp). Also, limn→∞ dp(xn, x) = 0
if and only if

lim
n,m→∞

p(xn, xm) = lim
n→∞

p(xn, x) = p(x, x).

(c) if {xn} is a Cauchy sequence in the metric space (X, dp), we have

lim
n,m→∞

dp(xn, xm) = 0

and therefore by definition of dp, we have

lim
n,m→∞

p(xn, xm) = 0.

The aim of this paper, is to prove some fixed point results in complete partial
metric space for more generalization of weakly S-contractive mappings described in
equations (2.1) and (2.16).
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2. Main results

Theorem 2.1. In a complete partial metric space (X, p), a self continuous nonde-
creasing mapping f on X, satisfying the condition

p(fx, fy) ≤ M(x, y), (2.1)

M(x, y) = max
{
ϕ(p(x, y)), ϕ(p(fx, y)), ϕ(p(x, fy)),

ϕ
(p(x, y) + p(fx, y) + p(x, fy)

3

)}
(2.2)

for all x, y ∈ X and ϕ : [0,∞) → [0,∞) is a continuous function with ϕ(t) < t ∀
t > 0 and ϕ(0) = 0, has a unique fixed point in X.

Proof. We choose an arbitrary point x0 ∈ X, if x0 = fx0, then theorem follows
trivially. Now, we discuss about x0 < fx0, then we can choose x1 ∈ X such that
fx0 = x1. Since f is nondecreasing function, then we have

x0 < x1 = fx0.

Again, let x2 = fx1, then we get

x0 < x1 = fx0 ≤ fx1 = x2 ≤ fx2.

Similarly, proceeding this work, we can construct a sequence {xn} in X, such that
xn+1 = fxn with

x0 < x1 ≤ x2 ≤ x3 ≤ ..... ≤ xn ≤ xn+1 ≤ ......

Suppose that p(xn0 , xn0+1) = 0 for some n0 ≥ 0, then by Remark 1.1, xn0 =
xn0+1 = fxn0 , that is, xn0 is a fixed point of f . So we assume that p(xn, xn+1) ≥ 0
for all n ≥ 0.

Next, we prove that {p(xn, xn+1)} is non increasing sequence in X. Now, we
putting x = x2n+1, y = x2n in (2.1) we get

p(fx2n, fx2n+1) = p(x2n+1, x2n+2) ≤ M(x2n, x2n+1). (2.3)

By (2.2), we have

M(x2n, x2n+1) = max
{
ϕ(p(x2n, x2n+1)), ϕ(p(fx2n, x2n+1)), ϕ(p(x2n, fx2n+1)),

ϕ
(p(x2n, x2n+1) + p(fx2n, x2n+1) + p(x2n, fx2n+1)

3

)}
= max

{
ϕ(p(x2n, x2n+1)), ϕ(p(x2n+1, x2n+1)), ϕ(p(x2n, x2n+2)),

(2.4)

ϕ
(p(x2n, x2n+1) + p(x2n+1, x2n+1) + p(x2n, x2n+2)

3

)}
.

Case-I: If M(x2n, x2n+1) = ϕ(p(x2n, x2n+1)), then by equation (2.3) and using the
fact ϕ(t) < t for all t > 0, we have

p(x2n+1, x2n+2) < p(x2n, x2n+1).
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Case-II: If M(x2n, x2n+1) = ϕ(p(x2n+1, x2n+1)), then by similar argument of case-
I, we get

p(x2n+1, x2n+2) < p(x2n+1, x2n+1),

which is contradiction of (P2).
Case-III: If M(x2n, x2n+1) = ϕ(p(x2n, x2n+2)), then by similar argument of case-I
and applying the property of (P4) and (P2), we have

p(x2n+1, x2n+1) < p(x2n, x2n+1).

Case-IV: IfM(x2n, x2n+1) = ϕ
(

p(x2n,x2n+1)+p(x2n+1,x2n+1)+p(x2n,x2n+2)
3

)
, using sim-

ilar argument of case-III, we have

p(x2n+1, x2n+2) < p(x2n, x2n+1).

