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OPTIMAL SELLING STRATEGY WITH A
LARGE BLOCK OF STOCK∗

Yi Fu1,†, Baojun Bian2 and Jizhou Zhang3

Abstract In this paper, we develop an optimal stock selling strategy with the
stochastic upper bound of selling rate over an infinite time horizon. Moreover,
the temporary and permanent price impact are considered. We treat the
problem by using a fluid model. In the model that the number of shares is
treated as fluid (continuous) and the overall liquidation is dictated by the
rates of selling over time. The goal is to maximize the overall return under
state constraints. The corresponding value function with the selling strategies
is shown to be continuous and the unique viscosity solution to the associated
HJB equation. Finally, a numerical example is given to illustrate the result.
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1. Introduction

A large institutional investor, when selling a large block of shares, is faced with the
following crucial problem. On one hand, selling a large position in a market place
normally depresses the market if sold in a short period of time, which would result
in poor filling prices. An advisable strategy for selling stock of large size is to sell
much smaller number of shares over the time. On the other hand, upper bound of
the quantity of shares which can be sold at some price is not only determined by
seller, but also depend on the liquidity of market. Therefore, the stochastic upper
bound of selling rate has to be considered in the optimal selling strategy.

There is an extensive literature devoted to the contra-trend strategy. For in-
stance, Bertsimas and Lo [4] derived dynamic optimal trading strategies that mini-
mize the expected cost of trading a large block of equity over a fixed time horizon.
This model had been extended by Almgren and Chriss [1]. They considered the
execution of portfolio transactions with the aim of minimizing a combination of
volatility risk and transaction costs arising from permanent and temporary mar-
ket impact, and constructed the efficient frontier in the space of time-dependent
liquidation strategies.
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The following improvement of this work was finished by Almgren [2,3] . A. Schied
and T. SchÄoneborn [15,16] studied the infinite and finite horizon optimal portfolio
liquidation problem for a von Neumann-Morgenstern investor, and characterized the
value function and the optimal strategy as classical solutions of nonlinear parabolic
partial differential equations by stochastic control approach.

M. Pemy, Q. Zhang and G. Yin [11] studied the liquidation strategy for selling
a large block of stock. In particular, they treated the selling rule problem by using
a fluid model, and the corresponding liquidation was dictated by the rate of selling
over time. This model with regime switching has been extended by M. Pemy, Q.
Zhang and G. Yin [12]. In M. Pemy [13], the stock price movements are modeled
by a Markov switching Levy process. B. Bian, M. Dai, L. Jiang, J. Zhang and
Y.F. Zhong [5] considered the liquidation strategy for selling an illiquid stock by
combining selling with occasional buying over a period of time. In their model,
the buying activities helped to stabilize the stock price when heavy selling was in
progress.

Temporary price impact function of stock was studied by F. Lillo, J. Farmer,
and R. Manttegna [10]. They studied the short-term response to a single trade by
using huge amounts of data. The similar work was done by M. Potters and J.-P.
Bouchard [14]. They determined the price impact function using French and British
stocks, and found a logarithmic dependence of the price response on the volume.

This paper differs from the aforementioned papers in the following significant
ways: (1) The stochastic upper bound of selling rate is considered in our model
to better reflect market conditions. In fact, as a result of stochastic liquidity, the
selling strategies are not always satisfied. (2) Our model is analyzed in the viscosity
framework. In general, HJB equation method is the ideal choice for continuous
selling strategy model, because the target (i.e. value function) of the model always
can be described as a supremum or infimum of expectation. However, the HJB
equation in our article is a fully nonlinear degenerate parabolic equation and is not
well-posed in the classical sense, and the value function is not smooth enough to
satisfy the HJB equation in the classical sense. Therefore, it is natural to ask for a
weak solution such that the value function is unique even though it is not smooth.
One such weak solution called viscosity solution was introduced by Crandall and
Lions [6, 7]. More properties was discussed by H M. Soner [17,18].

The rest of this article is organized as follows. In section 2, we rigorously devel-
ope the mathematical model for the optimal selling strategy with stochastic upper
bound of selling rate, in which the temporary and permanent price impact are con-
sidered. We prove that the value function is continuous, and show that it is the
viscosity solutions of the HJB equation. In section 3, we prove the comparison
principle of the viscosity solutions and then the uniqueness follows the comparison
principle. In section 4, we present the numerical examples to demonstrate how to
apply the method to find the optimal selling rules.

2. Problem Formulation

Let Xt denote the stock price at time t, which satisfies the stochastic differential
equation

dXt = (µ− alt(Zt ∧ zup))Xtdt+ σ1XtdB
1
t , t ∈ [0,+∞) X(0) = x , (2.1)

x ∈ (0,+∞)
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with positive µ, a, zup and σ1, where a is the permanent price impact parameter
and B1

t is a standard Brownian motion.

Here, Zt denote the liquidity of the stock in the market(i.e. market’s capacity
to absorb the stock), which is assumed to satisfy the following equation

dZt = σ2ZtdB
2
t , t ∈ [0,+∞) Z(0) = z , z ∈ (0,+∞), (2.2)

where Bt
2 is a standard Brownian motion. σ2 is positive constants and volatility.

Therefore, Zt ∧ zup can describe stochastic upper bound of selling rate in the real
market, which is stochastic and finite, where zup is positive constant. In fact, the
upper bound of selling rate is not only determined by seller, but also influenced by
liquidity of the market (i.e., Zt), so it is stochastic. Moreover, because the upper
bound of selling rate is constrained by the actual trade conditions (i.e., zup) (i.e.
positions, quantity of buyers, firm trade policy and so on), it is finite.

lt ∈ [0, 1] is the control variable, which denote the ratio of the stochastic upper
bound. Therefore, lt(Zt ∧ zup) means the selling rate at time t with strategy lt

The number of shares of a stock yet hold is denoted by Y (t) satisfying the
following first-order differential equation

dYt = −lt(Zt ∧ zup)dt, t ∈ [0,+∞), Y (0) = y, y ∈ [0,+∞). (2.3)

Thus, the variables at any time t consists of the (Xt, Yt, Zt) , and the space is
Q̄ = R+ × R̄+ ×R+, where R̄+ = [0,+∞).

