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Abstract In this paper, after discussing the properties of the Nemytsky
operator, we obtain the existence of weak solutions for Dirichlet problemss of
non-homogeneous p(m)-harmonic equations.

Keywords Variable exponent, Riemannian manifold, Nemytsky operator.

MSC(2010) 30G35, 58J05, 35J60, 35D30.

1. Introduction

After Kováčik and Rákosnik first discussed the Lp(x)(Ω) and W k,p(x)(Ω) spaces
in [11], a lot of research has been done concerning these kinds of variable exponent
spaces (see [1, 6, 7, 9] and the references therein). The existence of solutions for
p(x)−Laplacian Dirichlet problems on bounded domains in Rn have been greatly
discussed. For example, Chabrowski and Fu [2] and Fan and Zhang [8] established
some results about the existence of solutions under some conditions. More informa-
tions about the theory of variable exponential function space can be found in [4,5].
In recent years, the theory on problems with variable exponential growth conditions
has important applications in nonlinear elastic mechanics (see [17]), electrorheolog-
ical fluids (see [12,14]).

Let (M, g) be a Riemannian manifold. For u ∈ C∞(M), ∇u denotes the co-
variant derivative of u. The components of ∇u in local coordinates are given by
(∇u)i = ∇iu, i = 1, 2 · ··, n. By definition one has that

|∇u| =
n∑

i,j=1

gij∇iu∇ju.

In this article we will always assume (M, g) is a connected n-dimensional smooth
orientable complete Riemannian manifold (n ≥ 3). dµ =

√
det(gij)dx is the Rie-

mannian volume element on (M, g), where the gij are the components of the Rie-
mannian metric g in the chart and dx is the Lebesgue volume element of Rn. Let
γ : [a, b] → M be a curve of class C1, the length of γ is

L(γ) =

∫ b

a

√
g
(
γ(t)

)((dγ
dt

)
(t),

(dγ
dt

)
(t)

)
dµ.
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For m1,m2 ∈ M , let C1
m1,m2

be the space of piecewise C1 curves γ : [a, b] → M
such that γ(a) = m1 and γ(b) = m2. One can define a distance dg(m1,m2) =
infC1

m1,m2
L(γ) on M.

We denote by L1
loc(M) the space of locally integrable functions on M , denote

by C∞
c (M) the vector space of smooth functions with compact support on M .

The Riemannian measure and the characteristic function of a set A ⊆ M will
be denoted by µ(A) and χA, respectively.

Let P(M) be the set of all measurable functions p : M → [1,∞]. For p ∈ P(M)
we put M1 = Mp

1 = {m ∈ M : p(m) = 1}, M∞ = Mp
∞ = {m ∈ M : p(m) = ∞},

M0 = M\(M1 ∪M∞), p− = essinfM0
p(m) and p+ = esssupM0

p(m) if µ(M0) > 0,
p− = p+ = 1 if µ(M0) = 0. We always assume that p ∈ P(M), P1(M) = P(M) ∩
L∞(M) and P2(M) = {p ∈ P1(M) : 1 < essinfMp(m)}. We use the convention
1/∞ = 0.

In 2012, Fu and Guo first introduced variable exponent function spaces on Rie-
mannian manifolds in [10]. Also motivated by [10], we are interested in the following
Dirichlet problems:{

−div(∇u|∇u|p(m)−2) + λu|u|p(m)−2 = f(m,u), m ∈ M,
u(m) = 0, m ∈ ∂M.

2. Preliminaries and Nemytsky Operator

For a function u on M we define the functional ρp(m),M by

ρp(m),M (u) =

∫
M\M∞

|u|p(m)dµ+ esssupM∞
|u|.

Definition 2.1. The Lebesgue space Lp(m)(M) is the class of functions u such that

ρp(m),M (λu) < ∞ for some λ = λ(u) > 0

with the following norm

||u||Lp(m)(M) = inf{λ > 0 : ρp(m),M (uλ) ≤ 1}.

Definition 2.2. The Sobolev space W 1,p(m)(M) consists of such functions u ∈
Lp(m)(M) for which ∇iu ∈ Lp(m)(M), i = 1, 2, ..., n. The norm is defined by

||u||W 1,p(m)(M) = ||u||Lp(m)(M) +
n∑

i=1

||∇iu||Lp(m)(M).

The space W
1,p(m)
0 (M) is defined as the closure of C∞

c (M) in W 1,p(m)(M).