Thus, in all possible cases, we say that {p(x2n, x2n+1)} for all n ≥ 0, is a
monotonically decreasing sequence in X. Since, a monotonic decreasing bounded
below sequence convergent to its greatest lower bound [16]. Thus,

lim
n→∞

p(xn, xn+1) = 0 and lim
n→∞

p(xn, xn) = 0, ∀ n ≥ 0. (2.5)

Now, we have required to prove that the sequence {xn} is a Cauchy sequence
in the partial metric space (X, p) and so in (X, dp) ( by Lemma 1.3(a). On the
contrary, we suppose that the sequence {xn} is not a Cauchy sequence in (X, p),
then sequences in Lemma 1.2 tend to ε > 0, when k → ∞. Now, we putting
x = x2n(k)−1 and y = x2m(k) in equation (2.1), we get

p(x2n(k), x2m(k)+1)

=p(fx2n(k)−1, fx2m(k)) ≤ M(x2n(k)−1,x2m(k)
)

=max
{
ϕ(p(x2n(k)−1, x2m(k))), ϕ(p(fx2n(k)−1, x2m(k))), ϕ(p(x2n(k)−1, fx2m(k))),

ϕ
(p(x2n(k)−1, x2m(k)) + p(fx2n(k)−1, x2m(k)) + p(x2n(k)−1, fx2m(k))

3

)}
=max

{
ϕ(p(x2n(k)−1, x2m(k))), ϕ(p(x2n(k), x2m(k))), ϕ(p(x2n(k)−1, x2m(k)+1)),

ϕ
(p(x2n(k)−1, x2m(k)) + p(x2n(k), x2m(k)) + p(x2n(k)−1, x2m(k)+1)

3

)}
.

Taking k → ∞ and using Lemma 1.2 in above inequality, we have

ε ≤ max
{
ϕ(ε), ϕ(ε), ϕ(ε), ϕ(ε)

}
.

Using the fact ϕ(t) < t for all t > 0, we get

ε ≤ ϕ(ε) < ε,

which is a contradiction with respect to ε > 0. Thus {x2n} is a Cauchy sequence in
(X, p) and so, in (X, dp) (by Lemma 1.3(a)). Since (X, p) is complete, so (X, dp) is
also complete (by Lemma 1.3(b)). Therefore, the Cauchy sequence {xn} converges
in the metric space (X, dp), say limn→∞ dp(xn, z) = 0 then again applying Lemma
1.3(b), we have

p(z, z) = lim
n→∞

p(xn, z) = lim
n,m→∞

p(xn, xm). (2.6)
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By Lemma 1.3(c) and definition of dp, we get

lim
n,m→∞

dp(xn, xm) = 0 and

dp(xn, xm) = 2p(xn, xm)− p(xn, xn)− p(xm, xm).

Taking n,m → ∞ and using equation (2.5) in above inequality, we obtain

lim
n,m→∞

p(xn, xm) = 0. (2.7)

From equations (2.6) and (2.7), we get

p(z, z) = lim
n→∞

p(xn, z) = 0. (2.8)

By (P4), we have

p(z, fz) ≤ p(z, xn) + p(xn, fz)− p(xn, xn).

p(z, fz) ≤ p(z, xn) + p(xn, fz) = p(z, xn) + p(fxn−1, fz).

Taking n → ∞ in above inequality and using equation (2.8) and Lemma 1.1, we
have

p(z, fz) ≤ p(fz, fz). (2.9)

From (P2), we have

p(fz, fz) ≤ p(z, fz). (2.10)

From (2.9) and (2.10), we get

p(z, fz) = p(fz, fz). (2.11)

Next, we show that p(fz, fz) = 0. On contrary, we suppose that p(fz, fz) > 0,
then by equation (2.1) and (2.8), we have

p(fz, fz) ≤M(z, z)

=max
{
ϕ(p(z, z)), ϕ(p(fz, z)), ϕ(p(z, fz))

ϕ
(p(z, z) + p(fz, z) + p(z, fz)

3

)}
<max

{
0, p(fz, fz), p(fz, fz),

2

3
p(fz, fz)

}
=p(fz, fz),

which is a contradiction, so

p(fz, fz) = 0.