Definition 2.1. We say that a control lt is admissible with respect to the initial
values (x, y, z) ∈ Q̄, if (i) lt is an Ft = σ{Xs : s < t} adapted; (ii) lt ∈ [0, 1]
for all t ≥ 0. (iii) For arbitrary lt, (X(t), Y (t), Z(t)) ∈ Q̄, when t ≥ 0. We use
A = A(x, y, z) to denote the set of all admissible controls.

The optimal control model can be expressed as the following form that we need
to maximize

J(x, y, z; l) = E[

τ∫
0

e−ρtlt(Zt ∧ zup)h(lt, Zt)Xtdt], (2.4)

where ρ is the discount rate, and

τ = inf
0≤t≤∞

{s |Yt ≤ 0}.

h(lt, Zt) is the temporary price impact function, which is assumed to be

h(lt, Zt) = (1 + g′) exp[g|lt(Zt ∧ zup)|β ],

where g′ is the bid-ask spread parameter, g is the temporary price impact factor, β
is the price impact exponent [10,14].

In the following, assuming β = 1, glt(Zt ∧ zup) ≪ 1 and g′ = 0. Then, the
temporary impact function is approximately

h(lt, Zt) ≈ 1− glt(Zt ∧ zup).
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Define the value function as follows:

W (x, y, z) = sup
l∈A(x,y,z)

J(x, y, z, l), (x, y, z) ∈ Q̄ (2.5)

= sup
l∈A(x,y,z)

E[

τ∫
0

e−ρtlt(Zt ∧ zup)(1− glt(Zt ∧ zup))Xtdt].

Lemma 2.1. Assume ρ > µ, the following assertion hold.

(a) For each (x, z), W (x, y, z) is nondecreasing in y.

(b) W (x, y, z) is continuous in (x, y, z) ∈ Q̄.

Proof. (a) Note that for 0 ≤ y1 ≤ y2, A(x, y1, z) ⊂ A(x, y2, z). Given l ∈
A(x, y1, z), then l ∈ A(x, y2, z). We have

W (x, y2, z) ≥ J(x, y2, z; l)

≥ J(x, y1, z; l)

for any (x, z). This implies W (x, y2, z) ≥ W (x, y1, z).
Next we process to prove (b). Note that

Xi,t = xi exp(

∫ t

0

µ− 1

2
σ2
1 − al(Zs ∧ zup)ds+σ1B

1
t ), (i = 1, 2).

Note also that for any x1 > 0, x2 > 0, A(x1, y, z) = A(x2, y, z), where (y, z) ∈
R̄+ ×R+.

For any l ∈ A(x1, y, z) = A(x2, y, z), we have

|J(x1, y, z; l)− J(x2, y, z; l)| (2.6)

≤E[

∫ ∞

0

e−ρtl(Zt ∧ zup) |X1,t −X2,t| dt]

≤ |x1 − x2| zupE[

∫ ∞

0

e−(ρ−µ)t− 1
2σ

2
1t+σ1B

1
t dt]

≤|x1 − x2| zup
ρ− µ

.

The inequality (2.6) implies the continuity of W (x, y, z) with respect to x.
It remains to show that W (x, y, z) is continuous in y. In view of (a), it suffices to

show that for 0 ≤ y1 ≤ y2 < +∞, W (x, y1, z) ≤ W (x, y2, z). Let ly,2 ∈ A(x, y2, z),
such that

y2 =

∫ ∞

0

ly,2(s)(Zs ∧ zup)ds, and W (x, y2, z) ≤ J(x, y2, z; ly,2) + |y2 − y1| .

Let

τ1 = inf{t > 0 :

∫ t

0

ly,2(s)(Zs ∧ zup)ds = y2 − y1}.

It follows that
∫ τ1
0

ly,2(s)(Zs ∧ zup)ds = y2 − y1. Define

ly,1 =

{
0, if 0 ≤ t ≤ τ1,
ly,2, if t > τ1.
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It is obviously, ly,1 ∈ A(x, y1, z). We have

|J(x, y2, z; ly,2)− J(x, y1, z; ly,1)|

≤E

[ ∫ ∞

0

e−ρt(Zt ∧ zup)
∣∣∣ly,2(1− gly,2(Zt ∧ zup))Xt(ly,2)

− ly,1(1− gly,1(Zt ∧ zup))Xt(ly,1)
∣∣∣dt]

≤E

[ ∫ ∞

0

e−ρt(Zt ∧ zup)
∣∣∣ly,2(1− gly,2(Zt ∧ zup))Xt(ly,2)

− ly,2(1− gly,2(Zt ∧ zup))Xt(ly,1)
∣∣∣dt]

+ E

[ ∫ ∞

0

e−ρt(Zt ∧ zup)
∣∣∣ly,2(1− gly,2(Zt ∧ zup))Xt(ly,1)

− ly,1(1− gly,1(Zt ∧ zup))Xt(ly,1)
∣∣∣)dt],

where

E

[ ∫ ∞

0

e−ρt(Zt ∧ zup)
∣∣∣ly,2(1− gly,2(Zt ∧ zup))Xt(ly,2)

− ly,2(1− gly,2(Zt ∧ zup))Xt(ly,1)
∣∣∣dt]

≤zupxE[

∫ ∞

0

e−(ρ−µ+ 1
2σ

2
1)t+σ1B

1
t

∣∣∣e− ∫ t
0
aly,2(Zs∧zup)ds − e−

∫ t
0
aly,1(Zs∧zup)ds

∣∣∣dt]
≤zupxaE[

∫ ∞

0

e−(ρ−µ+ 1
2σ

2
1)t+σ1B

1
t

∣∣∣∣∫ t

0

ly,2(Zs ∧ zup)ds−
∫ t

0

ly,1(Zs ∧ zup)ds

∣∣∣∣dt]
=zupxaE[

∫ ∞

0

e−(ρ−µ+ 1
2σ

2
1)t+σ1B

1
t

∫ ∞

0

|ly,2 − ly,1| (Zs ∧ zup)dsdt]

