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A NOVEL REGULARIZATION METHOD AND
APPLICATION TO LOAD IDENTIFICATION

OF COMPOSITE LAMINATED CYLINDRICAL
SHELL ∗

Linjun Wang1 and Youxiang Xie2,†

Abstract In this paper, a novel regularization method (MRO) is suggested
to identify the multi-source dynamic loads on a surface of composite lami-
nated cylindrical shell. Regularization methods can solve the difficulty of the
solution of ill-conditioned inverse problems by the approximation of a family
of neighbouring well-posed problems. Based on the construction of a new reg-
ularization operator, corresponding regularization method is established. We
prove the stability of the proposed method according to suitable parameter
choice strategy that leads to optimal convergence rate toward the minimal-
norm and least square solution of an ill-posed linear operator equation in the
presence of noisy data. Furthermore, numerical simulations show that the
multi-source dynamic loads on a surface of composite laminated cylindrical
shell are successfully identified, and demonstrate the effectiveness and robust-
ness of the present method.

Keywords Load identification, ill-posed problems, regularization, general
source conditions.
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1. Introduction

It is expected that structural damage prognosis as a promising technology will be
applied to aerospace systems in the future. Farrar et al. assisted that structural
damage prognosis can be defined as the estimation of a system’s remaining useful
life based on behavioral prediction models [7]. In fact, the interaction forces between
the system structure are very important in the optimum design. It is expensive and
subjected to bias for the direct measurement of the forces using the appropriate
instrument. Moreover, the results we obtain by computational simulations are sub-
jected to modelling errors. But we cannot directly measure the external loads in
the most cases of many practical applications as a result of extremely large mag-
nitudes of loads for a short-time period and the difficulties during the installation
of force-measurement devices. So we’d better indirectly reconstruct the applied
loads by exploiting the structural dynamic response data. It is necessary to develop
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a technique to identify the loads acting on the system structure by the vibration
responses, and the cost involved will be much less than that by direct measurement.

Recently, many scientific workers have developed different kinds of inverse ap-
proaches for the identification of the loads acting on the system. It is worth noting
that inverse analysis has been used in numerous fields of science and technology,
such as radar tracking, oil reservoir identification, medical tomography, residual
stress determination, non-destructive testing and material property estimation [1,
3, 10, 11, 13]. Liu and Han presented an inverse procedure for identifying both con-
centrated and extended line load using Greens function and Heaviside step function
in time domain [12, 14]. Zhu et al. developed an inverse method based on modal
superposition and regularization technique to identify moving loads [22]. Dolye
reconstructed the impact force by the dynamic response in the bimaterial beam
system. Moreover, we may encounter some difficulties. For instance, the model
of multiple dof and the multi-point excitation model fail to work, and direct mea-
surement for distributed dynamic loads is not available. Especially in developing
structural health monitoring systems, it has received much attention to establishing
a method for identifying the distributed dynamic loads on a continuum so that the
evolution of induced damage can be predicted [2, 15, 17-19, 21]. Unfortunately, load
identification problems discussed in above references are complex inverse problems
with inherent ill-posedness. Meanwhile, from these studies mentioned above, we
should pay much attention to the complicated technical problems in mathematics,
especially in the ill-posedness and regularization methods [5, 6, 8, 9, 20]. In this
paper, we propose a modified regularization operator, and establish a corresponding
stable regularization method, and prove that the regularized approximations pro-
vide order optimal error bound on the appropriate set than Tikhonov regularization
method, then apply the present method to the reconstruction of the distributed dy-
namic loads acting on the composite laminated cylindrical shell.

This paper is organized as follows. In Section 2 a new regularization method is
established. In Section 3 we derive the error bounds between the true solution and
the regularized solution by our method, and prove that the regularization approx-
imation provides optimal error bound if the regularization parameter is properly
chosen. In Section 4, this present method is applied to load identification of com-
posite laminated cylindrical shell and we make a conclusion in Section 5.

