THE DIRICHLET PROBLEMS FOR NONLINEAR ELLIPTIC EQUATIONS WITH VARIABLE EXPONENTS ON RIEMANNIAN MANIFOLDS

Lifeng Guo

Abstract In this paper, after discussing the properties of the Nemytsky operator, we obtain the existence of weak solutions for Dirichlet problems of non-homogeneous \(p(m) \)-harmonic equations.

Keywords Variable exponent, Riemannian manifold, Nemytsky operator.

1. Introduction

After Kováčik and Rákosník first discussed the \(L^{p(x)}(\Omega) \) and \(W^{k,p(x)}(\Omega) \) spaces in [11], a lot of research has been done concerning these kinds of variable exponent spaces (see [1, 6, 7, 9] and the references therein). The existence of solutions for \(p(x) \)-Laplacian Dirichlet problems on bounded domains in \(\mathbb{R}^n \) have been greatly discussed. For example, Chabrowski and Fu [2] and Fan and Zhang [8] established some results about the existence of solutions under some conditions. More informations about the theory of variable exponential function space can be found in [4, 5].

In recent years, the theory on problems with variable exponential growth conditions has important applications in nonlinear elastic mechanics (see [17]), electrorheological fluids (see [12, 14]).

Let \((M, g)\) be a Riemannian manifold. For \(u \in C^\infty(M) \), \(\nabla u \) denotes the covariant derivative of \(u \). The components of \(\nabla u \) in local coordinates are given by \((\nabla u)_i = \nabla^i u \), \(i = 1, 2 \cdots, n \). By definition one has that

\[
|\nabla u| = \sum_{i,j=1}^{n} g^{ij} \nabla^i u \nabla^j u.
\]

In this article we will always assume \((M, g)\) is a connected \(n \)-dimensional smooth orientable complete Riemannian manifold \((n \geq 3)\). \(d\mu = \sqrt{\det(g_{ij})} dx \) is the Riemannian volume element on \((M, g)\), where the \(g_{ij} \) are the components of the Riemannian metric \(g \) in the chart and \(dx \) is the Lebesgue volume element of \(\mathbb{R}^n \). Let \(\gamma : [a, b] \to M \) be a curve of class \(C^1 \), the length of \(\gamma \) is

\[
L(\gamma) = \int_a^b \sqrt{g(\gamma(t)) \left(\frac{d\gamma}{dt}(t), \frac{d\gamma}{dt}(t) \right)} \, d\mu.
\]
The Sobolev space $\mathcal{C}^1_{c}(\mathbb{R}^N)$ is the space of piecewise \mathcal{C}^1 functions $\gamma : [a, b] \to M$ such that $\gamma(a) = m_1$ and $\gamma(b) = m_2$. One can define a distance $d_\gamma(m_1, m_2) = \inf_{C^1_{c,m_1,m_2}} L(\gamma)$ on M.

We denote by $L^1_{loc}(M)$ the space of locally integrable functions on M, denote by $C^\infty_c(M)$ the vector space of smooth functions with compact support on M.

The Riemannian measure and the characteristic function of a set $A \subseteq M$ will be denoted by $\mu(A)$ and χ_A, respectively.

Let $\mathcal{P}(M)$ be the set of all measurable functions $p : M \to [1, \infty]$. For $p \in \mathcal{P}(M)$ we put $M_1 = M_1^p = \{ m \in M : p(m) = 1 \}$, $M_\infty = M_\infty^p = \{ m \in M : p(m) = \infty \}$, $M_0 = M \setminus (M_1 \cup M_\infty)$, $p^- = \operatorname{essinf}_{M_0} p(m)$ and $p^+ = \operatorname{esssup}_{M_0} p(m)$ if $\mu(M_0) > 0$, $p^- = p^+ = 1$ if $\mu(M_0) = 0$. We always assume that $p \in \mathcal{P}(M)$, $\mathcal{P}_1(M) = \mathcal{P}(M) \cap L^\infty(M)$ and $\mathcal{P}_2(M) = \{ p \in \mathcal{P}_1(M) : 1 < \operatorname{essinf}_M p(m) \}$. We use the convention $1/\infty = 0$.