Given p ∈ P(M) we define the conjugate function p′(m) ∈ P(M) by

p′(m) =


∞, if m ∈ M1,

1, if m ∈ M∞,
p(m)

p(m)−1 , if m ∈ M0.
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Lemma 2.1 (see [10]). If p(m) ∈ P(M), then the inequality∫
M

|⟨u, v⟩|dµ ≤ 2||u||Lp(m)(M)||v||Lp′(m)(M)

holds for every u ∈ Lp(m)(M), v ∈ Lp′(m)(M).

Lemma 2.2 (see [10]). Let p ∈ P1(M). Then

(i) If ||u||Lp(m)(M) ≥ 1, we have ||u||p
−

Lp(m)(M)
≤ ρp(m),M (u) ≤ ||u||p

+

Lp(m)(M)
.

(ii) If ||u||Lp(m)(M) < 1, we have ||u||p
−

Lp(m)(M)
≥ ρp(m),M (u) ≥ ||u||p

+

Lp(m)(M)
.

Lemma 2.3 (see [10]). If p ∈ P1(M), ut, u ∈ Lp(m)(M), then the following condi-
tions are equivalent:

(i) limt→∞ ρp(m),M (ut − u) = 0;
(ii) limt→∞ ||ut − u||Lp(m)(M) = 0;
(iii) ut converges to u on M in measure and

lim
t→∞

ρp(m),M (ut) = ρp(m),M (u).

Lemma 2.4 (see [10]). If p ∈ P1(M), u ∈ Lp(m)(M) is absolutely continuous with
respect to the norm || · ||Lp(m)(M).

Lemma 2.5 (see [10]). If p ∈ P2(M), then Lp(m)(M) and W 1,p(m)(M) are sepa-
rable, reflexive Banach spaces.

Given two Banach spaces X and Y , the symbol X y Y means that X is
continuously embedded in Y .

Lemma 2.6 (see [10]). Let 0 < µ(M) < ∞. If p(m), q(m) ∈ P(M) and p(m) ≤
q(m) a.e. m ∈ M , then

Lq(m)(M) y Lp(m)(M). (2.1)

The norm of the embedding operator (2.1) does not exceed µ(M) + 1.

Lemma 2.7 (see [10]). Let M be a compact smooth Riemannian manifold with a
boundary or without boundary and p(m), q(m) ∈ C(M) ∩ P2(M). Assume that

p(m) < n, q(m) <
np(m)

n− p(m)
, for m ∈ M.

Then
W 1,p(m)(M) y Lq(m)(M)

is a continuous and compact imbedding.

Let f(m,u) (m ∈ M, u ∈ R) be a Carachéodory function, and Nf be the
Nemytsky operator defined by f , i.e. Nfu(m) = f(m,u).

Theorem 2.1. Let M be a compact Riemannian manifold and p1, p2 ∈ P1(M).
If Nf maps Lp1(m)(M) into Lp2(m)(M), then Nf is continuous, bounded and there
is a constant β ≥ 0 and a non-negative function α(m) ∈ Lp2(m)(M) such that for
m ∈ M and u ∈ R, the following inequality holds

|f(m,u)| ≤ α(m) + β|u|p1(m)/p2(m). (2.2)

On the other hand, if f satisfies (2.2), then Nf maps Lp1(m)(M) into Lp2(m)(M),
and thus Nf is continuous and bounded.
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Proof. Since M is compact, M can be covered by a finite number of charts
(Uα, fα), α = 1, 2 · ··, k. For v ∈ L1(M), we define

Hv(m) = h(m, v) = |Nf (sgnv|v|1/p1(m))|p2(m),

then H maps L1(M) into L1(M). By [16], we have that H is bounded, continuous
and ∣∣H(

v(m)χUα

)∣∣ = ∣∣H(
v(f−1

α (x))
)∣∣

≤ aα(x) + bα
∣∣v(f−1

α (x))
∣∣

= aα(fα(m)) + bα
∣∣v(m)χUα

∣∣ ,
for any α = 1, 2, · · ·, k, where aα(fα(m)) ∈ L1(Uα) is a non-negative function and
constant bα > 0. Let a(m) = Σk

α=1aα(fα(m)) ∈ L1(M) and b = max{b1, b2, · · ·, bk},
then |Hv(m)| ≤ a(m) + b|v(m)|.

We assume that f(m, 0) = 0, otherwise we can consider f(m,u) − f(m, 0) in-
stead.

