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Abstract The intuitionistic uncertain fuzzy linguistic variable can easily ex-
press the fuzzy information, and the power average (PA) operator is a useful
tool which provides more versatility in the information aggregation proce-
dure. At the same time, Einstein operations are a kind of various t-norms
and t-conorms families which can be used to perform the corresponding in-
tersections and unions of intuitionistic fuzzy sets (IFSs). In this paper, we
will combine the PA operator and Einstein operations to intuitionistic un-
certain linguistic environment, and propose some new PA operators. Firstly,
the definition and some basic operations of intuitionistic uncertain linguistic
number (IULN), power aggregation (PA) operator and Einstein operations
are introduced. Then, we propose intuitionistic uncertain linguistic fuzzy
powered Einstein averaging (IULFPEA) operator, intuitionistic uncertain lin-
guistic fuzzy powered Einstein weighted (IULFPEWA) operator, intuitionistic
uncertain linguistic fuzzy Einstein geometric (IULFPEG) operator and intu-
itionistic uncertain linguistic fuzzy Einstein weighted geometric (IULFPEWG)
operator, and discuss some properties of them in detail. Furthermore, we de-
velop the decision making methods for multi-attribute group decision making
(MAGDM) problems with intuitionistic uncertain linguistic information and
give the detail decision steps. At last, an illustrate example is given to show
the process of decision making and the effectiveness of the proposed method.
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1. Introduction

Fuzzy set (FS) proposed by Zadeh [31] is a very useful tool to process the fuzzy
information. However, because FS has only a membership function, it is difficult
to describe the more complex fuzzy information. Atanassov [1] further proposed
the intuitionistic fuzzy set (IFS) which has a membership function and a non-
membership function, so IFS has more advantages than FS on describing the incon-
sistent information. IFS is with membership (or called truth-membership) TA(x)
and non-membership (or called falsity-membership) FA(x). However, because the
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membership function and non-membership of IFS are crisp numbers which are diffi-
cult to be obtained in real decision making, the scopes of IFS are further extended.
Gargov and Atanassov [3], Atanassov [2] proposed the interval-valued intuitionistic
fuzzy set (IVIFS) which extended the membership and non-membership to inter-
val numbers; Liu and Zhang [32] gave the definition of the triangular intuitionistic
fuzzy numbers; Wang [18] defined intuitionistic trapezoidal fuzzy number and in-
terval intuitionistic trapezoidal fuzzy numbers, then some decision making methods
had been proposed [17,20].

In real decision making, sometimes we can use linguistic terms such as ‘good’,
‘bad ’ to describe the state or performance of a car and cannot use some numbers
to express some qualitative information. However, when we use the linguistic vari-
ables to express the qualitative information, it only means the membership degree
belonged to a linguistic term is 1, and the non-membership degree or hesitation
degree cannot be expressed. In order to overcome this shortcoming, Wang and
Li [19] proposed the concept of intuitionistic linguistic set by combining intuition-
istic fuzzy set with linguistic variables. For the above-mentioned example, we can
give an evaluation value ‘good’ for the state of the car, however, for this evalua-
tion, we have the certainty degree of 80 percent and negation degree of 10 percent,
then we can use the intuitionistic linguistic set to express the evaluation result. Of
course, it cannot be expressed by IFS or linguistic variables. Furthermore, Wang
and Li [19] proposed intuitionistic two-semantics and the Hamming distance be-
tween two intuitionistic two-semantics, and ranked the alternatives by calculating
the comprehensive membership degree to the ideal solution for each alternative.

Furthermore, the information aggregation operators are an important research
orientation of decision making problems, and many research results have been
achieved [7, 9–16, 21–28]. In general, they are divided into are two types, i.e., the
arithmetic aggregation operators and the geometric aggregation operators. About
the differences between them, Liu [9] gave the explanations “The arithmetic ag-
gregation operators emphasize the impact of the overall attribute data and the
compensation between the different attribute data, and the geometric aggregation
operators emphasize the balance of the system and the coordination between the
different attribute data”. In addition, the whole operators were included in the
general concepts of the t-norms and t-conorms [4], which satisfy the requirements
of the conjunction and disjunction operators [21]. Einstein operations are a kind
of various t-norms and t-conorms families which can be used to perform the corre-
sponding intersections and unions of IFSs. So, based on Einstein operations, Wang
and Liu [22] proposed some intuitionistic fuzzy Einstein aggregation operators such
as the intuitionistic fuzzy Einstein weighted geometric (IFEWG) operator and the
intuitionistic fuzzy Einstein ordered weighted geometric (IFEOWG) operator. Zhao
and Wei [23] established intuitionistic fuzzy Einstein hybrid average (IFEHA) oper-
ator and intuitionistic fuzzy Einstein hybrid geometric (IFEHG) operator and pro-
posed intuitionistic fuzzy MADM methods based on them. Guo et al. [7] proposed
some operators which extended Einstein operators to hesitant fuzzy sets includ-
ing hesitant fuzzy Einstein weighted geometric (HFEWG) operator, hesitant fuzzy
Einstein ordered weighted geometric (HFEOWG) operator, hesitant fuzzy Einstein
hybrid geometric (HFEHG) operator, and hesitant fuzzy Einstein induced ordered
weighted geometric (HFEIOWG) operator .

Yager [30] developed a power average (PA) operator and a power OWA (POWA)
operator to provide more versatility in the information aggregation process. Based
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on this, Xu and Yager [29] proposed some new geometric aggregation operators, such
as the power-geometric (PG) operator, weighted PG operator, and power-ordered-
weighted geometric (POWG) operator. Zhou and Chen [33] presented the gener-
alized power average (GPA) operator and the generalized power ordered weighted
average (GPOWA) operator. Then they presented the linguistic generalized power
average (LGPA) operator and the weighted linguistic generalized power average
(WLGPA) operator and the linguistic generalized power ordered weighted average
(LGPOWA) operator which extended the GPA operator and the GPOWA operator
to linguistic environment. The same character of them is their aggregation func-
tions use linguistic information and generalized mean in the power average (PA)
operator. Xu and Cai [28] developed the uncertain power average operators which
aggregated interval fuzzy preference relations. Xu and Wang [25] proposed 2-tuple
linguistic power average (2TLPA) operator, 2-tuple linguistic weighted PA operator
(2TLWPA) and 2TLPOWA operator. Zhou et al. [34] presented an uncertain gen-
eralized power average (UGPA) operator, an uncertain generalized power ordered
weighted average (UGPOWA) operator to deal with these arguments which take the
form of interval numbers. They developed the generalized intuitionistic fuzzy power
averaging (GIFPA) operator and the generalized intuitionistic fuzzy power ordered
weighted averaging (GIFPOWA) operator which extended the GPA operator and
the GPOWA operator to intuitionistic fuzzy environment.

The intuitionistic uncertain fuzzy linguistic variable can easily express the fuzzy
information and the power average (PA) operator is a useful tool which provides
more versatility in the information aggregation procedure, and Einstein operations
are a kind of various t-norms and t-conorms families can be used to perform the
corresponding intersections and unions of IFSs. However, there is no research on
the combination of PA operator and Einstein operations under intuitionistic uncer-
tain linguistic environment. The main purpose of this paper is to propose some
intuitionistic uncertain linguistic fuzzy powered Einstein operators to extend the
using scope of PA operator, and to develop some MAGDM methods based on these
operators.

In order to achieve this aim, this paper is organized as following. In the second
section, we represent some concepts of the linguistic set and uncertain linguistic
numbers, the intuitionistic linguistic set, the Power Aggregation (PA) operator,
Einstein operations and we define Einstein operations of intuitionistic uncertain lin-
guistic numbers. In section 3, we propose the concept and operations of intuition-
istic uncertain linguistic fuzzy powered Einstein averaging (IULFPEA) operator,
intuitionistic uncertain linguistic fuzzy powered Einstein weighted (IULFPEWA)
operator, intuitionistic uncertain linguistic fuzzy Einstein geometric (IULFPEG)
operator and intuitionistic uncertain linguistic fuzzy Einstein weighted geometric
(IULFPEWG) operator, and introduce some properties and special cases of them.
Section 4 establishes the procedure of the decision-making method based on the
IULFPEWA and IULFPEWG operators. Section 5 gives a numerical example ac-
cording to our approach. Section 6 summarizes the main conclusion of this paper.

2. Preliminaries

2.1. The linguistic set and uncertain linguistic numbers

The linguistic set is regarded as a good tool to express these qualitative information,
we can express the linguistic set by S = (s0, s1, . . . , sl−1), and sθ(θ = 1, 2, . . . , l−1)
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can be called an linguistic number, l is an odd value which can be the values of 3, 5,
7, 9, etc. generally, For example, when l = 9, S = (s0, s1, s2, s3, s4, s5, s6, s7, s8) =
(extremely poor, very poor, poor, slightly poor, fair, slightly good, good, very good,
extremely good).

Let si and sj are any two linguistic numbers in linguistic set S, they have the
following characteristics [5, 6]:

(i) If i > j, then si ≻ sj.

(ii) There exists negative operator: neg(si) = sj , where j = l − 1− i.

(iii) If si ≥ sj , max(si, sj) = si.

(iv) If si ≤ sj , min(si, sj) = si.

In order to overcome the loss of information in the process of calculations, the
original discrete linguistic set S = (s0, s1, . . . , sl−1) is extended to the continuous
linguistic set S̄ = {sα|α ∈ R+} which is also meet the strictly monotonically in-
creasing condition [6, 34]. Some operational rules are defined as follows [5, 6].

(1) βsi = sβ×i ; β ≥ 0, (2.1)

(2) si ⊕ sj = si+j , (2.2)

(3) si ⊗ sj = si×j , (2.3)

(4) (si)
n
= sin ;n ≥ 0. (2.4)

Definition 2.1 ( [26]). Suppose s̃ = [sa, sb], sa, sb ∈ S̄ with a ≤ b are the lower
limit and the upper limit of s̃, respectively, then s̃ is called an uncertain linguistic
variable.