=zupxaE[

∫ ∞

0

e−(ρ−µ+ 1
2σ

2
1)t+σ1B

1
t

∫ τ1

0

ly,2(Zs ∧ zup)dsdt]

≤zupxa |y2 − y1|
ρ− µ

, (2.7)

and

E

[ ∫ ∞

0

e−ρt(Zt ∧ zup)
∣∣∣ly,2(1− gly,2(Zt ∧ zup))Xt(ly,1)

− ly,1(1− gly,1(Zt ∧ zup))Xt(ly,1)
∣∣∣)dt]

≤E[

∫ τ1

0

e−ρt(Zt ∧ zup)Xt(0)ly,2dt]

=E[

∫ τ1

0

e−ρtXt(0)d

∫ t

0

ly,2(ZS ∧ zup)ds] (2.8)

= E[e−ρtXt(0)

∫ t

0

ly,2(ZS ∧ zup)ds

∣∣∣∣τ1
0

]

+ E[

∫ τ1

0

∫ t

0

ly,2(Zs ∧ zup)ds(ρ− µ)e−ρtXt(0)dt]
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=E[e−ρτ1Xτ1(0)

∫ τ1

0

ly,2(Zs ∧ zup)ds]

+ E[

∫ ∞

0

∫ τ1

0

ly,2(Zs ∧ zup)ds(ρ− µ)e−ρtXt(0)dt]

≤x |y2 − y1|+
|y2 − y1| (ρ− µ)x

(ρ− µ)
= 2x |y2 − y1| .

Therefore, using (2.7), (2.8), we obtain |J(x, y2, z; ly,2)− J(x, y1, z; ly,1)| ≤ (
zupxa
ρ−µ +

2x) |y2 − y1|. It follows that

W (x, y1, z) ≥ J(x, y1, z; ly,1)

≥ J(x, y2, z; ly,2)− (
zupxa

ρ− µ
+ 2x) |y2 − y1|

≥ W (x, y2, z)− (
zupxa

ρ− µ
+ 2x+ 1) |y2 − y1| .

Combining with (a), we have the continuity of W (x, y, z) with respect to y.

It remains to show that W (x, y, z) is continuous in z. For 0 ≤ z1 ≤ z2 < ∞,
A(x, y, z2) ⊂ A(x, y, z1). We have∣∣∣∣∣ sup

A(x,y,z2)

J(x, y, z2)− sup
A(x,y,z1)

J(x, y, z1)

∣∣∣∣∣
≤

∣∣∣∣∣ sup
A(x,y,z2)

J(x, y, z2)− sup
A(x,y,z2)

J(x, y, z1)

∣∣∣∣∣ (2.9)

+

∣∣∣∣∣ sup
A(x,y,z2)

J(x, y, z1)− sup
A(x,y,z1)

J(x, y, z1)

∣∣∣∣∣ .
Above all, we estimate the first part of the right side in (2.9). In fact

|J(x, y, z2)− J(x, y, z1)|

≤E

[ ∫ ∞

0

e−ρtl
∣∣∣Xt(z2)(1− gl(Z2,t ∧ zup))(Z2,t ∧ zup)

−Xt(z1)(1− gl(Z1,t ∧ zup))(Z1,t ∧ zup)
∣∣∣dt]

≤E

[ ∫ ∞

0

e−ρtl
∣∣∣Xt(z2)(1− gl(Z2,t ∧ zup))(Z2,t ∧ zup) (2.10)

−Xt(z2)(1− gl(Z1,t ∧ zup))(Z1,t ∧ zup)
∣∣∣dt]

+ E

[ ∫ ∞

0

e−ρtl
∣∣∣Xt(z2)(1− gl(Z1,t ∧ zup))(Z1,t ∧ zup)

−Xt(z1)(1− gl(Z1,t ∧ zup))(Z1,t ∧ zup)
∣∣∣dt],

where Zi,t = zie
1
2σ

2
2t+σ2B

2
t , Xt(zi) = xe

∫ t
0
µ− 1

2σ
2
1−al(Zi,s∧zup)ds+σ1B

1
t .
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In (2.10), we have following estimate:

E

[ ∫ ∞

0

e−ρtl
∣∣∣Xt(z2)(1− gl(Z2,t ∧ zup))(Z2,t ∧ zup)

−Xt(z2)(1− gl(Z1,t ∧ zup))(Z1,t ∧ zup)
∣∣∣dt] (2.11)

≤(1 + 2gzup)E[

∫ ∞

0

e−ρtXt(z2) |Z2,t − Z1,t|dt]

≤(1 + 2gzup)x |z2 − z1|E[

∫ ∞

0

e−(ρ−µ+ 1
2σ

2
1)t+σ1B

1
t− 1

2σ
2
2t+σ2B

2
t dt]

≤x(1 + 2gzup) |z2 − z1|
ρ− µ

and

E

[ ∫ ∞

0

e−ρtl
∣∣∣Xt(z2)(1− gl(Z1,t ∧ zup))(Z1,t ∧ zup)

−Xt(z1)(1− gl(Z1,t ∧ zup))(Z1,t ∧ zup)
∣∣∣dt] (2.12)

≤zupE[

∫ ∞

0

e−ρtl |Xt(z2)−Xt(z1)|dt]

≤zupxE[

∫ ∞

0

e−(ρ−µ+ 1
2σ

2
1)t+σ1B

1
t

∣∣∣e− ∫ t
0
al(Z1,s∧zup)ds − e−

∫ t
0
al(Z2,s∧zup)ds

∣∣∣dt]
≤zupxE[

∫ ∞

0

e−(ρ−µ+ 1
2σ

2
1)t+σ1B

1
t

∫ t

0

al |(Z1,s ∧ zup)− (Z2,s ∧ zup)| dsdt]

≤zupgxE[

∫ ∞

0

e−(ρ−µ+ 1
2σ

2
1)t+σ1B

1
t

∫ t

0

|Z1,s − Z2,s| dsdt]

≤zupax |z2 − z1|E[

∫ ∞

0

e−(ρ−µ+ 1
2σ

2
1)t+σ1B

1
t

∫ t

0

e
1
2σ

2
2t+σ2B

2
t dsdt]

≤zupax |z2 − z1|
∫ ∞

0

e−(ρ−µ)ttdt =
zupax |z2 − z1|

(ρ− µ)
2 .