First, we only need to proveNf is continuous at 0 when f(m, 0) = 0. If this is not
true, we can find a sequence {ut} ⊂ Lp1(m)(M) satisfies limt→∞ ||ut||Lp1(m)(M) = 0,
but ||Nfut||Lp2(m)(M) > σ where σ is some positive constant. Without loss of
generality, we can suppose that ||ut||Lp1(m)(M) < 1, thus by Lemma 2.2 we have

ρp1(m),M (ut) ≤ ||ut||
p−
1

Lp1(m)(M)
, and hence

lim
t→∞

∫
M

|ut|p1(m)dµ = 0.

Let vt = sgnut|ut|p1(m). Then limt→∞ ||vt||L1(M) = 0, and hence limt→∞ ||Hvt||L1(M) =
0. Thus,

lim
t→∞

∫
M

|Nfut|p2(m)dµ = lim
t→∞

∫
M

|Hvt|dµ = 0.

By Lemma 2.3, we have limt→∞ ||Nfut||Lp2(m)(M) = 0, which is a contradiction.

Next, let A be a bounded set in Lp1(m)(M). By Lemma 2.2, we have that A
is bounded in modular. For v ∈ L1(M), let H be defined as above, then H :
L1(M) → L1(M) is bounded. For u ∈ A, taking v = sgnu|u|p1(m) ∈ L1(M),
then

{
||v||L1(M)

}
is uniformly bounded. Then there is a constant C > 0 such

that ||H(sgnu|u|p1(m))||L1(M) ≤ C, thus
∫
M

|Nfu|p2(m)dµ ≤ C. Therefore, Nf (A) is

bounded in Lp2(m)(M).
Since M is compact, M can be covered by a finite number of charts (Uα, fα).

By Lemma 2.4, we can assume {Uα} such that {uχUα} are uniformly bounded in
Lp1(m)(M) for u ∈ Lp1(m)(M). Writing u(α) = uχUα and K = sup{

∑
α χUα(m) :

m ∈ M}, then

|Nfu| ≤
∑
α

|Nfu
(α)| ≤ K|Nfu| and Nfu

(α) ∈ Lp2(m)(M).

Since ∫
M

|Hv|dµ ≤
∑
α

∫
Uα

|Hv|dµ ≤ K

∫
M

|Hv|dµ,

where v = sgnu|u|p1(m) ∈ L1(M), we have Nfu ∈ Lp2(m)(M).
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For u ∈ Lp1(m)(M), set v = sgnu|u|p1(m), then v ∈ L1(M) and thus

|Nfu(m)|p2(m) = |Hv(m)| ≤ a(m) + b|u(m)|p1(m).

We can deduce that

|Nfu(m)| ≤ (a(m) + b|u|p1(m))1/p2(m)

≤ a(m)1/p2(m) + b1/p2(m)|u|p1(m)/p2(m)

≤ α(m) + β|u|p1(m)/p2(m),

where α(m) = a(m)1/p2(m) ≥ 0, α(m) ∈ Lp2(m)(M), and β = max{1, b}.
On the other hand, if (2.2) holds, we let u ∈ Lp1(m)(M). It is obvious that

α(m) + β|u|p1(m)/p2(m) ∈ Lp2(m)(M).

Therefore ∫
M

|Nfu|p2(m)dµ ≤
∫
M

|α(m) + β|u|p1(m)/p2(m)|p2(m) < ∞,

i.e. Nf maps Lp1(m)(M) into Lp2(m)(M).

3. Existence of weak solutions

In this section, we shall show some applications of the Sobolev space to Dirich-
let problems of the p(m)-harmonic equations on Riemannian manifolds. We shall
assume that (M, g) is a connected n-dimensional smooth compact Riemannian man-
ifold with smooth boundary (n ≥ 3) and p(m) ∈ C(M) ∩ P2(M).

Definition 3.1. A fuction u is a weak solution for the following Dirichlet problems{
−div(∇u|∇u|p(m)−2) + λu|u|p(m)−2 = f(m,u), m ∈ M,
u(m) = 0, m ∈ ∂M,

(3.1)

where f(m,u) ∈ Lp′(m)(M), λ > 0, if u ∈ W
1,p(m)
0 (M) satisfies∫

M

⟨∇u|∇u|p(m)−2,∇v⟩+ λuv|u|p(m)−2dµ =

∫
M

f(m,u)vdµ (3.2)

for every v ∈ W
1,p(m)
0 (M).