Let S̃ be a set of all uncertain linguistic variables. s̃1 = [sa1, sb1] and s̃2 =
[sa2, sb2] are any two uncertain linguistic variables, the operational rules are defined
as follows [26,27]:

(1) s̃1 ⊕ s̃2 = [sa1, sb1]⊕ [sa2, sb2] = [sa1+a2, sb1+b2], (2.5)

(2) s̃1 ⊗ s̃2 = [sa1, sb1]⊗ [sa2, sb2] = [sa1×a2, sb1×b2], (2.6)

(3) λs̃1 = λ[sa1, sb1] = [sλ∗a1, sλ∗b1], λ ≥ 0, (2.7)

(4) (s̃1)
λ
= [sa1, sb1]

λ = [sa1λ , sb1λ ], λ ≥ 0. (2.8)

2.2. The intuitionistic uncertain linguistic set (IULS)

Definition 2.2 ( [19]). Let hθ(x) ∈ S̄, X be the given discourse domain, then

A = {< x[hθ(x),(uA(x), vA(x))] > |x ∈ X), (2.9)

is called an intuitionistic linguistic set (ILS). where uA : X → [0, 1] and vA : X →
[0, 1] and satisfying 0 ≤ uA(x) + vA(x) ≤ 1, ∀x ∈ X. The numbers uA and vA
respectively represent the membership degree and non-membership degree of the
element x to the linguistic term hθ(x).

The degree of indeterminacy of x to the linguistic term hθ(x) can be written by
π(x) = 1− uA(x)− vA(x) where 0 ≤ π(x) ≤ 1, ∀x ∈ X.

Definition 2.3 ( [7]). Let [sθ(x), sτ(x)] ∈ S̃, and X be the given discourse domain,
then

A = {⟨x|[sθ(x), sτ(x)], (uA(x), vA(x))]⟩|x ∈ X}, (2.10)
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is called an intuitionistic uncertain linguistic set (IULS) in which sθ(x), sτ(x) ∈
S̄, uA : X → [0, 1], and vA : X → [0, 1] satisfying the condition 0 ≤ uA(x) +
vA(x) ≤ 1, ∀x ∈ X. The uA and vA respectively express the membership degree
and non-membership degree of the element x to the uncertain linguistic variable
[sθ(x), sτ(x)] ∈ S̃.

For each IULS in X, if π(x) = 1 − uA(x) − vA(x), ∀x ∈ X then π(x) is called
the degree of uncertainty of x to the uncertain linguistic variable [sθ(x), sτ(x)]. Ob-
viously, It meets 0 ≤ π(x) ≤ 1, ∀x ∈ X.

Definition 2.4 ( [7]). Let A = {⟨x|[sθ(x), sτ(x)], (uA(x), vA(x))]⟩|x ∈ X} be intu-

itionistic uncertain linguistic set, and a =
⟨
[sθ(x), sτ(x)], (uA(x), vA(x))

⟩
is called an

intuitionistic uncertain linguistic number (IULN).

Suppose ã1 = ⟨[sθ(a1), sτ(a1)], (u(a1), v(a1))⟩ and ã2 = ⟨[sθ(a2), sτ(a2)], (u(a2),
v(a2))⟩ be any two intuitionistic uncertain linguistic numbers, the operational laws
are defined as follows [7]:

(1) ã1 + ã2 = ⟨[sθ(a1)+θ(a2), sτ(a1)+τ(a2)], (1− (1− u(a1))(1− u(a2)), v(a1)v(a2))⟩,
(2.11)

(2) ã1 ⊗ ã2 = ⟨[sθ(a1)×θ(a2), sτ(a1)×τ(a2)], (u(a1)u(a2), v(a1) + v(a2)− v(a1)v(a2))⟩,
(2.12)

(3) λã1 = ⟨[sλ×θ(a1), sλ×τ(a1)], (1− (1− u(a1))
λ, (v(a1))

λ)⟩, λ ≥ 0, (2.13)

(4) ãλ1 = ⟨[s(θ(a1))λ , s(τ(a1))λ ], ((u(a1))
λ, 1− (1− v(a1))

λ)⟩, λ ≥ 0. (2.14)

Obviously, these operational results are still intuitionistic uncertain linguistic
numbers.

Theorem 2.1 ( [7]). Let ã1 = ⟨[sθ(a1), sτ(a1)], (u(a1), v(a1))⟩ and ã2 = ⟨[sθ(a2), sτ(a2)],
(u(a2), v(a2))⟩ be any two intuitionistic uncertain linguistic numbers, the operational
laws have the following characteristics.

(1) ã1 + ã2 = ã2 + ã1; (2.15)

(2) ã1 ⊗ ã2 = ã2 ⊗ ã1; (2.16)

(3) λ(ã1 + ã2) = λã1 + λã2, λ ≥ 0; (2.17)

(4) λ1ã1 + λ2ã1 = (λ1 + λ2)ã1, λ1, λ2 ≥ 0; (2.18)

(5) ãλ1
1 ⊗ ãλ2

1 = (ã1)
λ1+λ2 , λ1, λ2 ≥ 0; (2.19)

(6) ãλ1
1 ⊗ ãλ1

2 = (ã1 ⊗ ã2)
λ1 , λ1 ≥ 0. (2.20)

Definition 2.5 ( [7]). Suppose ã1 = ⟨[sθ(a1), sτ(a1)], (u(a1), v(a1))⟩ is an intuition-
istic uncertain linguistic number, then the expectation value E(ã1) of ã1 can be
defined as follows.

E(ã1) =
1

2
× (u(a1)+1−v(a1))×s(θ(a1)+τ(a1))/2 = s((θ(a1)+τ(a1))×(u(a1)+1−v(a1)))/4.

(2.21)

Definition 2.6 ( [7]). Let ã1 = ⟨[sθ(a1), sτ(a1)], (u(a1), v(a1))⟩ be an intuitionistic
uncertain linguistic number, then the accuracy function H(ã1) of ã1 can be defined
as follows.

H(ã1) = (u(a1) + v(a1))× s(θ(a1)+τ(a1))/2 = s((θ(a1)+τ(a1))×(u(a1)+v(a1)))/2. (2.22)
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Definition 2.7 ( [7]). Let ã1 = ⟨[sθ(a1), sτ(a1)], (u(a1), v(a1))⟩ and ã2 = ⟨[sθ(a2),
sτ(a2)], (u(a2), v(a2))⟩ be any two intuitionistic uncertain linguistic numbers, then

(1) if E(ã1) > E(ã2), then ã1 ≻ ã2,

(2) if E(ã1) = E(ã2), then:

(i) if H(ã1) > H(ã2), then ã1 ≻ ã2,

(ii) if H(ã1) = H(ã2), then ã1 = ã2.

Definition 2.8 ( [13]). Let ã1 = ⟨[sθ(a1), sτ(a1)], (u(a1), v(a1))⟩ and ã2 = ⟨[sθ(a2),
sτ(a2)], (u(a2), v(a2))⟩ be any two intuitionistic uncertain linguistic numbers, then
the normalized Hamming distance between ã1 and ã2 can be defined as follows:

d(ã1, ã2)=
1

4(l−1)
|(1+u(a1)−v(a1))(θ(a1)+τ(a1))−(1+u(a2)−v(a2))(θ(a2)+τ(a2))|,

(2.23)
which meets the following conditions:

(1) 0 ≤ d(ã1, ã2) ≤ 1; (2.24)

(2) d(ã1, ã2) = 0; (2.25)

(3) d(ã1, ã2) = d(ã2, ã1); (2.26)

(4) d(ã1, ã2) + d(ã2, ã3) ≥ d(ã1, ã3). (2.27)

2.3. The power aggregation (PA) operator

Definition 2.9 ( [30]). The Power Aggregation (PA) operator, which is firstly
proposed by Yager, is defined as follows:

PA(a1, a2, . . . , an) =

n∑
i=1

(1 + T (ai)) · ai
n∑

i=1

(1 + T (ai))
, (2.28)

where T (ai) =
∑n

j=1
j ̸=i

sup (ai, aj), and sup (ai, aj) means the support for ai from aj ,

which satisfies the following rules:

(1) sup (ai, aj) = sup (aj , ai) ; (2.29)

(2) sup (ai, aj) ∈ [0, 1] ; (2.30)

(3) sup (ai, aj) ≥ sup (am, an) , if |ai − aj | ≤ |am − an| . (2.31)

2.4. Einstein operations of intuitionistic uncertain linguistic
numbers

Einstein operations are a kind of the t-norms and t-conorms families which can
be used to perform the corresponding intersections and unions of IFSs. Einstein
operations are defined as follows [8]:

(1) a⊗ε b =
a+ b

1 + a · b
, a, b ∈ [0, 1] , (2.32)

(2) a⊕ε b =
a · b

1 + (1− a) · (1− b)
, a, b ∈ [0, 1] , (2.33)
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in which Einstein product⊗ε is a t-norm and Einstein sum ⊕ε is a t-conorm.
Let ã1 = ⟨[sθ(a1), sτ(a1)], (u(a1), v(a1))⟩ and ã2 = ⟨[sθ(a2), sτ(a2)], (u(a2), v(a2))⟩,

then we can define the operational rules of intuitionistic uncertain linguistic numbers
based on Einstein t-norm and t-conorm shown as follows:

(1) ã1 ⊗ε ã2 =

⟨[
sθ(a1)θ(a2), sτ(a1)τ(a2)

]
,

(
u (a1)u (a2)

1 + (1− u (a1)) (1− u (a2))
,

ν (a1) + ν (a2)

1 + ν (a1) ν (a2)

)⟩
, (2.34)

(2) ã1 ⊕ε ã2 =

⟨[
sθ(a1)+θ(a2), sτ(a1)+τ(a2)

]
,

(
u (a1) + u (a2)

1 + u (a1)u (a2)
,

ν (a1) ν (a2)

1 + (1− ν (a1)) (1− v (a2))

)⟩
, (2.35)

(3) λã1 =

⟨[
sλθ(a1), sλτ(a1)

]
,

(
(1 + u(a1))

λ − (1− u(a1))
λ

(1 + u(a1))
λ
+ (1− u(a1))

λ
,

2 (ν(a1))
λ

(2− ν(a1))
λ
+ (ν(a1))

λ

)⟩
, λ ≥ 0, (2.36)

(4) ãλ1 =

⟨[
s(θ(a1))

λ , s(τ(a1))
λ

]
,

(
2 (u(a1))

λ

(2− u(a1)) + (u(a1))
λ
,

(1 + ν(a1))
λ − (1− ν(a1))

λ

(1 + ν(a1))
λ
+ (1− ν(a1))

λ

)⟩
, λ ≥ 0. (2.37)

Theorem 2.2. Let ã1 = ⟨[sθ(a1), sτ(a1)], (u(a1), v(a1))⟩ and ã2 = ⟨[sθ(a2), sτ(a2)],
(u(a2), v(a2))⟩ be two intuitionistic uncertain linguistic numbers, then we have the
following operation rules.