Using equation (2.11) in above, we get

p(z, fz) = 0 ⇒ fz = z. (2.12)

Hence z is a fixed point of f . Now, we claim that the fixed point of f is unique.
Against of our claim, we assume that u, v ∈ X be two fixed points of f with u ̸= v,
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such that fu = u and fv = v.
From equation (2.1), we have

p(u, v) =p(fu, fv) ≤ M(u, v)

=max
{
ϕ(p(u, v)), ϕ(p(fu, v)), ϕ(p(u, fv)), ϕ

(p(u, v) + p(fu, v) + p(u, fv)

3

)}
<p(u, v), (2.13)

which is a contradiction. Hence u = v, that is, fixed point of f is unique.

Example 2.1. Consider a complete partial metric space (X = [0, 1], p), such that
p(x, y) = max{x, y} for all x, y ∈ X. We define a self mapping f on X in such a
way

f(x) =

{
x− 0.91x3 : ∀ x ≤ 0.605227532,

α : ∀ α ∈ [ 12 ,∞], x > 0.605227532,

and a map ϕ : [0,∞) → [0,∞) such that

ϕ(t) =

{
t− t2

2 − t3

3 : ∀ t ∈ [0, 1],

β : ∀ β ∈ [0, 1], t ≥ 1.

Then equation (2.1) holds for all comparable x, y ∈ X (thatis, x ≤ y or x ≥ y),
and satisfies all the requirements of Theorem 2.1. Therefore f has a unique fixed
point 0 in X.

Corollary 2.1. In a complete partial metric space (X, p), a self continuous non-
decreasing mapping f on X, satisfying the condition

p(fx, fy) ≤ ϕ(M(x, y)), (2.14)

M(x, y) = max
{
p(x, y), p(fx, y), p(x, fy),

p(x, y) + p(fx, y) + p(x, fy)

3

}
(2.15)

for all x, y ∈ X and all other are same as in theorem 2.1, then f has a unique fixed
point in X.

Corollary 2.2. In Corollary 2.1, if we replaced second and third ordinates by
p(x, fx) and p(y, fy) respectively, and fourth ordinate is replace by average of only
p(x, fy) and p(fx, y) on M(x, y), then it reduces to the similar results of [2, 4].

Theorem 2.2. In a complete partial metric space (X, p), two self weakly increasing
continuous mappings f and g on X, satisfying the condition

p(fx, gy) ≤ M(x, y), (2.16)

M(x, y) = max
{
ϕ(p(x, y)), ϕ(p(fx, y)), ϕ(p(x, gy)), ϕ

(p(x, y) + p(fx, y) + p(x, gy)

3

)}
(2.17)

for all x, y ∈ X and ϕ : [0,∞) → [0,∞) is a continuous function with ϕ(t) < t ∀
t > 0 and ϕ(0) = 0, then f and g have a unique common fixed point in X.
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Proof. We choose an arbitrary point x0 ∈ X, such that x0 = fx0 and x0 = gx0,
then theorem follows trivially. Therefore, we discuss about x0 ̸= fx0 and x0 ̸= gx0.
Now, we choose x1 ∈ X, such that fx0 = x1 and x2 ∈ X, such that gx1 = x2.
Then, we can construct a sequence {xn} in X, in such a way

x2n+1 = fx2n, x2n+2 = gx2n+1.

Since f and g are weakly increasing mappings on X, then we have

x1 = fx0 ≤ gfx0 = gx1 = x2,

x2 = gx1 ≤ fgx1 = fx2 = x3,

x3 = fx2 ≤ gfx2 = gx3 = x4

and proceeding this work, we get

x0 ≤ x1 ≤ x2 ≤ x3 ≤ · · · ≤ xn ≤ xn+1 ≤ · · · .

Thus {xn} is a nondecreasing sequence in X. If we suppose that p(xn0 , xn0+1) = 0
for some n0 ≥ 0, then by Remark 1.1 xn0 = xn0+1 = fxn0 , that is, xn0 is a fixed
point of f and g. So we assume that p(xn, xn+1) ≥ 0 for all n ≥ 0.