Combining with (2.10)-(2.12), we obtain∣∣∣∣∣ sup
A(x,y,z2)

J(x, y, z2)− sup
A(x,y,z2)

J(x, y, z1)

∣∣∣∣∣
≤ sup

A(x,y,z2)

|J(x, y, z2)− J(x, y, z1)| (2.13)

≤zupgx |z2 − z1|
(ρ− µ)

2 +
x |z2 − z1|

ρ− µ
= (

zupa

(ρ− µ)
2 +

1 + 2gzup
ρ− µ

)x |z2 − z1| .

Next, let us estimate the second part of (2.9), i.e.,∣∣∣∣∣ sup
A(x,y,z2)

J(x, y, z1)− sup
A(x,y,z1)

J(x, y, z1)

∣∣∣∣∣ .
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Because A(x, y, z2) ⊂ A(x, y, z1), it is obviously that

sup
A(x,y,z2)

J(x, y, z1) ≤ sup
A(x,y,z1)

J(x, y, z1). (2.14)

Let lz,1 ∈ A(x, y, z1), such that y =
∫∞
0

lz,1(s)(Z1,s ∧ zup)ds, and W (x, y, z1) ≤
J(x, y, z1; lz,1) + |z2 − z1| . Define τ2 = inf{t > 0 :

∫ t

0
lz,1(s)(Z2,s ∧ zup)ds ≥ y},

which implies
∫ τ2
0

lz,1(s)(Z2,s ∧ zup)ds = y.

Let lz,2 =

{
lz,1, if 0 ≤ t ≤ τ2,

0, if t > τ2,
and such that lz,2 ∈ A(x, y, z2).

In fact, using integration by parts, we have

|J(x, y, z1; lz,2)− J(x, y, z1; lz,1)|

≤E[

∫ ∞

τ2

e−ρtlz,1Xt(lz,1, z1)(1− glz,1(Z1,t ∧ zup))(Z1,t ∧ zup)dt]

≤E[

∫ ∞

τ2

e−ρtlz,1Xt(0, z1)(Z1,t ∧ zup)dt]

≤E[

∫ ∞

τ2

e−ρtXt(0, z1)d

∫ t

τ2

lz,1(Z1,s ∧ zup)ds]

= E[e−ρtXt(0, z1)

∫ t

τ2

lz,1(Z1,s ∧ zup)ds

∣∣∣∣∞
τ2

]

− E[

∫ ∞

τ2

∫ t

τ2

lz,1(Z1,s ∧ zup)dsd(e
−ρtXt(0, z1))]

≤E[

∫ ∞

τ2

∫ ∞

τ2

lz,1(Z1,s ∧ zup)ds(ρ− µ)e−ρtXt(0, z1)dt)]

=E[

∫ ∞

τ2

∫ τ2

0

lz,1 |(Z2,s ∧ zup)− (Z1,s ∧ zup)| ds(ρ− µ)e−ρtXt(0, z1)dt)]

≤(ρ− µ)E[

∫ ∞

τ2

e−ρtXt(0, z1)

∫ τ2

0

lz,1 |Z2,s − Z1,s| dsdt)]

≤(ρ− µ) |z2 − z1|xE[

∫ ∞

τ2

e−(ρ−µ+ 1
2σ

2
1)t+σ1W

1
t

∫ τ2

0

e−
1
2σ

2
2t+σ2W

2
t dsdt)]

≤(ρ− µ) |z2 − z1|xE[

∫ ∞

τ2

e−( ρ−µ
2 + 1

2σ
2
1)t+σ1W

1
t

∫ τ2

0

e−( ρ−µ
2 + 1

2σ
2
2)t+σ2W

2
t dsdt)]

≤(ρ− µ) |z2 − z1|xE[

∫ ∞

0

e−( ρ−µ
2 + 1

2σ
2
1)t+σ1W

1
t

∫ ∞

0

e−( ρ−µ
2 + 1

2σ
2
2)t+σ2W

2
t dsdt)]

≤4x |z2 − z1|
ρ− µ

,

which leads to

sup
A(x,y,z2)

J(x, y, z1; lz,2) ≥ J(x, y, z1; lz,2)

≥ J(x, y, z1; lz,1)−
4x |z2 − z1|

ρ− µ

≥ sup
A(x,y,z1)

J(x, y, z1; lz,1)− (
4x

ρ− µ
+ 1) |z2 − z1| .
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Combining (2.14), we obtain∣∣∣∣∣ sup
A(x,y,z2)

J(x, y, z2)− sup
A(x,y,z1)

J(x, y, z1)

∣∣∣∣∣ (2.15)

≤
(

zupgx

(ρ− µ)
2 +

x+ 2gzupx

ρ− µ

)
|z2 − z1|+

( 4x

ρ− µ
+ 1

)
|z2 − z1|

=

(
zupgx

(ρ− µ)
2 +

5x+ 2gzupx

ρ− µ
+ 1

)
|z2 − z1| .

According to general hypothesis and dynamical programming principle(DPP),
we derive formally the HJB equation for the value function (2.5) as following

µx
∂W

∂x
+

1

2
σ1

2x2 ∂
2W

∂x2
+

1

2
σ2

2z2
∂2W

∂z2
− ρW

+ (z ∧ zup) sup
l∈A

[l(1− gl(z ∧ zup))x− alx
∂W

∂x
− l

∂W

∂y
] = 0, (x, y, z) ∈ Q,

(2.16)

W (x, 0, z) = 0, (x, z) ∈ R+2, (2.17)

where Q = R+3. In the next, we will show that the value function defined in (2.5)
is the viscosity solution of the HJB equation (2.16)-(2.17).