(1) ã1 ⊗ε ã2 = ã2 ⊗ε ã1, (2.38)

(2) ã1 ⊕ε ã2 = ã2 ⊕ε ã1, (2.39)

(3) λ (ã1 ⊕ε ã2) = λã2 ⊕ε λã1, λ ≥ 0, (2.40)

(4) λ1ã1 ⊕ε λ2ã1 = (λ1 + λ2)⊕ε ã1, λ1, λ2 ≥ 0, (2.41)

(5) ãλ1
1 ⊗ε ã

λ2
1 = ãλ1+λ2

1 , λ1 ≥ 0, λ2 ≥ 0, (2.42)

(6) ãλ1
1 ⊗ε ã

λ1
2 = (ã1 ⊗ε ã2)

λ1 , λ1 ≥ 0. (2.43)

Proof.

(1) Formula (2.38) is obviously right according to the operational rule (2.1) ex-
pressed by (2.34).

(2) Formula (2.39) is obviously right according to the operational rule (2.2) ex-
pressed by (2.35).

(3) For the left hand of (2.40), we have

ã1 ⊕ε ã2 =

⟨[
sθ(a1)+θ(a2)

sτ(a1)+τ(a2)

]
,

(
u (a1) + u (a2)

1 + u (a1)u (a2)
,

ν (a1) ν (a2)

1 + (1− ν (a1)) (1− v (a2))

)⟩
;
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then

λ (ã1 ⊕ ã2) =
⟨[
sλ(θ(a1)+θ(a1)), sλ(τ(a1)+τ(a1))

]
,(

((1 + u(a1)) (1 + u(a2)))
λ − ((1 + u(a1)) (1 + u(a2)))

λ

((1 + u(a1)) (1 + u(a2)))
λ
+ ((1 + u(a1)) (1 + u(a2)))

λ
,

2 (v(a1)v(a2))
λ

(4− 2v(a1)− 2v(a2) + v(a1)v(a2))
λ
+ (v(a1)v(a2))

λ

)⟩
;

and for the right hand of (2.40), we have

λã1 =

⟨[
sλθ(a1), sλτ(a1)

]
,

(
(1 + u(a1))

λ − (1− u(a1))
λ

(1 + u(a1))
λ
+ (1− u(a1))

λ
,

2 (ν(a1))
λ

(2− ν(a1))
λ
+ (ν(a1))

λ

)⟩
;

λã2 =

⟨[
sλθ(a2), sλτ(a2)

]
,

(
(1 + u(a2))

λ − (1− u(a2))
λ

(1 + u(a2))
λ
+ (1− u(a2))

λ
,

2 (ν(a2))
λ

(2− ν(a2))
λ
+ (ν(a2))

λ

)⟩
;

then

λã1 ⊕ε λã2 =

⟨[
sλθ(a1)θ(a1), sλτ(a1)τ(a1)

]
,(

((1 + u(a1)) (1 + u(a2)))
λ − ((1 + u(a1)) (1 + u(a2)))

λ

((1 + u(a1)) (1 + u(a2)))
λ
+ ((1 + u(a1)) (1 + u(a2)))

λ
,

2 (v(a1)v(a2))
λ

(4− 2v(a1)− 2v(a2) + v(a1)v(a2))
λ
+ (v(a1)v(a2))

λ

)⟩
;

so, we haveλ (ã1 ⊕ε ã2) = λã2 ⊕ε λã1, λ ≥ 0. i.e., formula (2.40) is right.

(4) Similar to the proof of (2.40), it is easy to prove the formula (2.41) is right.
The proof is omitted here.

(5) For the left hand of (2.42), we have

ãλ1
1 =

⟨[
s(θ(a1))

λ1 , s(τ(a1))
λ1

]
,

(
2 (u(a1))

λ1

(2− u(a1))
λ
+ (u(a1))

λ1
,

(1 + ν(a1))
λ1 − (1− ν(a1))

λ1

(1 + ν(a1))
λ1 + (1− ν(a1))

λ1

)⟩
;

ãλ2
1 =

⟨[
s(θ(a1))

λ2 , s(τ(a1))
λ2

]
,

(
2 (u(a1))

λ2

(2− u(a1))
λ
+ (u(a1))

λ2
,

(1 + ν(a1))
λ2 − (1− ν(a1))

λ2

(1 + ν(a1))
λ2 + (1− ν(a1))

λ2

)⟩
;
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then

ãλ1
1 ⊗ε ã

λ2
1

=

⟨[
s(θ(a1))

λ1+λ2 , s(τ(a1))
λ1+λ2

]
,(

u (a1)
λ1+λ2

u (a1)
λ1 (2− u (a1))

λ2 + u (a1)
λ2 (2− u (a1))

λ1
,

2 (1 + v (a1))
λ1+λ2(

(1 + v (a1))
λ1 + (1− v (a1))

λ1

)(
(1 + v (a1))

λ2 + (1− v (a1))
λ2

)
⟩ ;

and for the right hand of (2.42), we have

ã
λ1+λ2

1

=

⟨[
s(θ(a1))

λ1+λ2 , s(τ(a1))
λ1+λ2

]
,(

u (a1)
λ1+λ2

u (a1)
λ1 (2− u (a1))

λ2 + u (a1)
λ2 (2− u (a1))

λ1
,

2 (1 + v (a1))
λ1+λ2(

(1 + v (a1))
λ1 + (1− v (a1))

λ1

)(
(1 + v (a1))

λ2 + (1− v (a1))
λ2

)
⟩ .

So, we have ãλ1
1 ⊕ε ã

λ2
1 = ãλ1+λ2

1 , λ1 ≥ 0, λ2 ≥ 0. i.e., formula (2.42) is right.

(6) Similar to the proof of (2.42), it is easy to prove the formula (2.43) is right.
The proof is omitted here.

3. Some intuitionistic uncertain linguistic fuzzy pow-
ered Einstein operators

In this section, we will combine the PA operator and Einstein operations to in-
tuitionistic uncertain linguistic environment, and propose intuitionistic uncertain
linguistic fuzzy powered Einstein averaging (IULFPEA) operator, intuitionistic un-
certain linguistic fuzzy powered Einstein weighted averaging (IULFPEWA) opera-
tor, intuitionistic uncertain linguistic fuzzy powered Einstein geometric (IULFPEG)
operator and intuitionistic uncertain linguistic fuzzy powered Einstein weighted ge-
ometric (IULFPEWG) operator, and discuss the properties of them.

Definition 3.1. Let ãi =
⟨
[sθ(ai), sτ(ai)], (u(ai), v(ai))

⟩
(i = 1, 2, . . . , n) be a collec-

tion of intuitionistic uncertain linguistic fuzzy numbers, and IULFPEA: Ωn → Ω.
If

IULFPEA(ã1, ã2, . . . , ãn) =

n
⊕ε
i=1

(1 + T (ãi)) ãi

n∑
i=1

(1 + T (ãi))
=

n
⊕ε
i=1

 (1 + T (ãi)) ãi
n∑

i=1

(1 + T (ãi))

 , (3.1)
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where, Ω is the set of all intuitionistic uncertain linguistic fuzzy numbers, and
T (ãi) =

∑n
j=1
i ̸=j

sup (ãi, ãj),and sup (ãi, ãj) is the support for ãi from ãj , then IULF-

PEA is called the intuitionistic uncertain linguistic fuzzy powered Einstein averaging
(IULFPEA) operator.

Theorem 3.1. Let ãi =
⟨
[sθ(ai), sτ(ai)], (u(ai), v(ai))

⟩
(i = 1, 2, . . . , n) be a collec-

tion of intuitionistic uncertain linguistic fuzzy numbers, then the result aggregated
from Definition 3.1 is still an intuitionistic uncertain linguistic fuzzy number, and

IULFPEA (ã1, ã2, . . . , ãn)

=

⟨s n∑
i=1

θ(ai)(1+T(ãi))
n∑

i=1
(1+T(ãi))

, s n∑
i=1

τ(ai)(1+T(ãi))
n∑

i=1
(1+T(ãi))

 ,


n∏

i=1

(1 + u (ai))
1+T(ãi)∑n

i=1 (1+T(ãi)) −
n∏

i=1

(1− u (ai))
1+T(ãi)∑n

i=1 (1+T(ãi))

n∏
i=1

(1 + u (ai))
1+T(ãi)∑n

i=1 (1+T(ãi)) +
n∏

i=1

(1− u (ai))
1+T(ãi)∑n

i=1 (1+T(ãi))

,

2
n∏

i=1

(v (ai))
1+T(ãi)∑n

i=1 (1+T(ãi))

n∏
i=1

(2− v (ai))
1+T(ãi)∑n

i=1 (1+T(ãi)) +
n∏

i=1

(v (ai))
1+T(ãi)∑n

i=1 (1+T(ãi))


⟩
,

(3.2)

where T (ãi) =
∑n

j=1
i ̸=j

sup (ãi, ãj), and sup (ãi, ãj) is the support for ãi from ãj.

Proof. To simplify the Eq. (3.2), we suppose ci =
(1+T (ãi))

n∑
i=1

(1+T (ãi))
(i = 1, 2, . . . , n),

then, the Eq. (3.2) can be expressed as follows:

IULFPEA(ã1, ã2, . . . , ãn)

=

⟨[
s n∑
i=1

θ(ai)ci
, s n∑

i=1

τ(ai)ci

]
, (3.3)


n∏

i=1

(1 + u (ai))
ci −

n∏
i=1

(1− u (ai))
ci

n∏
i=1

(1 + u (ai))
ci +

n∏
i=1

(1− u (ai))
ci
,

2
n∏

i=1

(v (ai))
ci

n∏
i=1

(2− v (ai))
ci +

n∏
i=1

(v (ai))
ci


⟩
.

The Eq. (3.3) can be proved by Mathematical induction on n as follows:

(i) When n=1, the Eq. (3.3) is right obviously.

(ii) Suppose whenn = k, the Eq.(3.3) is right, i.e.,

IULFPEA(ã1, ã2, . . . , ãk)

=

⟨s k∑
i=1

θ(ai)ci
, s k∑

i=1
τ(ai)ci

 ,
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k∏

i=1

(1+u (ai))
ci−

k∏
i=1

(1−u (ai))
ci

k∏
i=1

(1+u (ai))
ci+

k∏
i=1

(1−u (ai))
ci

,

2
k∏

i=1

(v (ai))
ci

k∏
i=1

(2−v (ai))
ci+

k∏
i=1

(v (ai))
ci


⟩
.

