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THE DIRICHLET PROBLEMS FOR
NONLINEAR ELLIPTIC EQUATIONS WITH
VARIABLE EXPONENTS ON RIEMANNIAN

MANIFOLDS*
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Abstract In this paper, after discussing the properties of the Nemytsky
operator, we obtain the existence of weak solutions for Dirichlet problemss of
non-homogeneous p(m)-harmonic equations.
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1. Introduction

After Kovacik and Rékosnik first discussed the LP(*)(Q) and WHP(®)(Q) spaces
in [11], a lot of research has been done concerning these kinds of variable exponent
spaces (see [1,6,7,9] and the references therein). The existence of solutions for
p(xz)—Laplacian Dirichlet problems on bounded domains in R™ have been greatly
discussed. For example, Chabrowski and Fu [2] and Fan and Zhang [8] established
some results about the existence of solutions under some conditions. More informa-
tions about the theory of variable exponential function space can be found in [4,5].
In recent years, the theory on problems with variable exponential growth conditions
has important applications in nonlinear elastic mechanics (see [17]), electrorheolog-
ical fluids (see [12,14]).

Let (M,g) be a Riemannian manifold. For v € C*°(M), Vu denotes the co-
variant derivative of u. The components of Vu in local coordinates are given by
(Vu); = Viu, i = 1,2 -, n. By definition one has that

|Vu| = Z RAVAA VTS

ij=1

In this article we will always assume (M, g) is a connected n-dimensional smooth
orientable complete Riemannian manifold (n > 3). du = \/det(g;;)dz is the Rie-
mannian volume element on (M, g), where the g;; are the components of the Rie-
mannian metric g in the chart and dx is the Lebesgue volume element of R™. Let
7 : [a,b] — M be a curve of class C!, the length of v is

v = [ \/g(w)) (P0G )dn
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For my,ma € M, let C}, .. be the space of piecewise C' curves v : [a,b] - M
such that y(a) = my and v(b) = ma. One can define a distance dy(mq,ma) =

inf L(v) on M.

my,mg

We denote by L}OC(M ) the space of locally integrable functions on M, denote
by CS°(M) the vector space of smooth functions with compact support on M.

The Riemannian measure and the characteristic function of a set A C M will
be denoted by u(A) and x4, respectively.

Let P(M) be the set of all measurable functions p : M — [1, 00]. For p € P(M)
we put My = MY = {m € M : p(m) = 1}, Mo = ME = {m € M : p(m) = oo},
My = M\(M; U M), p~ = essinfyy, p(m) and p* = esssupy,, p(m) if p(Mo) > 0,
p~ =pt =1if u(My) = 0. We always assume that p € P(M), P1(M) = P(M) N
L>(M) and Pa(M) = {p € Pi(M) : 1 < essinfpyp(m)}. We use the convention
1/00 =0.

In 2012, Fu and Guo first introduced variable exponent function spaces on Rie-
mannian manifolds in [10]. Also motivated by [10], we are interested in the following
Dirichlet problems:

—div(Vu|Vu[P™=2) 4 Au|u[P™ =2 = f(m,u), m € M,
u(m) =0, m € OM.
2. Preliminaries and Nemytsky Operator

For a function u on M we define the functional pp ) ar by
o = [ ™+ esssupy .
M\ Moo

Definition 2.1. The Lebesgue space LP(™) (M) is the class of functions u such that
Pp(m), M (Au) < oo for some A = A(u) >0
with the following norm
||u\|Lp(m>(M) = inf{A > 0: ppmy,amr(ur) < 1}
Definition 2.2. The Sobolev space W'P(™)(M) consists of such functions u €

Lr™) (M) for which Viu € LP(™) (M), i =1,2,...,n. The norm is defined by

n
[ullwpem (ary = [l Loem (ary + Z [V ul| Lo (ar)-
i=1

The space Wol’p(m)(M) is defined as the closure of C°(M) in W1HP(™) (M),
Given p € P(M) we define the conjugate function p’'(m) € P(M) by

0, if m e My,
p'(m) =<1, if me My,

i m e M.
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Lemma 2.1 (see [10]). If p(m) € P(M), then the inequality
[ o < 2l ool

holds for every u € LPU™) (M), v e LY (™) (M).

Lemma 2.2 (see [10]). Let p € P1(M). Then
(i) IF [l o (ary = 1, we have [l aay < ptmynr () < 1l -
(i) If Hu||LP(m)(M) <1, we have ||U||Z£;(m>(M) > Pp(m),pr(u) > ||u||i:<m>(M)~

Lemma 2.3 (see [10]). If p € Py(M), us,u € LPU™ (M), then the following condi-
tions are equivalent:

(i) 1imy 00 Pp(my,m (e —u) = 0;

(1) limy o0 |[ue — ul| Loemy (ary = 05

(i41) uy converges to u on M in measure and

tlig)lo pp(m),M(Ut) = Pp(m),M(“)'

Lemma 2.4 (see [10]). If p € Pi(M), u € LP(™) (M) is absolutely continuous with
respect to the norm || - || Loem) (ar)-

Lemma 2.5 (see [10]). If p € Po(M), then LPU™ (M) and WP (M) are sepa-
rable, reflexive Banach spaces.