In 2012, Fu and Guo first introduced variable exponent function spaces on Riemannian manifolds in [10]. Also motivated by [10], we are interested in the following Dirichlet problems:

\[
\begin{cases}
-\nabla(u)|\nabla u|^{p(m)-2} + \lambda u|u|^{p(m)-2} &= f(m, u), \quad m \in M, \\
u(m) &= 0, \quad m \in \partial M.
\end{cases}
\]

2. Preliminaries and Nemytskky Operator

For a function u on M we define the functional $\rho_{p(m), M}$ by

\[
\rho_{p(m), M}(u) = \int_{M \setminus M_\infty} |u|^{p(m)} d\mu + \operatorname{esssup}_{M_\infty} |u|.
\]

Definition 2.1. The Lebesgue space $L^{p(m)}(M)$ is the class of functions u such that $\rho_{p(m), M}(\lambda u) < \infty$ for some $\lambda = \lambda(u) > 0$ with the following norm

\[
\|u\|_{L^{p(m)}(M)} = \inf\{ \lambda > 0 : \rho_{p(m), M}(u\lambda) \leq 1 \}.
\]

Definition 2.2. The Sobolev space $W^{1,p(m)}(M)$ consists of such functions $u \in L^{p(m)}(M)$ for which $\nabla^i u \in L^{p(m)}(M)$, $i = 1, 2, \ldots, n$. The norm is defined by

\[
\|u\|_{W^{1,p(m)}(M)} = \|u\|_{L^{p(m)}(M)} + \sum_{i=1}^n \|\nabla^i u\|_{L^{p(m)}(M)}.
\]

The space $W^{1,p(m)}_0(M)$ is defined as the closure of $C^\infty_c(M)$ in $W^{1,p(m)}(M)$.

Given $p \in \mathcal{P}(M)$ we define the conjugate function $p'(m) \in \mathcal{P}(M)$ by

\[
p'(m) = \begin{cases}
\infty, & \text{if } m \in M_1, \\
1, & \text{if } m \in M_\infty, \\
p(m)^{-1}, & \text{if } m \in M_0.
\end{cases}
\]
Lemma 2.1 (see [10]). If \(p(m) \in \mathcal{P}(M) \), then the inequality
\[
\int_M |(u, v)| d\mu \leq 2 \|u\|_{L^{p(m)}(M)} \|v\|_{L^{p'(m)}(M)}
\]
holds for every \(u \in L^{p(m)}(M) \), \(v \in L^{p'(m)}(M) \).

Lemma 2.2 (see [10]). Let \(p \in \mathcal{P}(M) \). Then
(i) If \(\|u\|_{L^{p(m)}(M)} \geq 1 \), we have \(\|u\|_{L^{p(m)}(M)}^{p^+} \leq \rho_{p(m)}(u) \leq \|u\|_{L^{p(m)}(M)}^{p^+} \).
(ii) If \(\|u\|_{L^{p(m)}(M)} < 1 \), we have \(\|u\|_{L^{p(m)}(M)}^{p^-} \geq \rho_{p(m)}(u) \geq \|u\|_{L^{p(m)}(M)}^{p^-} \).

Lemma 2.3 (see [10]). If \(p \in \mathcal{P}(M) \), \(u, u \in L^{p(m)}(M) \), then the following conditions are equivalent:
(i) \(\lim_{t \to \infty} \rho_{p(m)}(u_t - u) = 0 \);
(ii) \(\lim_{t \to \infty} \|u_t - u\|_{L^{p(m)}(M)} = 0 \);
(iii) \(u_t \) converges to \(u \) on \(M \) in measure and
\[
\lim_{t \to \infty} \rho_{p(m)}(u_t) = \rho_{p(m)}(u).
\]

Lemma 2.4 (see [10]). If \(p \in \mathcal{P}(M) \), \(u \in L^{p(m)}(M) \) is absolutely continuous with respect to the norm \(\| \cdot \|_{L^{p(m)}(M)} \).