Above all, we introduce the following notion of a viscosity solution ( [18]).

Definition 2.2. Let W : Q̄ → R be locally bounded

F (x, y, z,W,
∂W

∂x
,
∂W

∂y
,
∂W

∂z
,
∂2W

∂x2
,
∂2W

∂z2
)

=µx
∂W

∂x
+

1

2
σ1

2x2 ∂
2W

∂x2
+

1

2
σ2

2z2
∂2W

∂z2
− ρW

(z ∧ zup) sup
l∈A

[l(1− gl(z ∧ zup))x− alx
∂W

∂x
− l

∂W

∂y
].

(1) W ∈ USC(Q̄) is a viscosity subsolution of (2.16)-(2.17) if

F

(
x̄, ȳ, z̄,W,

∂ϕ

∂x
(x̄, ȳ, z̄),

∂ϕ

∂y
(x̄, ȳ, z̄),

∂ϕ

∂z
(x̄, ȳ, z̄),

∂2ϕ

∂x2
(x̄, ȳ, z̄),

∂2ϕ

∂z2
(x̄, ȳ, z̄)

)
≥ 0

for all (x̄, ȳ, z̄) ∈ Q and for all ϕ ∈ C2(Q) such that (x̄, ȳ, z̄) is a maximum point of
W − ϕ.

(2) W ∈ LSC(Q̄) is a viscosity supersolution of (2.16)-(2.17) if

F

(
x̄, ȳ, z̄,W,

∂ϕ

∂x
(x̄, ȳ, z̄),

∂ϕ

∂y
(x̄, ȳ, z̄),

∂ϕ

∂z
(x̄, ȳ, z̄),

∂2ϕ

∂x2
(x̄, ȳ, z̄),

∂2ϕ

∂z2
(x̄, ȳ, z̄)

)
≤ 0

for all (x̄, ȳ, z̄) ∈ Q and for all ϕ ∈ C2(Q) such that (x̄, ȳ, z̄) is a minimum point of
W − ϕ.

(3) We say that W is a viscosity solution of (2.16)-(2.17) if it is both a subsolution
and supersolution of (2.16)-(2.17) .
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Lemma 2.2. The value function (2.5) satisfies a linear growth in Q̄. This means
that there exists a finite positive constant Cp such that for any (x, y, z) in Q̄,

|W (x, y, z)| ≤ Cp(1 + |x|+ |y|+ |z|). (2.18)

Proof. Indeed, let the optimal control l∗ replace l.

|W (x, y, z)| ≤ E[

∞∫
0

e−ρsl∗(z ∧ zup)(1− gl∗(z ∧ zup))Xsds] ≤
zup
ρ− µ

x. (2.19)

Theorem 2.1. The value function (2.5) is a viscosity solution of the HJB equation
(2.16)-(2.17) .

Proof. The theorem can be proved easily from DPP.
For discussing the uniqueness of the viscosity solution, we let

ξ = lnx, η = ln z, u(ξ, y, η) = W (x, y, z).

Then, HJB equation (2.16)-(2.17) is written as following.

(µx− 1

2
σ1

2)
∂u

∂ξ
+

1

2
σ1

2 ∂
2u

∂ξ2
− 1

2
σ2

2 ∂u

∂η
+

1

2
σ2

2 ∂
2u

∂η2
− ρu

+ (eη ∧ zup) sup
l∈A (ξ,y,η)

[l(1− gl(eη ∧ zup))e
ξ − al

∂u

∂ξ
− l

∂u

∂y
] = 0, (ξ, y, η) ∈ Q1

(2.20)

u(ξ, 0, η) = 0, (ξ, η) ∈ R2, (2.21)

where Q1 = R×R+ ×R. and Q̄1 = R× R̄+ ×R .

Lemma 2.3. For all (ξ, y, η) ∈ Q̄1, u(ξ, y, η) is the viscosity solution of (2.20)
(2.21), and the value function u(ξ, y, η) satisfies

|u(ξ, y, η)| ≤ Cp(e
ξ + |y|+ |η|+ 1),

where Cp is a positive constant.

3. Comparison Principle and Uniqueness

Theorems 2.1 show the value function (2.5) is a viscosity solution of (2.16)-(2.17),
which provides the existence result for the problem . In this section, we develop the
comparison principle and uniqueness of the viscosity solutions. Firstly, we shall need
a formulation of viscosity sub-and super-solutions based on the so called semijets.

Definition 3.1. (1) The set of second-order superjet of a USC function U at
point v̄ ∈ Q1 is

P 2,+U(v̄) ={
(
q̄, M̄

)
∈ R3 × S3 |U(v) ≤ U(v̄) + q̄(v − v̄)

+
1

2
M̄(v − v̄)(v − v̄) + o(|v − v̄|2), Q1 ∋ v → v̄},

where S3 is 3× 3 symmetric matrix, and v = (ξ, y, η).
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(2) The set of second-order subjet of a LSC function V at point at point v̄ ∈ Q1

is

P 2,−V (v̄) ={
(
q̄, M̄

)
∈ R3 × S3 |V (v, t) ≥ V (v̄) + q̄(v − v̄)

+
1

2
M̄(v − v̄)(v − v̄) + o(|v − v̄|2), Q1 ∋ v → v̄}.

The closure P̄ 2,+U(v̄)(P̄ 2,−V (v̄)) is defined as the set of
(
q̄, M̄

)
∈ R3 × S3

for which there exists a sequence
(
uk, qk,Mk

)
∈ Q1 × R3 × S3 such that(

vk, U(vk), qk,Mk
)
→

(
v̄, U(v̄), q̄, M̄

)
,
((
vk, V (vk), qk,Mk

)
→

(
v̄, V (v̄), q̄, M̄

))
as k → ∞, and

(
qk,Mk

)
∈ P 2,+U(v̄)

(
P 2,−V (v̄)

)
for all k.

Secondly, we need the maximum principle for semicontinuous functions for el-
liptic equation.

