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Abstract In this paper we investigate the exact traveling wave solutions
of the fifth-order Kaup-Kuperschmidt equation. The bifurcation and exact
solutions of a general first-order nonlinear equation are investigated firstly.
With the help of Maple and by using the bifurcation and exact solutions of
two derived subequations, we obtain two families of solitary wave solutions and
two families of periodic wave solutions of the KK equation. The relationship
of the two subequations and the two known first integrals are analyzed.
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1. Introduction

In this paper we study the traveling wave solutions of the fifth-order Kaup-Kupersch
-midt(KK) equation [10,11,14–16]

uxxxxx − 15uuxxx −
75

2
uxuxx + 45u2ux + ut = 0. (1.1)

Actually, this equation is related to a general fifth-order nonlinear wave equation
[8, 10]

uxxxxx + αuuxxx + βuxuxx + γu2ux + ut = 0. (1.2)

Obviously, Equation (1.2) reduces to the KK equation (1.1) by choosing (α, β, γ)
to be (−15,−75/2, 45). Actually, equation (1.2) involves many important nonlinear
equations that have been studied in the literature. For example, letting α = 10, β =
20 and γ = 30, equation (1.2) becomes the Lax equation. It is the Sawada-Kortera
(SK) equation [5, 18,19] if α = β = γ = 5 in equation (1.2). When α = β = 30 and
γ = 180, it is the Caudrey-Dodd-Gibbon (CDG) equation [4]. If (α, β, γ) is chosen
to be (3, 6, 2), equation (1.1) is known as the Ito equation [9]. It has been shown in
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the literature that the properties of equation (1.2) drastically changes as α, β and
γ take different values. For instance, the Lax equation and the SK equation are
completely integrable and possess N -soliton solution. However, the Ito equation is
not completely integrable but has a finite numbers of conservation laws [9].

In [14], Li studied the traveling wave solutions of the KK equation (1.1) by using
the bifurcation approach. Under the traveling wave coordinates, the KK equation
(1.1) reduces to a nonlinear ordinary differential equation (ODE) of the independent
variable ξ = x− ct, where c is a constant representing the wave speed. Integrating
the derived ODE once with respect to ξ gives

d4y

dξ4
− 15y

d2y

dξ2
− 45

4

(
dy

dξ

)2

+ 15y3 − cy + g = 0, (1.3)

where g is a constant of integration. Clearly, y(ξ) = y(x − ct) is a traveling wave
solution of equation (1.1) if and only if y(ξ) satisfies (1.3) with the wave speed c
and any constant g. Equation (1.3) corresponds to the F-III form of the higher-
order Painleve equation in Cosgrove’s paper [2]. By using the method of dynamical
systems and the two first integrals and some solution formulas of equation (1.3)
presented in [2], Li [14] obtained some explicit solitary wave and periodic wave
solutions of the KK equation (1.1).

Let x1 = y, x2 = x′1 = y′, x3 = x′2 = y′′, x4 = x′3 = y′′′, then equation (1.3) can
be rewritten as the following four dimensional system:

x′1 = x2, x
′
2 = x3, x

′
3 = x4, x

′
4 = 15x1x3 +

45

4
x2

2 − 15x3
1 + cx1 − g. (1.4)

Generally speaking, we have to study the dynamical behavior of the fourth-order
ODE (1.4) in the 4-dimensional phase space, for which it is usually very difficult to
obtain the orbits. However, for the case when the first integral of this equation is
found, this problem possibly reduces to the one in lower dimensional space which
might be easier to handle. In [2], Cosgrove obtained the two first integrals of
equation (1.4) which can be rewritten as:

Φ1(x1, x2, x3, x4) =(x4 − 12x1x2)2 − 3x1x
2
3 + (

3

2
x2

2 + 30x3
1)x3 − 93x2

1x
2
2 − 72x5

1

− c(2x1x3 − x2
2 − 8x3

1) + 2g(x3 − 6x2
1) +

4

3
cg = K1 (1.5)

and

Φ2(x1, x2, x3, x4)

= x1x
2
4 − (x3 + 18x2

1)x2x4 + (
1

3
x3 − 6x2

1)x2
3 + (

27

2
x1x

2
2 + 30x4

1)x3

− c(2

3
x2x4 −

1

3
x3

3 + 2x2
1x3 −

15

2
x1x

2
2 − 2x4

1) +
1

3
c2x2

1 −
2

3
cgx1

− 4

81
c3 − g2 − 9

16
x4

2 +
135

2
x3

1x
2
2 − 45x6

1 + g(2x1x3 −
3

2
x2

2 − 6x3
1)

= K2. (1.6)