Lemma 2.5 (see [10]). If \(p \in \mathcal{P}(M) \), then \(L^{p(m)}(M) \) and \(W^{1,p(m)}(M) \) are separable, reflexive Banach spaces.

Given two Banach spaces \(X \) and \(Y \), the symbol \(X \subset Y \) means that \(X \) is continuously embedded in \(Y \).

Lemma 2.6 (see [10]). Let \(0 < \mu(M) < \infty \). If \(p(m), q(m) \in \mathcal{P}(M) \) and \(p(m) \leq q(m) \) a.e. \(m \in M \), then
\[
L^{q(m)}(M) \subset L^{p(m)}(M),
\]
The norm of the embedding operator (2.1) does not exceed \(\mu(M) + 1 \).

Lemma 2.7 (see [10]). Let \(M \) be a compact smooth Riemannian manifold with a boundary or without boundary and \(p(m), q(m) \in C(\overline{M}) \cap \mathcal{P}(M) \). Assume that
\[
p(m) < n, q(m) < \frac{np(m)}{n - p(m)}, \text{ for } m \in \overline{M}.
\]
Then
\[
W^{1,p(m)}(M) \subset L^{q(m)}(M)
\]
is a continuous and compact imbedding.

Let \(f(m, u) \) (\(m \in M, u \in \mathbb{R} \)) be a Carachéodory function, and \(N_f \) be the Nemytsky operator defined by \(f \), i.e. \(N_f u(m) = f(m, u) \).

Theorem 2.1. Let \(M \) be a compact Riemannian manifold and \(p_1, p_2 \in \mathcal{P}(M) \). If \(N_f \) maps \(L^{p_1(m)}(M) \) into \(L^{p_2(m)}(M) \), then \(N_f \) is continuous, bounded and there is a constant \(\beta \geq 0 \) and a non-negative function \(\alpha(m) \in L^{p_2(m)}(M) \) such that for \(m \in M \) and \(u \in \mathbb{R} \), the following inequality holds
\[
|f(m, u)| \leq \alpha(m) + \beta |u|^{p_1(m)/p_2(m)}.
\]
On the other hand, if \(f \) satisfies (2.2), then \(N_f \) maps \(L^{p_1(m)}(M) \) into \(L^{p_2(m)}(M) \), and thus \(N_f \) is continuous and bounded.
The Dirichlet problems for nonlinear elliptic equations...

Proof. Since M is compact, M can be covered by a finite number of charts $(U_\alpha, f_\alpha), \alpha = 1, 2, \ldots, k$. For $v \in L^1(M)$, we define

$$Hv(m) = h(m, v) = |N_f(\text{sgn} |u|^{1/p_1(m)})|^{p_2(m)},$$

then H maps $L^1(M)$ into $L^1(M)$. By [16], we have that H is bounded, continuous and

$$|H(v(m)\chi_{U_\alpha})| = |H(v(f_\alpha^{-1}(x)))| \leq a_\alpha(x) + b_\alpha|v(f_\alpha^{-1}(x))| = a_\alpha(f_\alpha(m)) + b_\alpha|v(m)\chi_{U_\alpha}|,$$

for any $\alpha = 1, 2, \ldots, k$, where $a_\alpha(f_\alpha(m)) \in L^1(U_\alpha)$ is a non-negative function and constant $b_\alpha > 0$. Let $a(m) = \sum_{\alpha=1}^k a_\alpha(f_\alpha(m))$. For $v \in L^1(U_\alpha)$, then $|Hv(m)| \leq a(m) + b|v(m)|$.

We assume that $v(m, 0) = 0$, otherwise we can consider $f(m, u) - f(m, 0)$ instead.