Then when n = k + 1, we have

IULFPEA(ã1, ã2, . . . , ãk+1)

= IULFPEA(ã1, ã2, . . . , ãk)⊕ε (ck+1ãk+1)

= IULFPEA (ã1, ã2, . . . , ãk)⊕ε

⟨[
sθ(ak+1)ck+1

, sτ(ak+1)ck+1

]
,(

(1 + u (ak+1))
ck+1 − (1− u (ak+1))

ck+1

(1 + u (ak+1))
ck+1 + (1− u (ak+1))

ck+1
,

2 (v (ak+1))
ck+1

(2− v (ak+1))
ck+1 + (v (ak+1))

ck+1

)⟩

=

⟨sk+1∑
i=1

θ(ai)ci

, sk+1∑
i=1

τ(ai)ci

 ,


k+1∏
i=1

(1 + u (ai))
ci −

k+1∏
i=1

(1− u (ai))
ci

k+1∏
i=1

(1 + u (ai))
ci +

k+1∏
i=1

(1− u (ai))
ci

,

2
k+1∏
i=1

(v (ai))
ci

k+1∏
i=1

(2− v (ai))
ci +

k+1∏
i=1

(v (ai))
ci


⟩
.

So, when n = k + 1, the Eq. (3.3) is also right.

According to (i) and (ii), we can get the Eq. (3.3) is right for all n. Then we
can get the Eq. (3.2) is also right.

Theorem 3.2. [Idempotency] Let ãi = ã for all i, and ã =
⟨[
sθ(a), sτ(a)

]
, u (a) , v (a)

⟩
,

then
IULFPEA(ã1, ã2, . . . , ãn) = ã. (3.4)

Proof. Since ãi = ã for all i, we have

IULFPEA(ã1, ã2, . . . , ãn)

=

⟨s k∑
i=1

θ(a)(1+T (ã))
n∑

i=1
(1+T (ã))

, s k∑
i=1

τ(a)(1+T (ã))
n∑

i=1
(1+T (ã))

 ,


n∏

i=1

(1 + u (a))
1+T (ã)∑n

i=1
(1+T (ã)) −

n∏
i=1

(1− u (a))
1+T (ã)∑n

i=1
(1+T (ã))

n∏
i=1

(1 + u (a))
1+T (ã)∑n

i=1
(1+T (ã)) +

n∏
i=1

(1− u (a))
1+T (ã)∑n

i=1
(1+T (ã))

,

2
n∏

i=1

(v (a))
1+T (ã)∑n

i=1
(1+T (ã))

n∏
i=1

(2− v (a))
1+T (ã)∑n

i=1
(1+T (ã)) +

n∏
i=1

(v (a))
1+T (ã)∑n

i=1
(1+T (ã))


⟩
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=

⟨S
θ(a)

n∑
i=1

(1+T (ã))
n∑

i=1
(1+T (ã))

, S
τ(a)

n∑
i=1

(1+T (ã))
n∑

i=1
(1+T (ã))

 ,

 (1 + u (a))
∑n

i=1
1+T (ã)∑n

i=1
(1+T (ã)) − (1− u (a))

∑n
i=1

1+T (ã)∑n
i=1

(1+T (ã))

(1 + u (a))
∑n

i=1
1+T (ã)∑n

i=1
(1+T (ã)) + (1− u (a))

∑n
i=1

1+T (ã)∑n
i=1

(1+T (ã))

,

2 (v (a))
∑n

i=1
1+T (ã)∑n

i=1
(1+T (ã))

(2− v (a))
∑n

i=1
1+T (ã)∑n

i=1
(1+T (ã)) + (v (a))

∑n
i=1

1+T (ã)∑n
i=1

(1+T (ã))

⟩
=
⟨[
sθ(a), sτ(a)

]
, u (a) , v (a)

⟩
= ã. (3.5)

Theorem 3.3. (Boundary) The IULFPEA operator lies between the max and
min operators: ãmin = min(ã1, ã2, . . . , ãn), ãmax = max(ã1, ã2, . . . , ãn), then

ãmin ≤ IULFPEA(ã1, ã2, . . . , ãn) ≤ ãmax. (3.6)

Proof. Firstly, let g (u (ai)) = 1−u(ai)
1+u(ai)

, u(ai) ∈ [0, 1], we can get g′ (u (ai)) =
−2

(1+u(ai))
2 < 0 by taking a derivative, so g (u (ai)) is a decreasing function.

Suppose u (amin) ≤ u (ai) ≤ u (amax) for all j, we can get 1−u(amax)
1+u(amax)

≤ 1−u(ai)
1+u(ai)

≤
1−u(amin)
1+u(amin)

, then(
1− u(amax)

1 + u(amax)

) (1+T(ãi))∑n
i=1 (1+T(ãi))

≤
(
1− u(ai)

1 + u(ai)

) (1+T(ãi))∑n
i=1 (1+T(ãi))

≤
(
1− u(amin)

1 + u(amin)

) (1+T(ãi))∑n
i=1 (1+T(ãi))

,

n∏
i=1

(
1− u(amax)

1 + u(amax)

) (1+T(ãi))∑n
i=1 (1+T(ãi))

≤
n∏

i=1

(
1− u(ai)

1 + u(ai)

) (1+T(ãi))∑n
i=1 (1+T(ãi))

≤
n∏

i=1

(
1− u(amin)

1 + u(amin)

) (1+T(ãi))∑n
i=1 (1+T(ãi))

,

(
1− u(amax)

1 + u(amax)

) n∑
i=1

(1+T(ãi))∑n
i=1 (1+T(ãi))

≤
n∏

i=1

(
1− u(ai)

1 + u(ai)

) (1+T(ãi))∑n
i=1 (1+T(ãi))

≤
(
1− u(amin)

1 + u(amin)

) n∑
i=1

(1+T(ãi))∑n
i=1 (1+T(ãi))

,

i.e.

1− u(amax)

1 + u(amax)
≤

n∏
i=1

(
1− u(ai)

1 + u(ai)

) (1+T(ãi))∑n
i=1 (1+T(ãi))

≤ 1− u(amin)

1 + u(amin)
,

2

1 + u(amax)
≤ 1 +

n∏
i=1

(
1− u(ai)

1 + u(ai)

) (1+T(ãi))∑n
i=1 (1+T(ãi))

≤ 2

1 + u(amin)
,
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1 + u(amax)

2
≥ 1

1 +
n∏

i=1

(
1−u(ai)
1+u(ai)

) (1+T(ãi))∑n
i=1 (1+T(ãi))

≥ 1 + u(amin)

2
,

thus

1 + u(amax) ≥
2

1 +
n∏

i=1

(
1−u(ai)
1+u(ai)

) (1+T(ãi))∑n
i=1 (1+T(ãi))

≥ 1 + u(amin),

u(amax) ≥
2

1 +
n∏

i=1

(
1−u(ai)
1+u(ai)

) (1+T(ãi))∑n
i=1 (1+T(ãi))

− 1 ≥ u(amin),

therefore

u(amax) ≥

n∏
i=1

(1 + u(ai))

(1+T(ãi))∑n
i=1 (1+T(ãi)) −

n∏
i=1

(1− u(ai))

(1+T(ãi))∑n
i=1 (1+T(ãi))

n∏
i=1

(1 + u(ai))

(1+T(ãi))∑n
i=1 (1+T(ãi))

+
n∏

i=1

(1− u(ai))

(1+T(ãi))∑n
i=1 (1+T(ãi))

≥ u(amin).

(3.7)

Secondly, let f (v (ai)) =
2−v(ai)
v(ai)

, v(ai) ∈ [0, 1], we can get f ′ (v (ai)) =
−2

(u(ai))
2 <

0 by taking a derivative, so f (v (ai)) is a decreasing function.

Suppose v (amax) ≤ v (ai) ≤ v (amin) for all j, we can get 2−v(amin)
v(amin)

≤ 2−v(ai)
v(ai)

≤
2−v(amax)
v(amax)

, so, we have

(
2− v(amin)

v(amin)

) (1+T(ãi))∑n
i=1 (1+T(ãi))

≤
(
2− v(ai)

v(ai)

) (1+T(ãi))∑n
i=1 (1+T(ãi))

≤
(
2− v(amax)

v(amax)

) (1+T(ãi))∑n
i=1 (1+T(ãi))

,

(
2− v(amin)

v(amin)

) n∑
i=1

(1+T(ãi))∑n
i=1 (1+T(ãi))

≤
n∏

i=1

(
2− v(ai)

v(ai)

) (1+T(ãi))∑n
i=1 (1+T(ãi))

≤
(
2− v(amax)

v(amax)

) n∑
i=1

(1+T(ãi))∑n
i=1 (1+T(ãi))

,

2− v(amin)

v(amin)
≤

n∏
i=1

(
2− v(ai)

v(ai)

) (1+T(ãi))∑n
i=1 (1+T(ãi))

≤ 2− v(amax)

v(amax)
,

then

2

v(amin)
≤

n∏
i=1

(
2− v(ai)

v(ai)

) (1+T(ãi))∑n
i=1 (1+T(ãi))

+ 1 ≤ 2

v(amax)
,
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v(amin)

2
≥ 1

n∏
i=1

(
2−v(ai)
v(ai)

) (1+T(ãi))∑n
i=1 (1+T(ãi)) + 1

≥ v(amax)

2
,

v(amin) ≥
2

n∏
i=1

(
2−v(ai)
v(ai)

) (1+T(ãi))∑n
i=1 (1+T(ãi)) + 1

≥ v(amax).

Therefore

v(amin) ≥
2

n∏
i=1

(v(ai))

(1+T(ãi))∑n
i=1 (1+T(ãi))

n∏
i=1

(2−v(ai))

(1+T(ãi))∑n
i=1 (1+T(ãi)) +

n∏
i=1

(v(ai))

(1+T(ãi))∑n
i=1 (1+T(ãi))

≥ v(amax).