According to the Theorem on first integrals, we know system (1.4) can be re-
duced to a two dimensional space provided that x3 and x4 can be figured out
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from (1.5) and (1.6) for any arbitrary constants K1 and K2. Unfortunately, it is
intractable to solve equations (1.5) and (1.6) for x3 and x4 because they are higher-
order polynomial equations of x3 and x4. However, for some special values of K1

and K2, (1.5) and (1.6) might be applied to derive the solutions of the higher-
order equations (1.4). For instance, Li [14] obtained the solitary wave solutions

approaching
√

15c
15 at infinity and some periodic wave solutions of the KK equation

corresponding to system (1.4) with g = 0.
In this paper, we derived a lower-order subequation of the 4th-order nonlinear

equation (1.3). In order to obtain the solitary wave solutions and periodic solu-
tions, we study the bifurcation and exact solutions of a general first-order nonlinear
equation in Section 2. In Section 3, by applying the bifurcation and the formulas
obtained in Section 2 and with the help of computer algebra and symbolic compu-
tation, we derive two families of periodic wave solutions and two families of solitary

wave solutions approaching
√
c

3 and 2
√

11c
33 respectively as time ξ goes into infinity.

In addition, we exploit the relationships of the subequations and the two known
first integral (1.5) and (1.6). Finally we present some conclusions and discussions
in Section 4.

2. Bifurcation and exact solutions of a subequation
of equation (1.3)

2.1. Lower-order subequations of equation (1.3)

Notice that equation (1.3) consists of d4y/dξ4, d2y/dξ2, (dy/dξ)2 and polynomial
of y. If y satisfies equation (

dy

dξ

)2

= Pm(y), (2.1)

where Pm(y) is a polynomial function of degree m, then it solves

d2y

dξ2
=

1

2
P ′m(y) (2.2)

and

d4y

dξ4
=

1

2
P ′′′m (y)Pm(y) +

1

4
P ′′m(y)P ′m(y). (2.3)

Obviously, the right-hand sides of equations (2.2) and (2.3) are both polynomials
of y. This observation motivates us to try to find some suitable polynomial Pm in
y such that y solves the higher-order equation (1.3) if it satisfies equation (2.1).

Suppose that the function y = y(ξ) satisfies equation (1.3), then d4y
dξ4 , y d

2y
dξ2 and

(dydξ )2 are all polynomials in y and their degrees are 2m− 3, m and m, respectively.

Accordingly, we are trying to find the possible polynomial P3(y) = a3y
3 + a2y

2 +
a1y + a0 such that y solves equation (1.3) if it satisfies equation(

dy

dξ

)2

= a3y
3 + a2y

2 + a1y + a0. (2.4)
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Inserting (2.4) with the higher-order derivatives d4y
dξ4 , d

2y
dξ2 obtained by (2.4) into

(1.3) and comparing the coefficients of like powers of y, we have

y3 : 15 +
15

2
a2

3 −
135

4
a3 = 0,

y2 : −105

4
a2 +

15

2
a2a3 = 0,

y1 :
9

2
a1a3 + a2

2 −
75

4
a1 − c = 0,

y0 :
1

2
a1a2 −

45

4
a0 + 3a0a3 + g = 0.

(2.5)

Solving system (2.5) for ais, i = 0, 1, 2, 3, gives two solutions of (2.5) (a0, a1, a2, a3) =
(− 4

3g,−
4
3c, 0, 4) and (a0, a1, a2, a3) = ( 4

39g,−
2
33c, 0,

1
2 ). Hence, we obtained two

subequations of equation (1.3) and we state this result in the following theorem.

Theorem 2.1. The function y = y(ξ) solves the fourth-order differential equation
(1.3) if it satisfies (

dy

dξ

)2

= 4y3 − 4c

3
y − 4

3
g (2.6)

or (
dy

dξ

)2

=
1

2
y3 − 2c

33
y +

4

39
g. (2.7)

According to the conclusion of Theorem 2.1, we know that the fourth-order ODE
(1.3) can be reduced to the first-order nonlinear ODEs (2.6) and (2.7). In what
follows, we study the bifurcation and exact solutions of these two subequations.