Firstly, we show that the sequence {p(xn, xn+1)} is non-increasing in X. Now,
we putting x = x2n, y = x2n+1 in (2.16), we get

p(fx2n, gx2n+1) = p(x2n+1, x2n+2) ≤ M(x2n, x2n+1). (2.18)

By (2.16), we have

M(x2n, x2n+1) =max
{
ϕ(p(x2n, x2n+1)), ϕ(p(fx2n, x2n+1)), ϕ(p(x2n, gx2n+1)),

ϕ
(p(x2n, x2n+1) + p(fx2n, x2n+1) + p(x2n, gx2n+1)

3

)}
=max

{
ϕ(p(x2n, x2n+1)), ϕ(p(x2n+1, x2n+1)), ϕ(p(x2n, x2n+2)),

ϕ
(p(x2n, x2n+1) + p(x2n+1, x2n+1) + p(x2n, x2n+2)

3

)}
.

(2.19)

Case-I: If M(x2n, x2n+1) = ϕ(p(x2n, x2n+1)), then by equation (2.18) and using
the fact ϕ(t) < t for all t > 0, we have

p(x2n+1, x2n+2) < p(x2n, x2n+1).

Case-II: If M(x2n, x2n+1) = ϕ(p(x2n+1, x2n+1)), then by similar argument of case-
I, we get

p(x2n+1, x2n+2) < p(x2n+1, x2n+1),

which is contradiction of (P2).
Case-III: IfM(x2n, x2n+1) = ϕ(p(x2n, x2n+2)), using the similar argument of case-I
and applying the property of (P4) and (P2), we have

p(x2n+1, x2n+1) < p(x2n, x2n+1).
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Case-IV: If M(x2n, x2n+1) = ϕ
(

p(x2n,x2n+1)+p(x2n+1,x2n+1)+p(x2n,x2n+2)
3

)
, then by

similar argument of case-III, we obtain

p(x2n+1, x2n+2) < p(x2n, x2n+1).

Thus, in all possible cases, we observe that {p(x2n, x2n+1)} for all n ≥ 0, is
a monotonically decreasing sequence in X. Then, by the similar argument as in
Theorem 2.1, we have

lim
n→∞

p(xn, xn+1) = 0 and lim
n→∞

p(xn, xn) = 0, ∀ n ≥ 0. (2.20)

Also, we will show that {xn} is a Cauchy sequence in the partial metric space
(X, p). By similar arguments as used in case of proving Theorem 2.1, we find
that the sequence {xn} is a Cauchy sequence. Now, we putting x = x2n(k) and
y = x2m(k)−1 in equation (2.16). We get

p(x2n(k)+1, x2m(k))

=p(fx2n(k), gx2m(k)−1) ≤ M(x2n(k),x2m(k)−1
)

=max
{
ϕ(p(x2n(k), x2m(k)−1)), ϕ(p(fx2n(k), x2m(k)−1)), ϕ(p(x2n(k), gx2m(k)−1)),

ϕ
(p(x2n(k), x2m(k)−1) + p(fx2n(k), x2m(k)−1) + p(x2n(k), gx2m(k)−1)

3

)}
=max

{
ϕ(p(x2n(k), x2m(k)−1)), ϕ(p(x2n(k)+1, x2m(k)−1)), ϕ(p(x2n(k), x2m(k))),

ϕ
(p(x2n(k), x2m(k)−1) + p(x2n(k)+1, x2m(k)−1) + p(x2n(k), x2m(k))

3

)}
.

Taking k → ∞ and applying Lemma 1.2 in above inequality, we have

ε ≤ max
{
ϕ(ε), ϕ(ε), ϕ(ε), ϕ(ε)

}
.

Using the fact ϕ(t) < t for all t > 0, we get

ε ≤ ϕ(ε) < ε,

which is a contradiction with respect to ε > 0. Thus {x2n} is a Cauchy sequence
in (X, p) and so, in (X, dp) (by Lemma 1.3(a)). Further, the similar argument of
Theorem 2.1, we have limn→∞ dp(xn, z) = 0 then by Lemma 1.3(b), gives that

p(z, z) = lim
n→∞

p(xn, z) = lim
n,m→∞

p(xn, xm). (2.21)

From Lemma 1.3(c), we have

lim
n,m→∞

dp(xn, xm) = 0.