Because sθ(amin) ≤ sθ(ai) ≤ sθ(amax), sτ(amin) ≤ sτ(ai) ≤ sτ(amax) for all i, then

s
θ(amin)

(1+T(ãi))∑n
i=1 (1+T(ãi))

≤ s
θ(ai)

(1+T(ãi))∑n
i=1 (1+T(ãi))

≤ s
θ(amax)

(1+T(ãi))∑n
i=1 (1+T(ãi))

,

s
τ(amin)

(1+T(ãi))∑n
i=1 (1+T(ãi))

≤ s
τ(ai)

(1+T(ãi))∑n
i=1 (1+T(ãi))

≤ s
τ(amax)

(1+T(ãi))∑n
i=1 (1+T(ãi))

,

s∑n
i=1 θ(amin)

(1+T(ãi))∑n
i=1 (1+T(ãi))

≤ s∑n
i=1 θ(ai)

(1+T(ãi))∑n
i=1 (1+T(ãi))

≤ s∑n
i=1 θ(amax)

(1+T(ãi))∑n
i=1 (1+T(ãi))

,

s∑n
i=1 τ(amin)

(1+T(ãi))∑n
i=1 (1+T(ãi))

≤ s∑n
i=1 τ(ai)

(1+T(ãi))∑n
i=1 (1+T(ãi))

≤ s∑n
i=1 τ(amax)

(1+T(ãi))∑n
i=1 (1+T(ãi))

,

i.e. sθ(amin) ≤ s∑n
i=1

θ(ai)(1+T(ãi))∑n
i=1 (1+T(ãi))

≤ sθ(amax), sτ(amin)

≤ s∑n
i=1

τ(ai)(1+T(ãi))∑n
i=1 (1+T(ãi))

≤ sτ(amax),

If IULPEA(ã1, ã2, . . . , ãn) = ã =
⟨[
sθ(a), sτ(a)

]
; (u(a), v(a))

⟩
, we know that

sθ(amin) ≤ sθ(a) ≤ sθ(amax), sτ(amin) ≤ sτ(a) ≤ sτ(amax), u(amin) ≤ u(a) ≤ u(amax),

and v(amax) ≤ v(a) ≤ v(amin), then we can get that as follows:

sθ(amin) + sτ(amin) ≤ sθ(a) + sτ(a) ≤ sθ(amax) + sτ(amax), and

u(amin)− v(amin) ≤ u(a)− v(a) ≤ u(amax)− v(amax),

Therefore, ãmin ≤ IULFPEA(ã1, ã2, . . . , ãn) ≤ ãmax, which complete the proof of
Theorem 3.3.

Theorem 3.4. (monotonicity) Let ã∗i =
⟨
[s∗θ(ai)

, s∗τ(ai)
], (u∗(ai), v

∗(ai))
⟩

and

ãi =
⟨
[sθ(ai), sτ(ai)], (u(ai), v(ai))

⟩
be two collection of intuitionistic uncertain lin-

guistic fuzzy number, and if sθ(ai) ≤ s∗θ(ai)
, sτ(ai) ≤ s∗τ(ai)

, u(ai) ≤ u∗(ai), and

v∗(ai) ≤ v(ai), for all i, i = 1, 2, . . . , n, then IULFPEA(ã1, ã2, . . . , ãn) ≤ IULFPEA(ã∗1,
ã∗2, . . . , ã

∗
n).

Proof. Since sθ(ai) + sτ(ai) ≤ s∗θ(ai)
+ ≤ s∗τ(ai)

, and u(ai) ≤ u∗(ai), and v∗(ai) ≤
v(ai), for all i, we can get

n∑
i=1

(
(1+T (ãi))∑n
i=1 (1+T (ãi))

(
sθ(ai)+sτ(ai)

))
≤

n∑
i=1

(
(1+T (ãi))∑n
i=1 (1+T (ãi))

(
s∗θ(ai)

+s∗τ(ai)

))
,
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i.e. s n∑
i=1

(
θ(ai)

(1+T(ãi))∑n
i=1 (1+T(ãi))

) + s n∑
i=1

(
τ(ai)

(1+T(ãi))∑n
i=1 (1+T(ãi))

) ≤s∗
n∑

i=1

(
θ(ai)

(1+T(ãi))∑n
i=1 (1+T(ãi))

)

+ s∗
n∑

i=1

(
τ(ai)

(1+T(ãi))∑n
i=1 (1+T(ãi))

) .

Since 1−u∗(ai)
1+u∗(ai)

≤ 1−u(ai)
1+u(ai)

, i = 1, 2, . . . , n, then

n∏
i=1

(
1− u∗(ai)

1 + u∗(ai)

) (1+T(ãi))∑n
i=1 (1+T(ãi))

≤
n∏

i=1

(
1− u(ai)

1 + u(ai)

) (1+T(ãi))∑n
i=1 (1+T(ãi))

,

2

1 +
n∏

i=1

(
1−u∗(ai)
1+u∗(ai)

) (1+T(ãi))∑n
i=1 (1+T(ãi))

≥ 2

1 +
n∏

i=1

(
1−u(ai)
1+u(ai)

) (1+T(ãi))∑n
i=1 (1+T(ãi))

,

so, we have

n∏
i=1

(1 + u(ai))
(1+T(ãi))∑n

i=1 (1+T(ãi)) −
n∏

i=1

(1− u(ai))
(1+T(ãi))∑n

i=1 (1+T(ãi))

n∏
i=1

(1 + u(ai))
(1+T(ãi))∑n

i=1 (1+T(ãi)) +
n∏

i=1

(1− u(ai))
(1+T(ãi))∑n

i=1 (1+T(ãi))

≥

n∏
i=1

(1 + u∗(ai))
(1+T(ãi))∑n

i=1 (1+T(ãi)) −
n∏

i=1

(1− u∗(ai))

(1+T(ãi))∑n
i=1 (1+T(ãi))

n∏
i=1

(1 + u∗(ai))
(1+T(ãi))∑n

i=1 (1+T(ãi)) +
n∏

i=1

(1− u∗(ai))
(1+T(ãi))∑n

i=1 (1+T(ãi))

.

Since 2−v∗(ai)
v∗(ai)

≥ 2−v(ai)
v(ai)

, i = 1, 2, . . . , n, then

(
2− v∗(ai)

v∗(ai)

) (1+T(ãi))∑n
i=1 (1+T(ãi))

≥
(
2− v(ai)

v(ai)

) (1+T(ãi))∑n
i=1 (1+T(ãi))

,

n∏
i=1

(
2− v∗(ai)

v∗(ai)

) (1+T(ãi))∑n
i=1 (1+T(ãi))

≥
n∏

i=1

(
2− v(ai)

v(ai)

) (1+T(ãi))∑n
i=1 (1+T(ãi))

,

1

n∏
i=1

(
2−v∗(ai)
v∗(ai)

) (1+T(ãi))∑n
i=1 (1+T(ãi)) + 1

≤ 1

n∏
i=1

(
2−v(ai)
v(ai)

) (1+T(ãi))∑n
i=1 (1+T(ãi)) + 1

,

2

n∏
i=1

(
2−v∗(ai)
v∗(ai)

) (1+T(ãi))∑n
i=1 (1+T(ãi)) + 1

≤ 2

n∏
i=1

(
2−v(ai)
v(ai)

) (1+T(ãi))∑n
i=1 (1+T(ãi)) + 1

,

so

2
n∏

i=1

(v(ai))
(1+T(ãi))∑n

i=1 (1+T(ãi))

n∏
i=1

(2− v(ai))
(1+T(ãi))∑n

i=1 (1+T(ãi)) +
n∏

i=1

(v(ai))
(1+T(ãi))∑n

i=1 (1+T(ãi))
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≤
2

n∏
i=1

(v∗(ai))
(1+T(ãi))∑n

i=1 (1+T(ãi))

n∏
i=1

(2− v∗(ai))
(1+T(ãi))∑n

i=1 (1+T(ãi)) +
n∏

i=1

(v∗(ai))
(1+T(ãi))∑n

i=1 (1+T(ãi))

.

We can get IULFPEA(ã1, ã2, . . . , ãn) ≤ IULFPEA(ã∗1, ã
∗
2, . . . , ã

∗
n), which complete

the proof of the Theorem 3.4.

Definition 3.2. Let ãi =
⟨
[sθ(ai), sτ(ai)], (u(ai), v(ai))

⟩
(i = 1, 2, . . . , n) be a collec-

tion of intuitionistic uncertain linguistic fuzzy numbers, and IULFPEWA: Ωn → Ω.
If

IULFPEWA(ã1, ã2, . . . , ãn) =

n
⊕ε
i=1

wi (1 + T (ãi)) ãi

n∑
i=1

wi (1 + T (ãi))
=

n
⊕ε
i=1

 wi (1 + T (ãi)) ãi
n∑

i=1

wi (1 + T (ãi))

 ,

(3.8)
where, Ω is the set of all intuitionistic uncertain linguistic fuzzy numbers, and
T (ãi) =

∑n
j=1
i ̸=j

sup (ãi, ãj), and sup (ãi, ãj) is the support for ãi from ãj , and w =

(w1, w2, . . . wn)
T is the weighting vector of the (ã1, ã2, . . . , ãn) such that wi ∈ [0, 1],

n∑
i=1

wi = 1. Then IULFPEWA is called the intuitionistic uncertain linguistic fuzzy

powered Einstein weighted averaging (IULFPEWA) operator.

Theorem 3.5. Let ãi =
⟨
[sθ(ai), sτ(ai)], (u(ai), v(ai))

⟩
(i = 1, 2, . . . , n) be a collec-

tion of intuitionistic uncertain linguistic fuzzy numbers, then the result aggregated
from Definition 3.2 is still an intuitionistic uncertain linguistic fuzzy number, and

IULFPEWA(ã1, ã2, . . . , ãn)

=
n
⊕ε
i=1

 wi (1 + T (ãi)) ãi
n∑

i=1

wi (1 + T (ãi))


=

⟨s n∑
i=1

θ(ai)wi(1+T(ãi))
n∑

i=1
wi(1+T(ãi))

, s n∑
i=1

τ(ai)wi(1+T(ãi))
n∑

i=1
wi(1+T(ãi))

 ,


n∏

i=1

(1 + u (ai))
wi(1+T(ai))∑n

i=1
wi(1+T(ai)) −

n∏
i=1

(1− u (ai))
wi(1+T(ai))∑n

i=1
wi(1+T(ai))

n∏
i=1

(1 + u (ai))
wi(1+T(ai))∑n

i=1
wi(1+T(ai)) +

n∏
i=1

(1− u (ai))
wi(1+T(ai))∑n

i=1
wi(1+T(ai))

,

2
n∏

i=1

(v (ai))
wi(1+T(ãi))∑n

i=1
wi(1+T(ãi))

n∏
i=1

(2− v (ai))
wi(1+T(ãi))∑n

i=1
wi(1+T(ãi)) +

n∏
i=1

(v (ai))
wi(1+T(ãi))∑n

i=1
wi(1+T(ãi))


⟩
, (3.9)

where T (ãi) =
∑n

j=1
i ̸=j

sup (ãi, ãj), and sup (ãi, ãj) is the support for ãi from ãj,

and w = (w1, w2, . . . wn)
T is the weighting vector of the (ã1, ã2, . . . , ãn) such that



550 P. Liu & L. Shi

wi ∈ [0, 1],
n∑

i=1

wi = 1.