2.2. Bifurcation and explicit solutions of equation (2.4)

Let y′ = v, then the first-order ODE (2.1) is equivalent to the following planar
dynamical system:  y′ = v,

v′ =
3

2
a3y

2 + a2y +
a1

2
,

(2.8)

which is a Hamiltonian system with Hamiltonian

H(y, v) =
1

2
[v2 − (a3y

3 + a2y
2 + a1y)] = h. (2.9)

Obviously, H(y, v) = h = a0/2 corresponds to equation (2.1). Consequently, we
know the dynamical behaviors of ODE (2.1) from the orbits of the system (2.8) cor-
responding to H(y, v) = a0/2. Clearly, the phase orbits defined by the vector field
of system (2.8) determine all solutions of equation (2.1). Especially, the bound-
ed solutions of equation (2.1) correspond to the bounded phase orbits of system
(2.8). By investigating the bifurcation of the planar dynamical system (2.8), one
gets different kinds of solutions of equation (2.1) under various coefficients condi-
tions. Therefore, the dynamical behaviors and exact solutions of equation (2.1) are
obtained.
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To obtain the dynamical behaviors of system (2.8), we firstly study the equilib-
rium points of this system. Obviously, the roots of P ′3(y) = 0 are the abscissas of
the equilibrium points of system (2.8). Suppose that ye is a root of P ′3(y) = 0, that
is to say, (ye, 0) is an equilibrium point of system (2.8). By the theory of planar
dynamical systems [1, 7], we need to study the matrix

Df(y0, 0) =

(
0 1

P ′′3 (ye) 0

)
of the linearized system of (2.8) at (ye, 0). The equilibrium point (ye, 0) is a cen-
ter, having a punctured neighborhood in which any solution is a periodic orbit, if
det(Df(ye, 0)) = −P ′′3 (ye) > 0. It is a saddle point if det(Df(ye, 0)) < 0. However,
it is a cusp point if det(Df(ye, 0)) = 0. To obtain the phase portraits, besides the
equilibriums, we also need to investigate the boundary curves of the centers and
the orbits connecting the saddle points or cusp points which are determined by the
Hamiltonian H(y, v) = h.

Let ∆ = a2
2 − 3a1a3. Obviously, system (2.8) has no equilibrium point or just

a cusp when ∆ ≤ 0, and thus system (2.8) has no nontrivial bounded solutions.

However, system (2.8) has two equilibrium points when ∆ > 0. Let y±e = −a2±
√

∆
3a3

and H(y±e , 0) = h± = 2∆(−a2±
√

∆)+3a1a2a3
54a23

, then (y+
e , 0) is a saddle, (y−e , 0) is a

center and h+ > h−. When h+ > h > h−, H(y, v) = h defines a family of
periodic orbits around the center (u−e , 0) enclosed by the boundary curves defined
by H(y, v) = h+. However, H(y, v) = h+ defines a homoclinic orbit passing through
the saddle (y+

e , 0) (See Fig. 1(b) or Fig. 2(b)) which corresponds to a solution y(ξ)
of (2.1) approaching y+

e as ξ goes to infinity (See Fig. 1(c) or Fig. 2(c)). The
relationship between the polynomial P3(y), the phase portraits of system (2.8) and
the solutions of ODE (2.1) is shown in Figure 1 and Figure 2. In fact, the exact
formulas of this family of solutions can be derived by integrating along the orbits [3].
Consequently, we have the following theorem.

(a) (b) (c) (d)

Figure 1. For a3 < 0 and a22 − a1a3 > 0, (a) portrait of P3(y) = a3y
3 + a2y

2 + a1y + a0 with
different values of a0,(b) phase portrait of system (2.8), corresponding to Figure 1(a), (c) portrait of
solitary wave, corresponding to the homoclinic orbit 2© in Figure 1(b), (d) portrait of periodic solution
corresponding to the periodic orbit 3© on the right side of Figure 1(b).

Theorem 2.2. Let h± = 2∆(−a2±
√

∆)+3a1a2a3
54a23

and y±e = −a2±
√

∆
3a3

, where ∆ =

a2
2 − 3a1a3 > 0, then the following conclusions hold:

(1) For a0 = 2h+, equation (2.4) has a bounded solution approaching y+
e as ξ

goes to infinity (See Figure 1(c) or Figure 2(c)) given by

y =
−a2 +

√
∆

3a3
−
√

∆

a3
sech2

[
1

2
∆

1
4 (ξ − ξ0)

]
. (2.10)



490 L. Zhang, & C. M. Khalique

(a) (b) (c) (d)

Figure 2. For a3 > 0 and a22 − a1a3 > 0, (a) portrait of P3(y) = a3y
3 + a2y

2 + a1y + a0 with
different values of a0,(b) phase portrait of system (2.8), corresponding to Figure 2(a), (c) portrait of
solitary wave, corresponding to the homoclinic orbit 2© in Figure 2(b), (d) portrait of periodic solution
corresponding to the periodic orbit 3© on the right side of Figure 2(b).