2. The establishment of regularization method

Let X and Y be real Hilbert spaces and K ∈ L(X,Y ), i.e. K : X → Y is a bounded
linear operator. We consider the equation

Kx = y, (y ∈ R(K)). (2.1)

Throughout this paper we assume:
(H1) yδ ∈ X is the available noisy data with

∥y − yδ∥ ≤ δ

and known noise level δ.
Then we solve

Kx = yδ. (2.2)
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If R(K) is not closed, the problem (2.1) is ill-posed, then we have to use a regular-
ization method for solving it. In general terms, regularization is the approximation
of an ill-posed problem by a family of neighboring well-posed problems. A regu-
larization method consists of a regularization operator and a parameter choice rule
which is convergent in the sense that if the regularization parameter is chosen ac-
cording that rule, then the regularized solutions will converge to the true solution
in the norm as the noise level approaches zero. One of the most famous regular-
ization methods is Tikhonov regularization method which exploits the following
regularization operator [4, 16]:

q(α, µ) =
µ2

α+ µ2
, α > 0, µ > 0, (2.3)

where regularization parameter and singular value will always be defined by α, µ,
respectively, and then xδ

α can be obtained by

xδ
α = (K∗K + αI)−1K∗yδ. (2.4)

Theorem 2.1. Let (µj , xj , yj)j∈N be a singular system for the linear operator K :
X → Y, and let q : (0,+∞)× (0, ∥K∥] → R. Then q(α, µ) is called a regularization
operator, and corresponding regularization method can be given by

xα := Rαy =
∞∑
j=1

q(α, µj)

µj
(y, yj)xj , (2.5)

lim
α→0

RαKx = x, x ∈ X, (2.6)

if the following conditions hold:

(i) |q(α, µ)| ≤ 1 for α > 0 and µ ∈ (0, ∥K∥].
(ii) For any α > 0, there exists c(α) > 0 such that

|q(α, µ)| ≤ c(α)µ, µ ∈ (0, ∥K∥].

(iii) lim
α→0

q(α, µ) = 1 for µ ∈ (0, ∥K∥].

(H2) Let K : X → Y is a biunivocal compact operator and y ∈ R(K).
It is easy to check that under the condition of (H2), the equation (2.1) has

unique solution x. Exploiting singular system, we obtain

x =
∞∑
j=1

1

µj
(y, yj)xj . (2.7)

Since µj → 0 as j → +∞, as well as (2.5) and (2.7) we obtain the convergent
approximate solution by the attenuation of q(α, µ) to 1/µ, which can be performed
by regularization operator. So we can obtain corresponding regularization method
if a proper regularization operator is established.

In the following we will propose a new regularization operator and prove its
regular property.

We define q(α, µ) : R+ × (0, ∥K∥] → R+ given by

q(α, µ) = 1− e−
µ
α . (2.8)
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Theorem 2.2. The function q(α, µ) (2.8) is a regularization operator. Moreover,

1− q(α, µ) ≤ α

eµ
. (2.9)

Proof. It is easy to check that q(α, µ) ≤ 1 and lim
α→0

q(α, µ) = 1. Since

1− x

1 + x
< e−2x, x > 0,

we have

1− e−
µ
α < 1−

1− µ
2α

1 + µ
2α

=
2µ

2α+ µ
<

µ

α
.

So the first result of the assertion follows from Lemma 2.1.
Next we prove the second result. By virtue of

ex ≥ ex, x > 0,

we have
1− q(α, µ) = 1− (1− e−µ/α) = e−µ/α ≤ α

eµ
.

Now the assertion can be proved easily.

Remark 2.1. Using the results of Theorem 2.2, we obtain that the approximate
solution of the equation (2.2) is given by

xδ
α = Rαy

δ =
∞∑
j=1

q(α, µj)

µj
(yδ, yj)xj , (2.10)

where Rα : Y → X and

Rα = [I − e−
(K∗K)

1
2

α ](K∗K)−
1
2 , α > 0. (2.11)

3. Parameter choice and convergence

For obtaining the stable approximate solution of problem (2.1), some regularization
technique is usually performed. Also, in order to guarantee certain convergence
rates for ∥xδ

α − x∥, the set of solutions of problem (2.1) has to be restricted to
some source sets. For operator equations (2.1), exploiting singular system theory,
we define a subspace of X :

Xα := R((K∗K)
1
2 ) := {x ∈ X : ∥X∥α < ∞},

where

∥X∥α = (
∞∑
j=1

µ−2
j |(x, xj)|2)

1
2 . (3.1)

We further make the following assumption:
(H3) Source conditions of the type x ∈ Mα,E with Mα,E are given by

Mα,E = {x ∈ X, : ∥x∥α ≤ E}. (3.2)
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Theorem 3.1. Let (H1)-(H3) be satisfied. Then,

∥xδ
α − x∥ ≤ 1

α
δ +

αE

e
. (3.3)

Proof. Using the triangle inequality, as well as (H1), (H2) and (H3) we have

∥xδ
α − x∥ ≤ ∥Rα(y

δ − y)∥+ ∥Rαy − x∥
≤ ∥Rα∥δ + ∥RαKx− x∥

<
δ

α
+ ∥RαKx− x∥.