First, we only need to prove N_f is continuous at 0 when $f(m, 0) = 0$. If this is not true, we can find a sequence $\{u_t\} \subset L^{p_1(m)}(M)$ satisfies $\lim_{t \to \infty} \|u_t\|_{L^{p_1(m)}(M)} = 0$, but $\|N_fu_t\|_{L^{p_2(m)}(M)} > \sigma$ where σ is some positive constant. Without loss of generality, we can suppose that $\|u_t\|_{L^{p_1(m)}(M)} < 1$, thus by Lemma 2.2 we have

$$\rho_{p_1(m), M}(u_t) \leq \|u_t\|_{L^{p_1(m)}(M)}^{p_1(m)},$$

and hence

$$\lim_{t \to \infty} \int_M |u_t|^{p_1(m)}d\mu = 0.$$

Let $v_t = \text{sgn} u_t|u_t|^{p_1(m)}$. Then $\lim_{t \to \infty} \|v_t\|_{L^1(M)} = 0$, and hence $\lim_{t \to \infty} \|Hv_t\|_{L^1(M)} = 0$. Thus,

$$\lim_{t \to \infty} \int_M |N_fu_t|^{p_2(m)}d\mu = \lim_{t \to \infty} \int_M |Hv_t|d\mu = 0.$$

By Lemma 2.3, we have $\lim_{t \to \infty} \|N_fu_t\|_{L^{p_2(m)}(M)} = 0$, which is a contradiction.

Next, let A be a bounded set in $L^{p_1(m)}(M)$. By Lemma 2.2, we have that A is bounded in modular. For $v \in L^1(M)$, let H be defined as above, then $H : L^1(M) \to L^1(M)$ is bounded. For $u \in A$, taking $v = \text{sgn} u|u|^{p_1(m)} \in L^1(M)$, then $\{\|v\|_{L^1(M)}\}$ is uniformly bounded. Then there is a constant $C > 0$ such that $\|H(\text{sgn} u|u|^{p_1(m)})\|_{L^1(M)} \leq C$, thus $\int_M |N_fu|^{p_2(m)}d\mu \leq C$. Therefore, $N_f(A)$ is bounded in $L^{p_2(m)}(M)$.

Since M is compact, M can be covered by a finite number of charts (U_α, f_α). By Lemma 2.4, we can assume $\{U_\alpha\}$ such that $\{u\chi_{U_\alpha}\}$ are uniformly bounded in $L^{p_1(m)}(M)$ for $u \in L^{p_1(m)}(M)$. Writing $u^{(\alpha)} = u\chi_{U_\alpha}$ and $K = \sup\{\sum_{\alpha} \chi_{U_\alpha}(m) : m \in M\}$, then

$$|N_fu| \leq \sum_{\alpha} |N_fu^{(\alpha)}| \leq K|N_fu|$$

and $N_fu^{(\alpha)} \in L^{p_2(m)}(M)$.

Since

$$\int_M |Hv|d\mu \leq \sum_{\alpha} \int_{U_\alpha} |Hv|d\mu \leq K \int_M |Hv|d\mu,$$

where $v = \text{sgn} u|u|^{p_1(m)} \in L^1(M)$, we have $N_fu \in L^{p_2(m)}(M)$.
For $u \in L^{p_1(m)}(M)$, set $v = \text{sgn} u |u|^{p_1(m)}$, then $v \in L^1(M)$ and thus
$$|N_f u(m)|^{p_2(m)} = |H v(m)| \leq a(m) + b |u(m)|^{p_1(m)}.$$

We can deduce that
$$|N_f u(m)| \leq (a(m) + b |u|^{p_1(m)})^{1/p_2(m)}$$
$$\leq a(m)^{1/p_2(m)} + b^{1/p_2(m)} |u|^{p_1(m)/p_2(m)}$$
$$\leq \alpha(m) + \beta |u|^{p_1(m)/p_2(m)},$$
where $\alpha(m) = a(m)^{1/p_2(m)} \geq 0$, $\alpha(m) \in L^{p_2(m)}(M)$, and $\beta = \max\{1, b\}$.