Lemma 3.1 (Ishii’s lemma, [6]). Let Ui ∈ USC (Oi), for i = 1, · · · , k, where Qi

is a locally compact subset of RN . Let ϕ be defined on an open neighborhood of
O1 × · · · × Ok, and such that ϕ(x1, · · · , xk) is twice continuously differentiable in
(x1, · · · , xk) ∈ O1 × · · · ×Ok , suppose

(x̂1, · · · , x̂k) ∈ O1 × · · · ×Ok,

F (x1, · · · , xk) = U1(x1) + · · ·+ Uk(xk)− ϕ(x1, · · · , xk) ≤ F (x̂1, · · · , x̂k),

for (x1, · · · , xk) ∈ O1 × · · · × Ok. Then for each η > 0, there are Mi ∈ SNi such
that 

(Dxiϕ(x̂1, · · · , x̂k),Mi) ∈ P̄ 2,+Ui(x̄i) for i = 1, · · · , k,

−
(

1
η + ∥A∥

)
I ≤

 M1 · · · 0
...

. . .
...

0 · · · MK

 ≤ A+ ηA2,
(3.1)

where A = (D2
xϕ)(x̂1, · · · , x̂k). The norm of symmetric matrix A is defined as

∥A∥ = sup{|⟨Aξ, ξ⟩| : |ξ| ≤ 1}.

Finally, the next theorem is a comparison principle for the viscosity sub- and
super-solutions that satisfies a exponential growth (lemma 2.3).

Theorem 3.1. Suppose ρ > ρ̂, and U ∈ USC
(
Q̄1

)
is a viscosity subsolution of (

2.20),V ∈ LSC
(
Q̄1

)
is a viscosity supersolution of (2.20), satisfying U(ξ, y, η) ≤

V (ξ, y, η), for (ξ, y, η) ∈ ∂Q1 then we have U(ξ, y, η) ≤ V (ξ, y, η), for (ξ, y, z) ∈ Q̄1,
where ∂Q1 = Q̄1 \Q1, ρ̂ = max{2µ+ σ2

1 , µ+ azup +
1
2σ

2
1 ,

1
2σ

2
2} .

Proof. Before the proof, we define some notations and operators as following for
simplifying the theorem proving procedure.

a. (ξ, y, η) is denoted by P , and (ξ∗, y∗, η∗) is denoted by P ∗. P1, P2, P1,α,
P2,α, P1,ε, P2,ε, Pε are similarly defined.

b. |P1P2| =
√
(ξ1 − ξ2)

2
+ (y1 − y2)

2
+ (η1 − η2)

2
, and ∥P∥n = enξ+|ξ|n+|y|n+

|η|n, n ∈ N .

We argue by contradiction, which yields:

U(P ∗) ≥ V (P ∗) + 2δ, for some P ∗ ∈ Q̄1 (3.2)
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with δ > 0.
We now use the dedoubling variable technique by considering for any 1 > ε >

0 and α, the functions are defined as follows:

Φ (P1, P2) = U(P1)− V (P2)− ϕ(P1, P2),

ϕ(P1, P2) =
α

2
|P1P2|2 +

ε

2
(∥P1∥2 + ∥P2∥2).

Let Fα = sup
R×R̄+×R×R×R̄+×R

Φ(P1, P2). Because of growth condition and upper

semicontinuity of Φ (P1, P2), we get that Fα < +∞, and there exists (P1,α, P2,α),
such that

Fα = Φ(P1,α, P2,α) . (3.3)

Hence,

Fα ≥ U(P ∗)− V (P ∗)− ε∥P ∗∥2 ≥ δ (3.4)

for each ε small enough. This implies that U(P1,α) ≥ V (P2,α) + δ, for each α > 0
and ε small enough.

Because of Φ (0, 0) ≤ Φ(P1,α, P2,α) and linear growth condition,

U(0)− V (0)− ε ≤ U(P1,α)− V (P2,α)−
α

2
|P1,αP2,α|2 −

ε

2

(
∥P1,α∥2 + ∥P2,α∥2

)
.

Then we have

α

2
|P1,αP2,α|2 +

ε

2

(
∥P1,α∥2 + ∥P2,α∥2

)
− ε ≤ U(P1,α)− V (P2,α)− U(0) + V (0)

≤ Cp (∥P1,α∥+ ∥P2,α∥+ 1) .

It means that there are positive constants C1,ε , that ∥P1,α∥2 + ∥P2,α∥2 ≤ C1,ε,
where C1,ε is determined by ε.

From these, the conclusion can be obtained that there exists a subsequence, still
denoted by (P1,α, P2,α), which converges some (P1,ε, P2,ε) ∈ R×R̄+×R×R×R̄+×R,
when α → ∞ (for each fixed ε).

Furthermore, we can get α
2 |P1,αP2,α|2 ≤ C2,ε is a positive constant for fixed ε.

So ξ1,α − ξ2,α → 0 , y1,α − y2,α → 0, η1,α − η2,α → 0, as α → ∞, and P1,ε = P2,ε.
Let Pε = P1,ε = P2,ε in the following.

Because of Φ (P1,ε, P2,ε) ≤ Φ (P1,α, P2,α), we get

α

2
|P1,αP2,α|2 ≤U(P1,α)− U(P1,ε)− V (P2,α) + V (P2,ε)

+
ε

2

(
∥P1,ε∥2 + ∥P2,ε∥2

)
− ε

2

(
∥P1,α∥2 + ∥P2,α∥2

)
.

The semicontinuity of U and V help us yield α
2 |P1,αP2,α|2 → 0 as α → ∞ (for each

fixed ε).
Because of Φ (P ∗, P ∗) ≤ Φ(P1,α, P2,α), we have

ε

2

(
∥P1,α∥2 + ∥P2,α∥2

)
≤ U(P1,α)− V (P2,α)− U(P ∗) + V (P ∗) + ε∥P ∗∥2

≤ U(P1,α)− V (P2,α) + ε∥P ∗∥2.
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If Pε ∈ ∂Q1, it is obvious that U(P1,α) − V (P2,α) ≥ Fα ≥ U(P ∗) − V (P ∗) −
ε∥P ∗∥2. For the upper semicontinuity of U − V and U(Pε) ≤ V (Pε), as α → ∞
and ε → 0, we get U(P ∗) ≤ V (P ∗), this contradices (3.2). Therefore Pε ∈ Q1.