(3.4)

In order to estimate ∥RαKx−x∥ in terms of µ, exploiting (2.9), (H3), and singular
system theory, we obtain

∥RαKx− x∥2 =

∞∑
j=1

[1− q(α, µj)]
2|(x, xj)|2

≤
∞∑
j=1

(
α

e
)2µ−2

j |(x, xj)|2

< (
α

e
)2E2.

(3.5)

Now the desired estimate (3.3) follows from (3.4) and (3.5).

In our next theorem, we will provide the order optimal error bound for ∥xδ
α−x∥

provided that α is chosen properly.

Theorem 3.2. Let the assumptions in Theorem 3.1 be fulfilled, and α be determined
by

α = α∗(δ) = (
e

E
)

1
2 δ

1
2 . (3.6)

Then,

∥xδ
α − x∥ ≤ O(δ

1
2 ). (3.7)

Proof. By virtue of (3.3), we define the function f : R+ → R+,

f(α) =
1

α
δ +

αE

e
.

If we choose the regularization parameter α by (3.6), then we can derive the mini-
mum value of function f(α). Then the assertion can be easily proved.

Remark 3.1. Theorem 3.2 yields a new regularization parameter choice that leads
to the optimal convergence rate. Unfortunately, due to prior information in actual
computations of engineering problems, it is difficult or impossible to determine an
appropriate value for the regularization parameter. As the errors in the measure-
ment are unknown, L-curve method is usually adopted to perform it. In fact, we
may obtain the same optimal convergence if we choose the proper regularization
parameter by the L-curve method. So we will choose the regularization parameter
by L-curve method in the following numerical simulations of engineering example.
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4. Application

In this section we consider the multi-source dynamic load identification problem
for a linear and time-invariant dynamic system, and the response at an arbitrary
receiving point in a structure can be expressed as a convolution integral of the
forcing time-history and the corresponding Green’s kernel in time domain:

y(t) =

∫ t

0

G(t− τ)p(τ)dτ, (4.1)

where y(t) is the response which can be displacement, velocity, acceleration, strain,
etc. G(t) is the corresponding Green’s function, which is the kernel of impulse
response. p(t) is the desired unknown dynamic load acting on the structure.

By discretizing this convolution integral, the whole concerned time period is
separated into equally spaced intervals, and the equation (4.1) is transformed into
a system of algebraic equation:

Y (t) = G(t)P (t), (4.2)

or equivalently,
y1
y2
...
ym

 =


g1
g2 g1
...

...
. . .

gm gm−1 · · · g1




p1
p2
...
pm

△t,

where yi, gi, and pi are response, Green’s function matrix and input force at time
t = i△t, respectively. △t is the discrete time interval. Since the structure without
applied force is static before force is applied, y0 and g0 are equal to zero. All the
elements in the upper triangular part of G are zeros and are not shown. The special
form of the Green’s function matrix reflects the characteristic of the convolution
integral.

To recover the time history P (t), the knowledge of y(t) and G(t) are required.
The response at a receiving point can be obtained by instrument measurement.
The Green’s function of a structure is obtained by finite element method (FEM). A
practical engineering problem is to determine radial forces of composite laminated
cylindrical shell, as shown in Figure 1. Thin-walled cylindrical shell structure has
been widely used in the aerospace structures. The cylindrical shell size is 200.0
mm in middle radius, 10.0 mm in thickness, and 500.0 mm in length. It consists of
one carbon/epoxy layer and one glass/epoxy layer. Its stacking sequence is denoted
by [C90/G + 45/G − 45]s, where C and G stand for the carbon/epoxy and the
glass/epoxy layer, respectively, and 90,+45, and −45 stand for the angle of fiber-
orientation to the center axis. The subscript of ”s” means that it is symmetrically
stacked. The material properties of the carbon/epoxy and glass/epoxy are listed in
Table 1.