On the other hand, if (2.2) holds, we let $u \in L^{p_1(m)}(M)$. It is obvious that
$$\alpha(m) + \beta |u|^{p_1(m)/p_2(m)} \in L^{p_2(m)}(M).$$

Therefore
$$\int_M |N_f u|^{p_2(m)} d\mu \leq \int_M |\alpha(m) + \beta |u|^{p_1(m)/p_2(m)}|^{p_2(m)} < \infty,$$
i.e. N_f maps $L^{p_1(m)}(M)$ into $L^{p_2(m)}(M)$.

\section{Existence of weak solutions}

In this section, we shall show some applications of the Sobolev space to Dirichlet problems of the $p(m)$-harmonic equations on Riemannian manifolds. We shall assume that (M, g) is a connected n-dimensional smooth compact Riemannian manifold with smooth boundary ($n \geq 3$) and $p(m) \in C(\overline{M}) \cap P_2(M)$.

\textbf{Definition 3.1.} A function u is a weak solution for the following Dirichlet problems
\begin{equation}
\begin{cases}
-\text{div}(\nabla u|\nabla u|^{p(m)-2}) + \lambda u |u|^{p(m)-2} = f(m, u), & m \in M, \\
u(m) = 0, & m \in \partial M,
\end{cases}
\end{equation}

where $f(m, u) \in L^{p'(m)}(M), \lambda > 0$, if $u \in W^{1,p(m)}_0(M)$ satisfies
\begin{equation}
\int_M \langle \nabla u|\nabla u|^{p(m)-2}, \nabla v \rangle + \lambda uv |u|^{p(m)-2}d\mu = \int_M f(m, u)v d\mu
\end{equation}
for every $v \in W^{1,p(m)}_0(M)$.

Let (\cdot, \cdot) denote a dual between $X := W^{1,p(m)}_0(M)$ and X'. First we define the energy functional on $W^{1,p(m)}_0(M)$ by
$$\Psi(u) = \int_M \frac{1}{p(m)}(|\nabla u|^{p(m)} + \lambda |u|^{p(m)})d\mu - \int_M F(m, u)d\mu := I(u) - K(u),$$
where $F(m, t) = \int_0^t f(m, s)ds$. Then for $u, v \in W^{1,p(m)}_0(M)$, we have
$$\langle \Psi'(u), v \rangle = \langle I'(u), v \rangle - \langle K'(u), v \rangle$$
$$= \int_M \langle \nabla u|\nabla u|^{p(m)-2}, \nabla v \rangle d\mu + \int_M \lambda vu |u|^{p(m)-2}d\mu - \int_M f(m, u)v d\mu.$$
Let \(J = I' : X \to X' \), then
\[
(J(u), v) = \int_M \langle \nabla u | \nabla u \rangle^{p(m)-2} \nabla u \rangle d\mu + \int_M \lambda \nu |u|^{p(m)-2} d\mu := (J_1(u), v) + (J_2(u), v),
\]
where \(u, v \in X \).

Lemma 3.1. \(J = I' : X \to X' \) is a continuous, bounded and strictly monotone operator.

Proof. It is obvious that \(J \) is continuous and bounded. For any \(y, z \in \mathbb{R}^N \), we have the following inequalities (see [15]) from which we can get the strictly monotonicity of \(J \):
\[
\begin{align*}
(h_1) \quad & |z|^{p-2}z - |y|^{p-2}y \cdot (z - y) \geq (\frac{1}{2})^p |z - y|^p, \quad p \in [2, \infty), \\
(h_2) \quad & |z|^{p-2}z - |y|^{p-2}y \cdot (z - y) \geq (|z|^p + |y|^p) (p-2)/2 \geq (p-1)|z - y|^p, \quad p \in (1, 2).
\end{align*}
\]

By Theorem 2.1 and Lemma 3.1, we can get the following Lemma 3.2.