The proof is similar with the Theorem 3.2, and it is omitted here.
Similar to Theorems 3.3-3.4, it is easy to prove the IULFPEWA operator has

the following properties.

Theorem 3.6. (Idempotency) Let all ãi = ã for all i, then

IULFPEWA(ã1, ã2, . . . , ãn) = ã. (3.10)

Theorem 3.7. (Boundary) The IULFPEWA operator lies between the max and
min operators: ãmin = min(ã1, ã2, . . . , ãn), ãmax = max(ã1, ã2, . . . , ãn), then

ãmin ≤ IULFPEWA(ã1, ã2, · · · , ãn) ≤ ãmax.

Definition 3.3. Let ãi =
⟨
[sθ(ai), sτ(ai)], (u(ai), v(ai))

⟩
(i = 1, 2, . . . , n) be a col-

lection of intuition uncertain linguistic fuzzy number, then intuitionistic uncertain
linguistic fuzzy powered Einstein geometric (IULFPEG) operator of dimension n is
a mapping, and has

IULFPEG(ã1, ã2, . . . , ãn) =
n
⊕ε
i=1

(ãi)

(1+T(ãi))∑n
i=1 (1+T(ãi))

, (3.11)

where T (ãi) =
∑n

j=1
i ̸=j

sup (ãi, ãj), and sup (ãi, ãj) is the support for ãi from ãj .

Theorem 3.8. Let ãi =
⟨
[sθ(ai), sτ(ai)], (u(ai), v(ai))

⟩
(i = 1, 2, . . . , n) be a collec-

tion of intuitionistic uncertain linguistic fuzzy number, then the result aggregated
from Definition 3.3 is still an intuitionistic uncertain linguistic fuzzy numbers, and

IULFPEG(ã1, ã2, . . . , ãn)

=
n
⊗ε
i=1

ã

(1+T(ãi))∑n
i=1 (1+T(ãi))

i

=

⟨[
s n∏
i=1

(θ(ai)bi)
, s n∏

i=1
(τ(ai)bi)

]
,

 2
n∏

i=1

(u (ai))
bi

n∏
i=1

(2− u (ai))
bi
+

n∏
i=1

(u (ai))
bi

,

n∏
i=1

(1 + v (ai))
bi −

n∏
i=1

(1− v (ai))
bi

n∏
i=1

(1 + v (ai))
bi
+

n∏
i=1

(1− v (ai))
bi


⟩
,

(3.12)

where bi = (1+T (ãi))∑n
i=1 (1+T (ãi))

(i = 1, 2, . . . , n) and T (ãi) =
∑n

j=1
i ̸=j

sup (ãi, ãj), and

sup (ãi, ãj) is the support for ãi from ãj.

The proof of this theorem is similar with Theorem 3.2, it’s omitted here.
Similar to Theorems 3.3-3.6, it is easy to prove the IULFPEG operator has the

following properties.

Theorem 3.9. (Idempotency) Let ãi = ã for all i, then

IULFEG(ã1, ã2, . . . , ãn) = ã. (3.13)
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Theorem 3.10. (Boundary) The IULFEWA operator lies between the max and
min operators: ãmin = min(ã1, ã2, . . . , ãn), ãmax = max(ã1, ã2, . . . , ãn), then

ãmin ≤ IULFEG(ã1, ã2, . . . , ãn) ≤ ãmax. (3.14)

Theorem 3.11. (monotonicity) Let ã∗i =
⟨
[s∗θ(ai)

, s∗τ(ai)
], (u∗(ai), v

∗(ai))
⟩

and

ãi =
⟨
[sθ(ai), sτ(ai)], (u(ai), v(ai))

⟩
(i = 1, 2, . . . , n) be two collection of intuitionistic

uncertain linguistic fuzzy numbers, and if sθ(ai) ≤ s∗θ(ai)
, sτ(ai) ≤ s∗τ(ai)

, u(ai) ≤
u∗(ai), and u∗(ai) ≤ u(ai), for all i, i = 1, 2, . . . , n, then

IULFEG(ã1, ã2, . . . , ãn) ≤ IULFEG(ã∗1, ã
∗
2, . . . , ã

∗
n). (3.15)

Definition 3.4. Let ãi =
⟨
[sθ(ai), sτ(ai)], (u(ai), v(ai))

⟩
(i = 1, 2, . . . , n) be a col-

lection of intuition uncertain linguistic fuzzy numbers, and IULFPEWG: Ωn → Ω.
If

IULFPEWG(ã1, ã2, . . . , ãn) =
n
⊕ε
i=1

(ãi)

wi(1+T(ãi))∑n
i=1

wi(1+T(ãi))
, (3.16)

where, Ω is the set of all intuitionistic uncertain linguistic fuzzy numbers, and
T (ãi) =

∑n
j=1
i ̸=j

sup (ãi, ãj), and sup (ãi, ãj) is the support for ãi from ãj , and w =

(w1, w2, . . . wn)
T is the weighting vector of the (ã1, ã2, . . . , ãn) such that wi ∈ [0, 1],

n∑
i=1

wi = 1. Then IULFPEWG is called the intuitionistic uncertain linguistic fuzzy

powered Einstein weighted geometric (IULFPEWG) operator.

Theorem 3.12. Let ãi =
⟨
[sθ(ai), sτ(ai)], (u(ai), v(ai))

⟩
(i = 1, 2, . . . , n) be a collec-

tion of intuitionistic uncertain linguistic fuzzy numbers, then the result aggregated
from Definition 3.4 is still an intuitionistic uncertain linguistic fuzzy number, and

IULFPEWG (ã1, ã2, . . . , ãn)

=
n
⊗
i=1

ã

wi(1+T(ãi))∑n
i=1

wi(1+T(ãi))

i

=

⟨[
s n∏
i=1

θ(ai)bi
, s n∏

i=1

τ(ai)bi

]
,

 2
n∏

i=1

(u (ai))
bi

n∏
i=1

(2− u (ai))
bi
+

n∏
i=1

(u (ai))
bi
,

n∏
i=1

(1 + v (ai))
bi −

n∏
i=1

(1− v (ai))
bi

n∏
i=1

(1 + v (ai))
bi +

n∏
i=1

(1− v (ai))
bi


⟩
,

(3.17)

where bi = wi(1+T (ãi))∑n
i=1 wi(1+T (ãi))

(i = 1, 2, . . . , n) and T (ãi) =
∑n

j=1
i ̸=j

sup (ãi, ãj), and

sup (ãi, ãj) is the support for ãi from ãj, and w = (w1, w2, . . . wn)
T is the weighting

vector of the ãi(i = 1, 2, . . . , n), wi ∈ [0, 1],
n∑

i=1

wi = 1.

The proof of this theorem is similar with Theorem 3.2, it’s omitted here.
Similar to Theorems 3.3-3.4, it is easy to prove the IULFPWG operator has the

following properties.
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Theorem 3.13. (Idempotency) Let all ãi = ã for all i, then

IULFEWG(ã1, ã2, . . . , ãn) = ã. (3.18)

Theorem 3.14. (Boundary) The IULFPEWG operator lies between the max and
min operators: ãmin = min(ã1, ã2, . . . , ãn), ãmax = max(ã1, ã2, . . . , ãn), then

ãmin ≤ IULFEWG(ã1, ã2, . . . , ãn) ≤ ãmax. (3.19)

4. The decision-making methods based on the IULF-
PEWA operator and IULFPEWG operator

In order to strengthen the efficiency of this decision-making, we can make several
experts participate in the decision-making under intuitionistic uncertain linguistic
fuzzy environment.

Considering the multiple attribute group decision making problems with intu-
itionistic uncertain linguistic fuzzy information described as follow.

Let A = {A1, A2, . . . , Am} be a set of alternatives, and C = {C1, C2, . . . , Cn}
be the set of attributes, W = {w1, w2, . . . , wn} is the weight vector of the at-
tribute Cj (j = 1, 2, . . . , n), where wj ≥ 0, j = 1, 2, . . . , n,

∑n
j=1 wj = 1. Let

D = {D1, D2, . . . , Dp} be the set of decision makers, and λ = (λ1, λ2, · · ·λp)
T
be the

weight vector of decision makersDq (q = 1, 2, . . . , p), where λq ≥ 0,
p∑

q=1
λq = 1. Sup-

pose H(q) = [h
(q)
ij ]m×n are the decision matrices where h

(q)
ij = ⟨[sθ(q)(hij), sτ(q)(hij)],(

u
(
h
(q)
ij

)
, v
(
h
(q)
ij

))
⟩ takes the form of the intuitionistic uncertain linguistic vari-

ables given by the decision maker Dq for alternative Ai with respect to attribute Cj ,

and u
(
h(q)

ij

)
≥ 0, v

(
h(q)

ij

)
≥ 0, 0 ≤ u

(
h
(q)
ij

)
+ v

(
h
(q)
ij

)
≤ 1, sθ(q)(hij), sτ(q)(hij) ∈ S.

Then, the ranking of alternatives is finally acquired.
The methods involve the following steps:

Step 1. Calculate the supports.

sup(h(q)
ij

, h(t)
ij
) = 1− d(h(q)

ij
, h(t)

ij
), q, t = 1, 2, . . . , p; i = 1, 2, . . . ,m; j = 1, 2, . . . , n

(4.1)
which satisfies the support conditions expressed by formulas (2.29)-(2.31), where
d(h(q)

ij
, h(t)

ij
) is the distance between two IULNs h(q)

ij
and h(t)

ij
, which are defined by

Definition 2.8.

Step 2. Calculate T
(
h(q)

ij

)
.

T
(
h(q)

ij

)
=

p∑
t=1
t ̸=q

sup(h(q)
ij

, h(t)
ij
), q, t = 1, 2, . . . , p; i = 1, 2, . . . ,m; j = 1, 2, . . . , n.