The radial concentrated load is applied to the outside surface and the measured
response is the radial displacement. One side of the shell is free, and the other side
is fixed. We establish its finite element model which can be seen in Figure 1. The
arrow in Figure 1 denotes the acting point of dynamic force.
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Figure 1. The finite element model of composite laminated cylindrical shell

The concentrated loads are defined as follows:

F1(t) =

{
q1 sin(

2πt
td

), 0 ≤ t ≤ 2td,

0, t < 0 and t > 2td,

F2(t) =


4q2t/td, 0 ≤ t ≤ td/4,
2q2 − 4q2t/td, td/4 < t ≤ 3td/4,
4q2t/td − 4q2, 3td/4 < t ≤ td,
0, t > td,

where td is the time cycle of sine force, and qi(i = 1, 2) is a constant amplitude
of the force. When td = 0.004s, q1 = 1000N, and q2 = 800N, the sine force and
triangle force are shown in Figures 2-3. The experimental data of response is sim-
ulated by the computed numerical solution, and the corresponding radial displace-
ment response can be obtained by FEM as shown in Figure 4-5. Furthermore, a
noise is directly added to the computer-generated response to simulate the noise-
contaminated measurement, and the noisy response is defined as follows:

Yerr = Ycal + lnoise · std(Ycal) · rand(−1, 1),

where Ycal is the computer-generated response; std(Ycal) is the standard deviation
of Ycal; rand(−1, 1) denotes the random number between −1 and +1; lnoise is a
parameter to control the level of the noise contamination. Herein, we consider
the case of noise level namely 5%, and our method is adopted to determine the
identified force. To evaluate the performances of the present method, five time
points are selected, and the identified force for each point will be compared to the
corresponding actual force.

The results of numerical simulations are as follows:
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Figure 2. The radial concentrated sine load
acting on the outside surface
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Figure 3. The radial concentrated triangle
load acting on the outside surface
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Figure 4. The corresponding radial displace-
ment response at one point
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Figure 5. The corresponding radial displace-
ment response at the other point
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Figure 6. The identified sine force at noise
level 5%
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Figure 7. The identified triangle force at noise
level 5%

From Figures 6-7, it can be shown that the present method (MRO) can both
stably and effectively identify the multi-source dynamic loads by the measured noisy
responses. Moreover, the more detailed results by them at the five time points are
listed in Table 2. It can be found that at these five time points for noise level
±5%, the deviations of the identified loads by the present method are smaller than



578 L. Wang & Y. Xie

Tikhonov regularization method because of better efficient identification. It can
be also seen that the most deviations by Tikhonov regularization method and the
present method concentrate in the range of 15.5%, 14.8%, respectively. In addi-
tion, for the identification of sine force, the maximal deviation and average devia-
tion by the present method are 14.78%, 4.84%, respectively, obviously smaller than
Tikhonov regularization method. Besides, the maximal deviation and average devi-
ation of the identification of triangle force by the present method are 13.2%, 5.02%,
respectively, both smaller than Tikhonov regularization method. The numerical
results show that the present algorithm performs well when recovering the loading
time function, and also gives satisfactory results.

Table 1. The material properties of composite laminated cylindrical shell

Material E1(GPa) E2(GPa) G12(GPa) ν12 ν23 ρ(g/cm3)
Constants
Glass/epoxy 38.49 9.367 3.414 0.2912 0.5071 2.66
Carbon/epoxy 142.17 9.255 4.795 0.3340 0.4862 1.90

Table 2. The identified force at five time points at noise level 5%.

Tikhonov method Present method
Time Real Identified Error (%) Identified Error (%)
point force force force

Sine 0.001 1000 1081.9 8.19 968.41 3.16
Triangle 0.0006 480 521.98 5.25 482.94 0.3675
Sine 0.003 -1000 -900.95 9.91 -975.39 2.46
Triangle 0.001 800 752.84 5.90 720.69 9.91
Sine 0.0045 707.11 775.59 6.85 635.11 7.2
Triangle 0.0016 320 328.41 1.05 345.98 3.25
Sine 0.0063 -453.99 -549.44 9.55 -435.53 1.85
Triangle 0.0033 -560 -639.79 9.97 -560.21 0.03
Sine 0.0073 -891.01 -905.15 1.41 -839.22 5.18
Triangle 0.0038 -160 -176.15 2.02 -181.99 2.75
Error (%) Maximum Average Maximum Average
Sine 15.41 5.57 14.78 4.84
Triangle 13.72 5.56 13.20 5.02

5. Conclusion

A novel regularization method is proposed, proved theoretically and applied to the
multi-source dynamic load identification of composite laminated cylindrical shell.
Additionally, in the application to engineering example, comparing with the tra-
ditional Tikhonov regularization method, the present method can provide more
efficient and numerically stable approximation of the expected loads. In one word,
our method is effective and accurate for solving the load identification problems of
the practical structural engineering.
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