Lemma 3.2. The functional \(\Psi \in C^1(W^{1,p(m)}_0(M), \mathbb{R}) \).

Therefore, the weak solution to Dirichlet problems (3.1) is a critical point of \(\Psi \) and vice versa (see [3]).

Next, we suppose \(f(m, s) \) satisfies the following assumption:

\((N): \) Let \(f : M \times \mathbb{R} \to \mathbb{R} \) satisfy Carathéodory condition and
\[
|f(m, s)| \leq C_1 + C_2 |s|^\theta(m) - 1 \quad \text{for any } (m, s) \in M \times \mathbb{R},
\]
where \(\theta(m) \in C(M) \cap P_2(M) \) and \(\theta(m) \leq p(m) \).

Lemma 3.3. The functional \(\Psi \) is weakly lower semi-continuous in \(W^{1,p(m)}_0(M) \).

Proof. Let \(u_t \rightharpoonup u \) weakly in \(W^{1,p(m)}_0(M) \). Since \(J \) is a convex functional, we deduced that the following inequality holds
\[
J(u_t) \geq J(u) + (J'(u), u_t - u).
\]

Then we get that \(\liminf_{t \to \infty} J(u_t) \geq J(u) \). Then \(J \) is weakly lower semi-continuous.

Let \(u_t \rightharpoonup u \) weakly in \(W^{1,p(m)}_0(M) \). By Lemma 2.6 and 2.7, we get that \(u_t \to u \) strongly in \(L^{\theta(m)}(M) \) and \(L^1(M) \). Without loss of generality, we assume that \(u_t \to u \) a.e. in \(M \), and hence \(F(m, u_t) \to F(m, u) \) a.e. \(m \in M \). From (\(N \)) we have
\[
|F(m, s)| \leq C_1 |s| + C_2 |s|^\theta(m),
\]
then the integrals of the functions \(|F(m, u_t) - F(m, u)| \) possess absolutely equicontinuity on \(M \). By Vitali convergence Theorem (see [13]),
\[
\int_M |F(m, u_t) - F(m, u)| d\mu \to 0, \quad \text{as } t \to \infty.
\]

Therefore, \(\Psi \) is weakly lower semi-continuous in \(W^{1,p(m)}_0(M) \).

Theorem 3.1. Let \(f(m, s) \) satisfies the condition (\(N \)). Then Dirichlet problems (3.1) has a weak solution in \(W^{1,p(m)}_0(M) \).
Proof. From the condition \((N)\) we can obtain \(|F(m, s)| \leq C_1 |s| + C_2 |s|^\theta(m)\), then by Lemma 2.2 and Young inequality, we have

\[
\Psi(u) = \int_M \frac{1}{p(m)} |\nabla u|^{p(m)} \, d\mu + \int_M \frac{\lambda}{p(m)} |u|^{p(m)} \, d\mu - \int_M F(x, u) \, d\mu \\
\geq \int_M \frac{1}{p(m)} |\nabla u|^{p(m)} \, d\mu + \int_M \frac{\lambda}{p(m)} |u|^{p(m)} \, d\mu - \int_M (\varepsilon |u|^{p(m)} + C(\varepsilon, \theta)) \, d\mu \\
\geq \int_M \frac{\min\{\lambda, 1\}}{2p^+} (|\nabla u|^{p(m)} \, d\mu + |u|^{p(m)} \, d\mu) - C(\varepsilon, \theta) \\
\to \infty
\]

as \(|u|_{W^{1,p(m)}(M)} \to \infty\), where \(\varepsilon = \frac{\min\{\lambda, 1\}}{2p^+}\). Since \(\Psi\) is weakly lower semi-continuous, \(\Psi\) has a minimum point \(u_0 \in W^{1,p(m)}(M)\), and \(u_0\) is a weak solution of Dirichlet problems (3.1). \(\square\)

References