(4.2)

Step 3. Utilize the IULFPEWA operator or the IULFPEWG operator to aggregate
all the individual intuitionitic uncertain linguistic fuzzy decision matrices H(q) =(
h
(q)
ij

)
m×n

(q = 1, 2, . . . , p) into the collective intuitionitic uncertain linguistic fuzzy
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decision matrix H̃ = (hij)m×n where hij = ⟨[sθ(hij), sτ(hij)],
(
u
(
hij

)
, v
(
hij

))
⟩ i =

1, 2, . . . ,m; j = 1, 2, . . . , n.

hij =IULFPEWA(h
(1)
ij , h

(2)
ij , . . . , h

(p)
ij )

=

⟨s p∑
q=1

θ(q)(hij)λq(1+T(h(q)
ij ))

p∑
q=1

λq(1+T(h(q)
ij ))

, s p∑
q=1

τ(q)(hij)λq(1+T(h(q)
ij ))

p∑
q=1

λq(1+T(h(q)
ij ))

 ,


p∏

q=1

(
1 + u

(
h
(q)
ij

)) λq(1+T(h(q)
ij ))

p∑
q=1

λq(1+T(h(q)
ij )) −

p∏
q=1

(
1− u

(
h
(q)
ij

)) λq(1+T(h(q)
ij ))

p∑
q=1

λq(1+T(h(q)
ij ))

p∏
q=1

(
1 + u

(
h
(q)
ij

)) λq(1+T(h(q)
ij ))

p∑
q=1

λq(1+T(h(q)
ij ))

+
p∏

q=1

(
1− u

(
h
(q)
ij

)) λq(1+T(h(q)
ij ))

p∑
q=1

λq(1+T(h(q)
ij ))

,

2
p∏

q=1

(
v
(
h
(q)
ij

)) λq(1+T(h(q)
ij ))

p∑
q=1

λq(1+T(h(q)
ij ))

p∏
q=1

(
2− v

(
h
(q)
ij

)) λq(1+T(h(q)
ij ))

p∑
q=1

λq(1+T(h(q)
ij ))

+
p∏

q=1

(
v
(
h
(q)
ij

)) λq(1+T(h(q)
ij ))

p∑
q=1

λq(1+T(h(q)
ij ))


⟩

(4.3)

or

hij =IULFPEWG(h
(1)
ij , h

(2)
ij , . . . , h

(p)
ij )

=

⟨s p∏
q=1

θ(h
(q)
ij )

λq(1+T(h(q)
ij ))∑p

q=1 λq(1+T(h(q)
ij ))

, s
p∏

q=1
τ(h

(q)
ij )

λq(1+T(h(q)
ij ))∑p

q=1 λq(1+T(h(q)
ij ))

 ,


2

p∏
q=1

(
u
(
h

(q)

ij

)) λq

(
1+T

(
h(q)
ij

))
∑p

q=1 λq(1+T(h(q)
ij ))

p∏
q=1

(
2− u

(
h(q)

ij

)) λq(1+T(h(q)
ij ))∑p

q=1 λq(1+T(h(q)
ij )) +

p∏
q=1

(
u
(
h(q)

ij

)) λq(1+T(h(q)
ij ))∑p

q=1 λq(1+T(h(q)
ij ))

,

p∏
q=1

(
1 + v

(
h

(q)

ij

)) λq

(
1+T

(
h(q)
ij

))
∑p

q=1 λq(1+T(h(q)
ij )) −

p∏
q=1

(
1− v

(
h

(q)

ij

)) λq

(
1+T

(
h(q)
ij

))
∑p

q=1 λq(1+T(h(q)
ij ))

p∏
q=1

(
1 + v

(
h(q)

ij

)) λq(1+T(h(q)
ij ))∑p

q=1 λq(1+T(h(q)
ij )) +

p∏
q=1

(
1− v

(
h(q)

ij

)) λq(1+T(h(q)
ij ))∑p

q=1 λq(1+T(h(q)
ij ))


⟩

(4.4)

Step 4. Calculate the supports.

sup (hij , hik) = 1− d (hij , hik) , i = 1, . . . ,m; j, k = 1, . . . , n. (4.5)



554 P. Liu & L. Shi

Step 5. Calculate T (hij).

T (hij) =
n∑

k=1
k ̸=j

sup (hij , hik), i = 1, . . . ,m; j, k = 1, . . . , n. (4.6)

Step 6. Aggregate the intuitionistic uncertain linguistic fuzzy numbers for each
alternative by the IULFPEWA (or IULFPEWG) operator:

hi=IULFPEWA (hi1, hi2, . . . , hin)

=

⟨s n∑
j=1

θ(hij)wj(1+T(hij))
n∑

j=1
wj(1+T(hij))

, s n∑
j=1

τ(hij)wj(1+T(hij))
n∑

j=1
wj(1+T(hij))

 ,


n∏

j=1

(1 + u (hij))

wj(1+T(hij))
n∑

j=1
wj(1+T(hij)) −

n∏
j=1

(1− u (hij))

wj(1+T(hij))
n∑

j=1
wj(1+T(hij))

n∏
j=1

(1 + u (hij))

wj(1+T(hij))
n∑

j=1
wj(1+T(hij))

+
n∏

j=1

(1− u (hij))

wj(1+T(hij))
n∑

j=1
wj(1+T(hij))

,

2
n∏

j=1

(v (hij))

wj(1+T(hij))
n∑

j=1
wj(1+T(hij))

n∏
j=1

(2− v (hij))

wj(1+T(hij))
n∑

j=1
wj(1+T(hij))

+
n∏

j=1

(v (hij))

wj(1+T(hij))
n∑

j=1
wj(1+T(hij))


⟩

(4.7)

or

hi =IULFPEWG (hi1, hi2, . . . , hin)

=

⟨s
n∏

j=1

θ(hij)

wj(1+T(hij))∑n
j=1

wj(1+T(hij))

, s
n∏

j=1

τ(hij)

wj(1+T(hij))∑n
j=1

wj(1+T(hij))

 ,


2

n∏
j=1

(u (hij))

wj(1+T(hij))∑n
j=1

wj(1+T(hij))

n∏
j=1

(2− u (hij))

wj(1+T(hij))∑n
j=1

wj(1+T(hij))

+
n∏

j=1

(u (hij))

wj(1+T(hij))∑n
j=1

wj(1+T(hij))

,

n∏
j=1

(1 + v (hij))

wj(1+T(hij))∑n
j=1

wj(1+T(hij)) −
n∏

j=1

(1− v (hij))

wj(1+T(hij))∑n
j=1

wj(1+T(hij))

n∏
j=1

(1 + v (hij))

wj(1+T(hij))∑n
j=1

wj(1+T(hij)) +
n∏

j=1

(1− v (hij))

wj(1+T(hij))∑n
j=1

wj(1+T(hij))


⟩

(4.8)

Step 7. Calculate the value E(hi) of hi.

Step 8. Rank hi (i = 1, 2, . . . ,m) in descending order according to the comparison
method of IULNs described in Definition 2.7.

Step 9. End.
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5. An numerical example

In this section, we will provide an example to illustrate the application of IULF-
PEWA and IULFPEWG operator (Cited from [7]). Suppose that an investment
company wants to invest an amount of money to a company. There are four candi-
date companies Ai(i = 1, 2, 3, 4) evaluated by three decision makers {D1, D2, D3}.
The weight vector of the decision makers is λ = (0.4, 0.32, 0.28)

T
, and the at-

tributes considered include: C1 (the risk index), C2 (the growth index), C3 (the
social-political impact index), and C4 (the environmental impact index). Suppose

the attribute weight vector is w = (0.32, 0.26, 0.18, 0.24)
T
.The three decision mak-

ers {D1, D2, D3} evaluate the four companies Ai(i = 1, 2, 3, 4) with respect to the
attributesCj(j = 1, 2, 3, 4) by using the intuitionistic uncertain linguistic variables
(suppose that the decision makers use linguistic term set S = (s0, s1, s2, s3, s4, s5, s6)
to express their evaluation results) and construct the following decision matrices

H(q) = [h
(q)
ij ]4×4 (q = 1, 2, 3) listed in Tables 1-3.

Table 1. Decision matrix H(1).

C1 C2 C3 C4
A1 ⟨[S5, S5](0.2, 0.7)⟩ ⟨[S2, S3](0.4, 0.6)⟩ ⟨[S5, S6](0.5, 0.5)⟩ ⟨[S3, S4](0.2, 0.6)⟩
A2 ⟨[S4, S5](0.4, 0.6)⟩ ⟨[S5, S5](0.4, 0.5)⟩ ⟨[S3, S4](0.1, 0.8)⟩ ⟨[S4, S4](0.5, 0.5)⟩
A3 ⟨[S3, S4](0.2, 0.7)⟩ ⟨[S4, S4](0.2, 0.7)⟩ ⟨[S4, S5](0.3, 0.7)⟩ ⟨[S4, S5](0.2, 0.7)⟩
A4 ⟨[S6, S6](0.5, 0.4)⟩ ⟨[S2, S3](0.2, 0.8)⟩ ⟨[S3, S4](0.2, 0.6)⟩ ⟨[S3, S3](0.3, 0.6)⟩

Table 2. Decision matrix H(2).

C1 C2 C3 C4
A1 ⟨[S3, S4](0.1, 0.7)⟩ ⟨[S3, S4](0.2, 0.7)⟩ ⟨[S3, S4](0.2, 0.8)⟩ ⟨[S6, S6](0.4, 0.5)⟩
A2 ⟨[S5, S6](0.4, 0.5)⟩ ⟨[S3, S4](0.3, 0.6)⟩ ⟨[S4, S5](0.2, 0.6)⟩ ⟨[S3, S4](0.2, 0.7)⟩
A3 ⟨[S4, S5](0.2, 0.6)⟩ ⟨[S4, S4](0.2, 0.7)⟩ ⟨[S2, S3](0.4, 0.6)⟩ ⟨[S3, S4](0.3, 0.7)⟩
A4 ⟨[S5, S5](0.3, 0.6)⟩ ⟨[S4, S5](0.4, 0.5)⟩ ⟨[S2, S3](0.3, 0.6)⟩ ⟨[S4, S4](0.2, 0.6)⟩

Table 3. Decision matrix H(3).