In what follows, we assume Pε ∈ R×R+×R, so that P1,α ∈ R×R+×R, P2,α ∈
R×R+ ×R for any α large enough. An application of Ishii lemma yields

(q1,α,Mα) ∈ P̄ 2,+U(P1,α), (q2,α,Mα) ∈ P̄ 2,−V (P2,α),

where q1,α = DP1,αϕ, q2,α = −DP2,αϕ.
Since U and V are viscosity subsolution and viscosity supersolution of (2.20),

there exists a constant l∗, such that (µ− al∗(eη1,α ∧ zup))− 1
2σ1

2

−l∗(eη1,α ∧ zup)
− 1

2σ2
2

T  α (ξ1,α − ξ2,α) + ε(e2ξ1,α + ξ1,α)
α (y1,α − y2,α) + εy1,α
α (η1,α − η2,α) + εη1,α


+

1

2
tr


 σ1 0 0

0 0 0
0 0 σ2

 σ1 0 0
0 0 0
0 0 σ2

T

Mα

 (3.5)

+ l∗(eη1,α ∧ zup)(1− gl∗(eη1,α ∧ zup))e
ξ1,α − ρU ≥ 0,

 (µ− al∗(eη2,α ∧ zup))− 1
2σ1

2

−l∗(eη2,α ∧ zup)
− 1

2σ2
2

T  α (ξ1,α − ξ2,α)− ε(e2ξ2,α + ξ2,α)
α (y1,α − y2,α)− εy2,α
α (η1,α − η2,α)− εη2,α


+

1

2
tr


 σ1 0 0

0 0 0
0 0 σ2

 σ1 0 0
0 0 0
0 0 σ2

T

Mα

 (3.6)

+ l∗(eη2,α ∧ zup)(1− gl∗(eη2,α ∧ zup))e
ξ2,α − ρV ≤ 0,

We subtract (3.6) from (3.5), and get

(3.6)− (3.5) =I + II − ρ (U − V ) + l∗(eη1,α ∧ zup)(1− gl∗(eη1,α ∧ zup))e
ξ1,α

− l∗(eη2,α ∧ zup)(1− gl∗(eη2,α ∧ zup))e
ξ2,α ≥ 0. (3.7)

Notice,

I =

 µx1,α − al∗(z1,α ∧ zup)
−l∗(z1,α ∧ zup)

0

T  α (x1,α − x2,α) + εx1,α

α (y1,α − y2,α) + εy1,α
α (z1,α − z2,α) + εz1,α


−

 µx2,α − al∗(z2,α ∧ zup)
−l∗(z2,α ∧ zup)

0

T  α (x1,α − x2,α)− εx1,α

α (y1,α − y2,α)− εy1,α
α (z1,α − z2,α)− εz1,α

 ,

(3.8)

II =
1

2
tr

((
CCT CDT

DCT DDT

)(
Mα 0
0 −Nα

))
, (3.9)

where C =

 σ1 0 0
0 0 0
0 0 σ2

 = D.
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From ishii lemma, we conclude(
Mα 0
0 −Nα

)
≤ A+

1

α
A2,

whereA = α

(
I −I
−I I

)
+ε

(
R1 0
0 R2

)
, andRi =

 2e2ξi,α + 1 0 0
0 1 0
0 0 1

 , i =

1, 2.
Then, we have

A2 =2α2

(
I −I
−I I

)
+ εα

(
R1 −R2

−R1 R2

)
+ εα

(
R1 −R1

−R2 R2

)
+ ε2

(
R1

2 0
0 R2

2

)
.

Therefore,

II =
1

2
tr

((
CCT CDT

DCT DDT

)(
Mα 0
0 −Nα

))
(3.10)

≤ 1

2
tr

((
CCT CDT

DCT DDT

)
(A+

1

α
A2)

)
.

Let α → +∞. The limit of (3.8) and (3.9) can be obtained as the following

lim
α→∞

I = 2ε(µ− al∗(eηε ∧ zup)−
1

2
σ1

2)(e2ξε + ξε)− 2l∗εyε(e
ηε ∧ zup)− εσ2

2ηε,

(3.11a)

lim
α→∞

II ≤ 2εσ1
2e2ξε + εσ1

2 + εσ2
2. (3.11b)

Finally, from (3.8)-(3.11), the (3.8) can be written as

0 ≤2ε(µ− al∗(eηε ∧ zup)−
1

2
σ1

2)(e2ξε + ξε)− εσ2
2ηε + 2εσ1

2e2ξε + εσ1
2 + εσ2

2

− ρ(U(Pε)− V (Pε))

≤ε(2µ− 2al∗(eηε ∧ zup) + σ2
1)e

2ξε + ε(2µ− 2al∗(eηε ∧ zup)− σ2
1)ξε

− εσ2
2ηε + ε(σ2

1 + σ2
2)− ρ(U(Pε)− V (Pε))

≤ε(µ+ azup +
3

2
σ2
1 +

3

2
σ2
2) + ε(2µ+ σ2

1)e
2ξε + ε(µ+ azup +

1

2
σ2
1)ξ

2
ε + ε

1

2
σ2
2η

2
ε

− ρ(U(Pε)− V (Pε))

≤ε(µ+ azup +
3

2
σ2
1 +

3

2
σ2
2) + ρ̂ε∥Pε∥2 − ρ(U(Pε)− V (Pε))

≤ε(µ+ azup +
3

2
σ2
1 +

3

2
σ2
2) + ρ̂ε∥P ∗∥2 − (ρ− ρ̂)(U(Pε)− V (Pε))

≤ε(µ+ azup +
3

2
σ2
1 +

3

2
σ2
2) + ρ̂ε∥P ∗∥2 − (ρ− ρ̂)δ.