So, by definition of dp, we get

dp(xn, xm) = 2p(xn, xm)− p(xn, xn)− p(xm, xm).

Taking n,m → ∞ and using equation (2.20) in above, we obtain

lim
n,m→∞

p(xn, xm) = 0. (2.22)
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From equations (2.21) and (2.22), we get

p(z, z) = lim
n→∞

p(xn, z) = 0. (2.23)

By (P4), we have

p(z, fz) ≤ p(z, x2n+1) + p(x2n+1, fz)− p(x2n+1, x2n+1)

≤ p(z, x2n+1) + p(x2n+1, fz) = p(z, xn) + p(fx2n, fz).

Taking n → ∞ and using equation (2.23), we obtain

p(z, fz) ≤ p(fz, fz). (2.24)

By (P2), we have
p(fz, fz) ≤ p(z, fz). (2.25)

From (2.24) and (2.25), we get

p(z, fz) = p(fz, fz). (2.26)

Similarly,
p(z, gz) = p(gz, gz). (2.27)

Using equations (2.26) and (2.27) and applying property of (P4), we have

p(z, gz) ≤ p(z, fz) + p(fz, gz)− p(fz, fz),

p(z, gz) ≤ p(fz, gz). (2.28)

Similarly,
p(z, fz) ≤ p(fz, gz). (2.29)

Now, we prove that p(fz, gz) = 0. On contrary, we suppose that p(fz, gz) > 0,
then by equations (2.16), (2.23) and using above inequality, we get

p(fz, gz)

≤M(z, z)

=max
{
ϕ(p(z, z)), ϕ(p(fz, z)), ϕ(p(z, gz)), ϕ

(p(z, z) + p(fz, z) + p(z, gz)

3

)}
<max

{
p(z, z), p(fz, z), p(z, gz),

p(z, z) + p(fz, z) + p(z, gz)

3

}
=max

{
p(fz, z), p(z, gz),

p(fz, z) + p(z, gz)

3

}
=max

{
p(fz, gz), p(fz, gz),

2p(fz, gz)

3

}
= p(fz, gz),

⇒p(fz, gz) < p(fz, gz),

which is a contradiction to our assumption. Thus we get

p(fz, gz) = 0 ⇒ p(z, fz) = 0 and p(z, gz) = 0.

Applying Remark 1.1, we have

fz = gz, fz = z and gz = z. (2.30)
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Hence, z is a common fixed point of f and g. Next, we prove that the common
fixed point of f and g is unique. Let us suppose that u, v ∈ X be two fixed points
of f and g with u ̸= v, such that fu = gu = u and fv = gv = v.

From equation (2.16), we have

p(u, v)

=p(fu, gv) ≤ M(u, v)

=max
{
ϕ(p(u, v)), ϕ(p(fu, v)), ϕ(p(u, gv)), ϕ

(p(u, v) + p(fu, v) + p(u, gv)

3

)}
<p(u, v), (2.31)

which is a contradiction with respect to u ̸= v. Therefore, u = v. Thus the proof is
complete.

Corollary 2.3. In a complete partial metric space (X, p), two self weakly increasing
continuous mappings f and g on X, satisfying the condition

p(fx, gy) ≤ ϕ(M(x, y)), (2.32)

M(x, y) = max
{
p(x, y), p(fx, y), p(x, gy),

p(x, y) + p(fx, y) + p(x, gy)

3

}
(2.33)

for all x, y ∈ X and all other are same as in Theorem 2.2, then f and g have a
unique common fixed point in X.

Corollary 2.4. In Theorem 2.2, if we replaced second and third ordinates by
p(x, fx) and p(y, fy) respectively, and fourth ordinate is replaced by average of
only p(x, fy) and p(fx, y) on M(x, y), where f and g are weakly isotone increasing
mappings such that fx ≤ gfx ≤ fgfx and gx ≤ fgx ≤ gfgx instead of weakly
increasing mappings, then it reduces to the main result of [23].
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