C1 C2 C3 C4
A1 ⟨[S5, S5](0.2, 0.6)⟩ ⟨[S3, S4](0.3, 0.7)⟩ ⟨[S4, S5](0.4, 0.5)⟩ ⟨[S4, S4](0.2, 0.7)⟩
A2 ⟨[S4, S5](0.3, 0.7)⟩ ⟨[S5, S5](0.3, 0.6)⟩ ⟨[S2, S3](0.1, 0.8)⟩ ⟨[S3, S4](0.4, 0.6)⟩
A3 ⟨[S4, S4](0.2, 0.7)⟩ ⟨[S5, S5](0.3, 0.6)⟩ ⟨[S1, S3](0.1, 0.8)⟩ ⟨[S4, S4](0.2, 0.7)⟩
A4 ⟨[S3, S4](0.2, 0.7)⟩ ⟨[S3, S4](0.1, 0.7)⟩ ⟨[S4, S5](0.3, 0.6)⟩ ⟨[S5, S5](0.4, 0.5)⟩

5.1. Ranking four candidate companies by the IULFPEWA
operator

Step 1. Calculate the supports (i = 1, 2, 3, 4; j = 1, 2, 3, 4).

sup(h
(1)
ij , h

(2)
ij ) =


0.908 0.979 0.658 0.725
0.888 0.829 0.863 0.813
0.921 1.000 0.942 0.988
0.742 0.746 0.971 0.975


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Table 4. Decision matrix H̃.

C1 C2
A1 ⟨[S4.371, S4.686](0.169, 0.671)⟩ ⟨[S2.599, S3.599](0.311, 0.659)⟩
A2 ⟨[S4.319, S5.319](0.373, 0.593)⟩ ⟨[S4.366, S4.683](0.341, 0.559)⟩
A3 ⟨[S3.599, S4.317](0.200, 0.668)⟩ ⟨[S4.271, S4.271](0.228, 0.672)⟩
A4 ⟨[S4.822, S5.102](0.355, 0.542)⟩ ⟨[S2.896, S3.896](0.236, 0.674)⟩

Table 4. Decision matrix H̃. (continues)

C3 C4
A1 ⟨[S4.064, S5.064](0.368, 0.587)⟩ ⟨[S4.181, S4.595](0.277, 0.596)⟩
A2 ⟨[S3.027, S4.027](0.133, 0.735)⟩ ⟨[S3.395, S4.000](0.458, 0.589)⟩
A3 ⟨[S2.525, S3.799](0.296, 0.693)⟩ ⟨[S3.679, S4.399](0.258, 0.700)⟩
A4 ⟨[S2.954, S3.954](0.260, 0.600)⟩ ⟨[S3.863, S3.863](0.342, 0.572)⟩

sup(h
(1)
ij , h

(3)
ij ) =


0.958 0.992 0.879 0.992
0.925 0.917 0.975 0.900
0.979 0.875 0.825 0.979
0.596 0.967 0.913 0.800



sup(h
(2)
ij , h

(3)
ij ) =


0.867 0.971 0.982 0.717
0.813 0.913 0.838 0.913
0.942 0.875 0.883 0.992
0.854 0.779 0.883 0.825


Step 2. Calculate T

(
h
(q)
ij

)
(i = 1, 2, 3, 4; j = 1, 2, 3, 4).

T
(
h
(1)
ij

)
=


1.840 1.965 1.445 1.660
1.775 1.695 1.805 1.655
1.880 1.850 1.720 1.960
1.205 1.655 1.860 1.730



T
(
h
(2)
ij

)
=


1.730 1.940 1.568 1.330
1.725 1.690 1.640 1.670
1.835 1.850 1.790 1.975
1.515 1.430 1.825 1.760



T
(
h
(3)
ij

)
=


1.790 1.955 1.833 1.650
1.685 1.795 1.775 1.775
1.905 1.700 1.650 1.965
1.340 1.695 1.755 1.550


Step 3. Utilize the IULFPEWA operator (Eq. (4.3)) to aggregate all the three
decision matrices mentioned above into the following decision matrix showing in
the Table 4.

Step 4. Calculate the supports according to the Eq. (4.5) (k, j = 1, 2, 3, 4) .

sup (h1j , h1k) =


1 0.980 0.891 0.940

0.980 1 0.871 0.919
0.891 0.871 1 0.952
0.940 0.919 0.952 1


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sup (h2j , h2k) =


1 0.981 0.804 0.954

0.981 1 0.822 0.937
0.804 0.822 1 0.849
0.954 0.937 0.849 1



sup (h3j , h3k) =


1 0.978 0.983 0.988

0.978 1 0.869 0.920
0.983 0.869 1 0.971
0.988 0.920 0.971 1



sup (h4j , h4k) =


1 0.823 0.856 0.912

0.823 1 0.969 0.911
0.856 0.969 1 0.942
0.912 0.911 0.942 1



Step 5. Calculate T (hij) (i, j = 1, 2, 3, 4).

T (hij) =


2.810 2.771 2.713 2.810
2.739 2.777 2.475 2.777
2.949 2.929 2.916 2.949
2.589 2.703 2.765 2.765


Step 6. Aggregate the intuitionistic uncertain linguistic fuzzy numbers for each
alternative by the IULFPEWA1 operator:

h1 = ([s3.812, s4.449](0.707, 0.634)); h2 = ([s3.888, s4.611](0.738, 0.608));

h3 = ([s3.601, s4.232](0.695, 0.677)); h4 = ([s3.742, s4.274](0.719, 0.596)).

Step 7. Calculate the value E(hi) of hi.

E(h1) = s2.214, E(h2) = s2.401, E(h3) = s1.994, E(h4) = s2.251.

Step 8. Rank E(hi) in descending order, we can get the best alternative.

BecauseE(h2) > E(h4) > E(h1) > E(h3). A2 is the best choice.

Step 9. End.

5.2. Ranking four candidate companies by the IULFPEWG
operator

Step 1’. Calculate the supports and the result is same with Step 1.

Step 2’. CalculateT
(
h
(q)
ij

)
and the result is same with Step 2.

Step 3’. Utilize the IULFPEWG operator (Eq. (4.4)) to aggregate all the three
decision matrices mentioned above into the following decision matrix showing in the
table 5.
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Table 5. Decision matrix H̃.

C1 C2
A1 ⟨[S4.258, S4.661](0.162, 0.674)⟩ ⟨[S2.550, S3.564](0.298, 0.663)⟩
A2 ⟨[S4.295, S5.300](0.370, 0.601)⟩ ⟨[S4.366, S4.659](0.337, 0.562)⟩
A3 ⟨[S3.564, S4.293](0.200, 0.671)⟩ ⟨[S4.271, S4.249](0.224, 0.675)⟩
A4 ⟨[S4.646, S5.036](0.330, 0.564)⟩ ⟨[S2.896, S3.807](0.206, 0.700)⟩

Table 5. Decision matrix H̃. (continues)

C3 C4
A1 ⟨[S3.975, S4.994](0.355, 0.649)⟩ ⟨[S4.006, S4.513](0.248, 0.620)⟩
A2 ⟨[S2.925, S3.952](0.124, 0.726)⟩ ⟨[S3.361, S4.373](0.356, 0.585)⟩
A3 ⟨[S2.182, S3.679](0.249, 0.681)⟩ ⟨[S3.647, S4.373](0.228, 0.681)⟩
A4 ⟨[S2.851, S3.878](0.255, 0.600)⟩ ⟨[S3.780, S3.780](0.286, 0.574)⟩

Step 4’. Calculate the supports according to the Eq. (4.5) (k, j = 1, 2, 3, 4).

sup (h1j , h1k) =


1 0.981 0.917 0.958

0.981 1 0.898 0.939
0.917 0.898 1 0.959
0.958 0.939 0.959 1



sup (h2j , h2k) =


1 0.984 0.807 0.929

0.984 1 0.823 0.945
0.807 0.823 1 0.956
0.929 0.945 0.956 1



sup (h3j , h3k) =


1 0.978 0.965 0.990

0.978 1 0.944 0.988
0.965 0.944 1 0.956
0.990 0.988 0.956 1



sup (h4j , h4k) =


1 0.833 0.875 0.915

0.833 1 0.958 0.917
0.875 0.958 1 0.917
0.915 0.917 0.917 1


Step 5’. Calculate T (hij) (i, j = 1, 2, 3, 4).

T (hij) =


2.856 2.818 2.774 2.856
2.720 2.752 2.585 2.830
2.934 2.911 2.865 2.934
2.623 2.708 2.750 2.750


Step 6’. Aggregate the intuitionistic uncertain linguistic fuzzy numbers for each
alternative by the IULFPEWG operator.

h1 = ([s3.629, s4.367](0.243, 0.858)); h2 = ([s3.800, s4.544](0.299, 0.842));

h3 = ([s3.443, s4.184](0.221, 0.867)); h4 = ([s3.584, s4.172](0.270, 0.841)).

Step 7’. Calculate the value E(hi) of hi.

E(h1) = s0.766, E(h2) = s0.954, E (h3) = s0.675, E(h4) = s0.831.
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Step 8’. Rank E(hi) in descending order, we can get the best alternative.
Because E(h2) > E(h4) > E(h1) > E(h3). A2 is the best choice.

Step 9’. End.
In order to analyze the effectiveness of the methods proposed above, we can

compare them with that developed by Liu and Jin [9]. We acquire same ranking
results for these methods. But the methods represented in this paper are based
on Einstein operations, and combine the intuitionistic uncertain language and PA
operators. Absolutely, the method proposed by Liu and Jin [9] can give the compre-
hensive evaluation values of all alternatives and the ranking results by generalized
aggregation operators, and the methods in this paper can only provide the ranking
results. However, these methods are the solutions of the MAGDM problems.

6. Conclusion

The intuitionistic uncertain linguistic numbers are a useful tool to convey the
fuzzy information. This paper focuses on multi-attribute group decision making
(MAGDM) problems in which the attribute values are expressed by intuitionistic
uncertain linguistic numbers. The definition and some basic operations of intuition-
istic uncertain linguistic numbers, power aggregation(PA) operators and Einstein
operations are introduced. Then, we apply the Einstein operations to the PA op-
erators under intuitionistic uncertain linguistic environment and put forward some
new aggregation operators such as intuitionistic uncertain linguistic fuzzy powered
Einstein averaging (IULFPEA) operator, intuitionistic uncertain linguistic fuzzy
powered Einstein weighted averaging (IULFPEWA) operator, intuitionistic uncer-
tain linguistic fuzzy Einstein geometric (IULFEG) operator ,intuitionistic uncertain
linguistic fuzzy Einstein weighted geometric (IULFEWG) operator .We also dis-
cussed some properties of them in detail. Further, we propose the decision making
method for MAGDM problems with intuitionistic uncertain linguistic information
and show the detail decision steps. In the future, we should try our best to use the
proposed operators to extend the scope of application.
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