Let (·, ·) denote a dual between X := W
1,p(m)
0 (M) and X ′. First we define the

energy functional on W
1,p(m)
0 (M) by

Ψ(u) =

∫
M

1

p(m)
(|∇u|p(m) + λ|u|p(m))dµ−

∫
M

F (m,u)dµ := I(u)−K(u),

where F (m, t) =
∫ t

0
f(m, s)ds. Then for u, v ∈ W

1,p(m)
0 (M), we have

(Ψ′(u), v) = (I ′(u), v)− (K ′(u), v)

=

∫
M

⟨∇u|∇u|p(m)−2,∇v⟩dµ+

∫
M

λvu|u|p(m)−2dµ−
∫
M

f(m,u)vdµ.
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We denote J = I ′ : X → X ′, then

(J(u), v) =

∫
M

⟨∇u|∇u|p(m)−2,∇v⟩dµ+
∫
M

λuv|u|p(m)−2dµ := (J1(u), v)+(J2(u), v),

where u, v ∈ X.

Lemma 3.1. J = I ′ : X → X ′ is a continuous, bounded and strictly monotone
operator.

Proof. It is obvious that J is continuous and bounded. For any y, z ∈ RN , we have
the following inequalities (see [15]) from which we can get the strictly monotonicity
of J :

(h1) (|z|p−2z − |y|p−2y) · (z − y) ≥ ( 12 )
p|z − y|p, p ∈ [2,∞),

(h2) [(|z|p−2z− |y|p−2y) · (z− y)](|z|p + |yp|)(p−2)/2 ≥ (p− 1)|z− y|p, p ∈ (1, 2).

By Theorem 2.1 and Lemma 3.1, we can get the following Lemma 3.2.

Lemma 3.2. The functional Ψ ∈ C1(W
1,p(m)
0 (M),R).

Therefore, the weak solution to Dirichlet problems (3.1) is a critical point of Ψ
and vise versa (see [3]).

Next, we suppose f(m, s) satisfies the following assumption:
(N): Let f : M × R → R satisfy Carathéodory condition and

|f(m, s)| ≤ C1 + C2|s|θ(m)−1 for any (m, s) ∈ M × R,

where θ(m) ∈ C(M) ∩ P2(M) and θ(m) ≤ p(m).

Lemma 3.3. The functional Ψ is weakly lower semi-continuous in W
1,p(m)
0 (M).

Proof. Let ut ⇀ u weakly in W
1,p(m)
0 (M). Since J is a convex functional, we

deduced that the following inequality holds

J(ut) ≥ J(u) + (J ′(u), ut − u).

Then we get that liminft→∞J(ut) ≥ J(u). Then J is weakly lower semi-continuous.

Let ut ⇀ u weakly in W
1,p(m)
0 (M). By Lemma 2.6 and 2.7, we get that ut → u

strongly in Lθ(m)(M) and L1(M). Without loss of generality, we assume that
ut → u a.e. in M , and hence F (m,ut) → F (m,u) a.e. m ∈ M . From (N) we have

|F (m, s)| ≤ C1|s|+ C2|s|θ(m),

then the integrals of the functions |F (m,ut)−F (m,u)| possess absolutely equicon-
tinuity on M . By Vitali convergence Theorem (see [13]),∫

M

|F (m,ut)− F (m,u)|dµ → 0, as t → ∞.

Therefore, Ψ is weakly lower semi-continuous in W
1,p(m)
0 (M).

Theorem 3.1. Let f(m, s) satisfies the condition (N). Then Dirichlet problems

(3.1) has a weak solution in W
1,p(m)
0 (M).
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Proof. From the condition (N) we can obtain |F (m, s)| ≤ C1|s|+C2|s|θ(m), then
by Lemma 2.2 and Young inequality, we have

Ψ(u) =

∫
M

1

p(m)
|∇u|p(m)dµ+

∫
M

λ

p(m)
|u|p(m)dµ−

∫
M

F (x, u)dµ

≥
∫
M

1

p(m)
|∇u|p(m)dµ+

∫
M

λ

p(m)
|u|p(m)dµ−

∫
M

(
ε|u|p(m) + C(ε, θ)

)
dµ

≥
∫
M

min{λ, 1}
2p+

(
|∇u|p(m)dµ+ |u|p(m)

)
dµ− C(ε, θ)

→ ∞

as ||u||W 1,p(m)(M) → ∞, where ε = min{λ,1}
2p+ . Since Ψ is weakly lower semi-

continuous, Ψ has a minimum point u0 in W
1,p(m)
0 (M), and u0 is a weak solution

of Dirichlet problems (3.1).
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