If ε is chosen sufficiently small, this is the contradiction and the proof is completed.

Corollary 3.1. The value function u(ξ, y, η) is the unique viscosity solution of
(2.20)-(2.21).
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4. Numerical Simulation

In this section, we discuss the numerical illustrative examples, and give the concrete
analysis. Firstly, we will show the optimal strategy, before the finite difference
calculation.

4.1. Optimal Strategy

From the HJB equation (2.16), the strategy should have the following form:

l∗ =


0,

x−ax ∂W
∂x − ∂W

∂y

2g(z∧zup)x
≤ 0,

x−ax ∂W
∂x − ∂W

∂y

2g(z∧zup)x
, 0 <

x−ax ∂W
∂x − ∂W

∂y

2g(z∧zup)x
< 1,

1,
x−ax ∂W

∂x − ∂W
∂y

2g(z∧zup)x
≥ 1.

The above strategy can be obtained easily, after simplifying the HJB equation,
because it is the stochastic quadratic control problem. However, the close-form
solution of (2.16) always can’t be obtained, we seek numerical solutions for the
problem under consideration.

4.2. Boundary Conditions

In equation (2.16), there are three state variables. If we hope to solve this equation
by implicit scheme or C-N scheme, we need five boundary conditions. Except (2.17),
there are another two boundary conditions.

(1) x → +∞, ∂2W
∂X2 ≈ 0 [9].

(2) z → +∞, (z ∧ zup) → zup. It means the state variable z can be ignored, we
have

W (x, y, z) → sup
l∈A(x,y)

E[

τ∫
0

e−ρtlzup(1− glzup)Xtdt].

4.3. Finite Difference Scheme

The finite difference method, which was discussed by [9], is used in the following
simulation to get a positive coefficient discretization of equation (2.16). The main
steps can be summarized as following.

(Step 1)Consider the step size ∆x, ∆y and ∆z for x, y, z. Define the infinite lattice

Σh
Inf = {(x, y, z) = (i∆x, j∆y, k∆z)|i, j, k = 0, 1, 2, · · · } .

For actual numerical calculations, Σh
Inf must be replaced by some finite lattice Σh

F

as the subset of Σh
Inf . Denote

Σh
F =

{
(x, y, z) ∈ Σh

Inf |0 ≤ x ≤ M, 0 ≤ y ≤ N, 0 ≤ z ≤ L
}
,

where M > 0, N > 0, L > 0 is large enough and M = m∆x,N = n∆y, L = l∆z.
Let i = 0, · · · ,m; j = 0, · · · , n; k = 0, · · · , l. Then we have xi = i∆x, yk =

k∆y, zj = j∆z. The equation (2.6) can be discretized using forward, backward or
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central differencing to give

(µ− al(zj ∧ zup))i(W
k+1
i+1,j −W k+1

i,j )1(µ>al(zj∧zup)) (4.1)

− (µ− al(zj ∧ zup))i(W
k+1
i,j −W k+1

i−1,j)1(µ≤al(zj∧zup))

+
1

2
σ2
1i

2(W k+1
i+1,j − 2W k+1

i,j +W k+1
i−1,j)

+
1

2
σ2
2j

2(W k+1
i,j+1 − 2W k+1

i,j +W k+1
i,j−1)− ρW k+1

i,j +− l(zj ∧ zup)

∆y
(W k+1

i,j −W k
i,j)

+ l(zj ∧ zup)(1− gl(zj ∧ zup))xi = 0,

where l can be assigned any initial value.

(Step 2)Calculate the matrix (W k+1)1 from W k. If
∣∣(W k+1)1 − (W k+1)0

∣∣ < er,
the iteration stop, where er is the allowed error, and (W k+1)0 = W k. Otherwise,
computer l1 by (W k+1)1 and replace the l in (4.1).

(Step 3)Repeat the step 3, until
∣∣(W k+1)n − (W k+1)n−1

∣∣ < er.

4.4. Computational Examples

The parameters for this section are shown in Table 1.

Table 1. Parameters for this numerical simulation

Parameter Value Parameter Value
µ 0.02 a 0.01
σ1 0.2 g 0.02
σ2 0.1 M 30
ρ 0.5 N 20
zup 2 L 8
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Figure 1. The parametric is shown in
Table 1. The Values of cash flow, as de-
fined in (2.5), and X, Y , as defined in
(2.1, 2.3) are reported at z=1.6, z=3.2 for
various position level. The case that Z
wasn’t considered in the model was also
shown in the Fig. 1.

15 16 17 18 19 2024 26 28 30
180

200

220

240

260

280

300

320

X
Y

W

without Z

Z=3.2

Z=1.6

Figure 2. is the part of Fig. 1, which was
magnified. This means that the income
perhaps is overestimated, if the stochastic
upper bound of selling rate is ignored.
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Figure 3. On one hand, the bigger Y
correspond the bigger l, because ρ > µ,
i.e., more positions means more discount-
ed cost. On the other hand, l declined as
X increases. In fact, the seller will be un-
wise , if he choose bigger l, when the X
is bigger at the same time. The reason is
that the cost on account of the temporary
and permanent price impact may be more
than the discounted cost.
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Figure 4. Be similar to Figure.3, we show
the strategy with X and Z.
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Figure 5. g is the temporary price im-
pact factor. The smaller g means smaller
losses in each deal. Therefore the seller
can liquidate more shares with the small-
er temporary price impact.
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Figure 6. a is the permanent price im-
pact factor. The bigger a means lower
price of the stock will be. Consequently,
the seller will liquidate less shares with
bigger permanent price impact.
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Figure 7. ρ means the market rate of return. The bigger ρ implies there are better investment chance
in the market, so the seller will liquidate shares more quickly.



Optimal selling strategy of stock 513

5. Conclusion

In this paper, we developed an optimal selling model with the temporary and perma-
nent price impact. We show that the value function is continuous and the viscosity
solutions of the HJB equation and prove the comparison principle of the viscosity
solutions. Finally, we give numerical illustrative examples and numerical solution
of optimal selling strategies with finite difference method.
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