Given two Banach spaces X and Y, the symbol X ~ Y means that X is
continuously embedded in Y.

Lemma 2.6 (see [10]). Let 0 < u(M) < oo. If p(m),q(m) € P(M) and p(m) <
g(m) a.e. m € M, then
LI (M) ~ LPU™ (M). (2.1)

The norm of the embedding operator (2.1) does not exceed p(M) + 1.

Lemma 2.7 (see [10]). Let M be a compact smooth Riemannian manifold with a
boundary or without boundary and p(m),q(m) € C(M) NPy(M). Assume that

np(m)

———"_ form € M.
n —p(m)

p(m) <n, q(m) <

Then
WP (M) ~ L0 (M)

s a continuous and compact imbedding.

Let f(m,u) (m € M, u € R) be a Carachéodory function, and Ny be the
Nemytsky operator defined by f, i.e. Nyu(m) = f(m,u).

Theorem 2.1. Let M be a compact Riemannian manifold and p1,p2 € P1(M).
If Ny maps LP*™) (M) into LP2(™) (M), then Ny is continuous, bounded and there
is a constant 8 > 0 and a non-negative function a(m) € LP>"™) (M) such that for
m € M and u € R, the following inequality holds

[f(mu)| < alm) + BlufPr /P20, (2.2)

On the other hand, if f satisfies (2.2), then Ny maps LPr(™) (M) into LP2(™) (M),
and thus Ny is continuous and bounded.
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Proof. Since M is compact, M can be covered by a finite number of charts
(Uas fa),a=1,2- - k. For v e L'(M), we define

Hum) = h(m,v) = |Ny(sgnofof/7 () ),

then H maps L'(M) into L'(M). By [16], we have that H is bounded, continuous
and
|H (v(m)xw, )| = |H (v(fa" (@))]
a(Z) + ba }U fat (@)
aa(fa( +ba}v m)XU
)

\ /\

)

for any o = 1,2, - - k, where a,(fo(m)) € L*(U,) is a non-negative function and
constant b, > 0. Let a(m) = X% _ a,(fa(m)) € LY(M) and b = max{by, ba, - -, b},
then |Ho(m)| < a(m) + blv(m)|.

We assume that f(m,0) = 0, otherwise we can consider f(m,u) — f(m,0) in-
stead.

First, we only need to prove N is continuous at 0 when f(m,0) = 0. If this is not
true, we can find a sequence {u;} € LP*(™) (M) satisfies lim;_, o [ut]| Loremy (ary = 0,
but [[Nyut||pr2om (ay > o where o is some positive constant. Without loss of
generality, we can suppose that ||ut||;piom 3y < 1, thus by Lemma 2.2 we have

pp1(m),M(ut) g ||ut||I[)‘1Pl(m)(M)7 a’nd hence

lim / g [P™) dp = 0.
t—o00 M
Let vy = sgnut|ut|p1(m). Then lim; ;o [|v¢||£1(ar) = 0, and hence limy oo ||[Hve| |1 (ar) =
0. Thus,
lim / |Nju P2 dp = lim / |Huvy|dp = 0.

M t—o00 M

t—o00

By Lemma 2.3, we have lim;_ ||Nfut||Lp2(m)(M) = 0, which is a contradiction.

Next, let A be a bounded set in LP*(™)(M). By Lemma 2.2, we have that A
is bounded in modular. For v € L'(M), let H be defined as above, then H :
LY(M) — L'(M) is bounded. For u € A, taking v = sgnulu[P*(™) € L'(M),
then {[|v||r1(ar)} is uniformly bounded. Then there is a constant C' > 0 such
that [|H (sgnululP™)|| 1) < C, thus [, |Nyu[P2(™dp < C. Therefore, Ny (A) is
bounded in LP2(™) (M),

Since M is compact, M can be covered by a finite number of charts (Uy, fa).
By Lemma 2.4, we can assume {U,} such that {uxy,} are uniformly bounded in
Lrim) (M) for uw € LPr™(M). Writing u(®) = uxp, and K = sup{}_,, xv. (m) :
m € M}, then

INpu| <> [Npul)| < K|Nju| and Npu(®) € LP20™) (M),
«

Since

/ |Ho|dp < Z/ |Ho|dp < K/ |Holdp,
M o JU, M

where v = sgnuu[P*(™) € L'(M), we have Nyu € LP2(™) (M),
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For u € LP*(™) (M), set v = sgnu|u[P*(™), then v € L*(M) and thus
[N pu(m)[P2") = [Ho(m)| < a(m) + blu(m)[? ™).
We can deduce that

|Nyu(m)| < (a(m) + blu[Pr(m))1/p2(m)
1
a

IN

(m /p2(m) + bl/P2(m)|u|P1(m)/P2(m)

a(m

where a(m) = a(m)'/P2(™) >0, a(m) € LP>"™) (M), and = max{1,b}.
On the other hand, if (2.2) holds, we let u € LP*(™)(M). Tt is obvious that

)
) Bl /2,

()+5|U|p1 m) /pa(m) Lpz(m)(M)_

Therefore
/ |NpulP2 ™ dy < / la(m) 4 BlufPrm)/p2(m)p2(m) o o
M M

i.e. Ny maps LP1(™ (M) into LP2(™)(M). O

3. Existence of weak solutions

In this section, we shall show some applications of the Sobolev space to Dirich-
let problems of the p(m)-harmonic equations on Riemannian manifolds. We shall
assume that (M, g) is a connected n-dimensional smooth compact Riemannian man-
ifold with smooth boundary (n > 3) and p(m) € C(M) N Pa(M).

Definition 3.1. A fuction u is a weak solution for the following Dirichlet problems

i (Gl VU ) P = fm), me M,
u(m) =0, m € OM, ’
where f(m,u) € LP' (™ (M),A > 0, if u € Wol’p(m) (M) satisfies
/ (Vu|VulP™ =2 o) + AuoluP™2dy :/ f(m,u)vdp (3.2)
M M

for every v € Wo '™ (M).

Let (-,-) denote a dual between X := Wol’p(m)(M) and X’. First we define the
energy functional on W, ” ™) (M) by

1
W(w) = [ (TuP A~ [ Fmu)du = I) - K(w),
M p(m) M
where F(m,t) fo m, s)ds. Then for u,v € W L2 (A1), we have

(' (w),v) = (I'(u),v) — (K'(u),v)
= u|VuPm =2 vy vuluP 2 dy — m, u)vdpu.
[ wuvr 2 ot [ v ™ 2= [ fm, wod
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We denote J = I’ : X — X', then
(@.0) = [ (FulTup 2 Foyde | Nuolul ™2 = (@), 0+ (a(w), )
M M

where u,v € X.

Lemma 3.1. J =I' : X — X' is a continuous, bounded and strictly monotone
operator.

Proof. It is obvious that .J is continuous and bounded. For any y, z € RY, we have
the following inequalities (see [15]) from which we can get the strictly monotonicity
of J:

(h1) (|2P722 = [ylP~2y) - (2 — y) = (3)P]z — I, p €[2,00),
(h2) [(|21P=22 = [y|P~=2y) - (2 = )] (|2 + [P )P=272 = (p— D)2 —yl?, p € (1,2).
O
By Theorem 2.1 and Lemma 3.1, we can get the following Lemma 3.2.
Lemma 3.2. The functional ¥ € Cl(Wol’p(m)(M),R).

Therefore, the weak solution to Dirichlet problems (3.1) is a critical point of ¥
and vise versa (see [3]).

Next, we suppose f(m, s) satisfies the following assumption:

(N): Let f: M x R — R satisfy Carathéodory condition and

|f(m,s)| < Cy + Cals|?™ =" for any (m,s) € M x R,
where 6(m) € C(M) N Py(M) and §(m) < p(m).
Lemma 3.3. The functional ¥ is weakly lower semi-continuous in Wol’p(m) (M).

Proof. Let u; — u weakly in Wy (M)(Af). Since J is a convex functional, we
deduced that the following inequality holds

J(ug) > J(u) + (J'(u), us — u).

Then we get that liminf;_, J(us) > J(w). Then J is weakly lower semi-continuous.

Let u; — u weakly in WoLp(m)(M). By Lemma 2.6 and 2.7, we get that u; — u
strongly in L™ (M) and L'(M). Without loss of generality, we assume that
us — w a.e. in M, and hence F(m,u;) — F(m,u) a.e. m € M. From (N) we have

|F(m, s)| < Culs| + Cals|”™,

then the integrals of the functions |F'(m,u;) — F(m, u)| possess absolutely equicon-
tinuity on M. By Vitali convergence Theorem (see [13]),

/ |F'(m,ut) — F(m,u)|dp — 0, as t — oo.
M

Therefore, ¥ is weakly lower semi-continuous in VVO1 P (m)(M ). O

Theorem 3.1. Let f(m,s) satisfies the condition (N ). Then Dirichlet problems
(5.1) has a weak solution in Wol’p(m)(M).
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Proof. From the condition (N) we can obtain |F(m, s)| < C1|s|+ Cq|s|?0™), then
by Lemma 2.2 and Young inequality, we have

1
\p(u)z/ —\Vulp(m)dw/ Lszulf’("”‘)clu—/ F(w, u)du
M M

as ||ullw1pem(ary — 00, where e =

p(m) vt p(m)
1 A

> VulP(m) g +/ wlPm) g _/ elulP™ + C(e,0))d

/Mp(m)\ R e WCH (c,0)) dp

(A1
> / %Jr} (IVulP™dp + [ul?™)du — C (e, )
M 2p

— 0

min{\,1}

TS Since ¥ is weakly lower semi-

continuous, ¥ has a minimum point ug in W,” (m)(M ), and ug is a weak solution

of Dirichlet problems (3.1). O
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