A constant solution

y =
−a2 +

√
∆

3a3
(2.11)

and an unbounded solution

y =
−a2 +

√
∆

3a3
+

√
∆

a3
csch2

[
1

2
∆

1
4 (ξ − ξ0)

]
, (2.12)

where ξ0 is an arbitrary constant.
(2) Suppose that a0 ∈ (2h−, 2h+).

Case a) If a3 > 0, then for any y3 ∈
(
−a2−2

√
∆

3a3
, −a2−

√
∆

3a3

)
,

y = y3 −
1

2

(
3y3 +

a2

a3
+
√

∆+

)
sn2 (Ω+(ξ − ξ0), k+) , (2.13)

is a family of smooth periodic solutions of equation (2.1) (See Figure 2(d)). Here

k+ =
2
√

3y23+2
a2
a3
y3+

a1
a3

−3y3− a2
a3

+
√

∆+

, Ω+ =
√

2
4

√
−3a3y3 − a2 + a3

√
∆+, ∆+ = −3y2

3 − 2a2a3 y3 +(
a2
a3

)2

− 4a1a3 and sn represents the Jacobi elliptic sine-amplitude function [6].

Case b) If a3 < 0, then for any y1 ∈
(
−a2−

√
∆

3a3
, −a2−2

√
∆

3a3

)
,

y = y1 −
1

2

(
3y1 +

a2

a3
−
√

∆−

)
sn2 (Ω−(ξ − ξ0), k−) , (2.14)

is a family of smooth periodic solutions of equation (2.1) (See Figure 1(d)). Here

k− =
2
√

3y21+2
a2
a3
y1+

a1
a3

3y1+
a2
a3

+
√

∆−
, Ω− =

√
2

4

√
−3a3y1 − a2 − a3

√
∆− and ∆− = −3y2

1 −

2a2a3 y1 +
(
a2
a3

)2

− 4a1a3 .

(3) For a0 ∈ (−∞, 2h−]∪ (2h+,+∞), equation (2.1) has no non-trivial bounded
solutions. When a0 = 2h−, an unbounded solution is given by

y = −a2 +
√

∆

3a3
+

√
∆

a3
sec2

[
1

2
∆

1
4 (ξ − ξ0)

]
(2.15)

and a constant solution given by

y = −a2 +
√

∆

3a3
. (2.16)



The Kaup-Kuperschmidt equation 491

Proof. (1) When h = a0 = 2h+, we have a3y
3 + a2y

2 + a1y + a0 = a3(y −
−a2+

√
∆

3a3
)2(y−−a2−2

√
∆

3a3
) (See orbits 2© in Figures 1(a), 1(b), 2(a) and 2(b)). Solving

for v from (2.9) and substituting its value into the first equation of (2.8), we have

dy

dξ
= ±

√
a3

(
y − −a2 +

√
∆

3a3

)2(
y − −a2 − 2

√
∆

3a3

)
. (2.17)

Integrating (2.17) with respect to ξ gives (2.10). This completes the proof of
(1).

(2) When h = a0 ∈ (2h−, 2h+), (See orbits 3© in Figure 1(a), 1(b), 2(a) and 2(b))
suppose that a3y

3 +a2y
2 +a1y+a0 = a3(y1−y)(y2−y)(y−y3), where y1 > y2 > y3.

Then by the relationship between coefficients and roots of a polynomial, we have

a3(−y1 − y2 − y3) = a2,

a3{y3(y1 + y2) + y1y2} = a1.
(2.18)

Clearly, −a2−2
√

∆
3a3

< y3 <
−a2−

√
∆

3a3
if a3 > 0 and −a2−

√
∆

3a3
< y3 <

−a2−2
√

∆
3a3

if
a3 < 0.

For the case a3 > 0, by letting ∆+ =
a22
a23
− 3y2

3 − 2a2a3 y3 − 4a1a3 , from (2.18), we

obtain

y1 =
−y3 − a2

a3
+
√

∆+

2
, y2 =

−y1 − a2
a3
−
√

∆+

2
. (2.19)

Solving for v from (2.9) and substituting it into the first equation of (2.8) gives

dy

dξ
= ±

√
a3(y1 − y)(y2 − y)(y − y3), (2.20)

where y3 ∈
(
−a2−

√
∆

3a3
, −a2−2

√
∆

3a3

)
and y1 and y2 are defined by (2.17). Integrating

(2.20) with respect to ξ gives

y = y3 + (y2 − y3)sn2

(√
a3(y1 − y3)

2
(ξ − ξ0),

√
y2 − y3

y1 − y3

)
. (2.21)

Substituting (2.19) into (2.21) gives (2.13), which corresponds to the orbits like
the right-hand side 3© in Figure 2(b). The solution (2.14) can be proved in the
similar way. We omit the details here.

(3) For a0 = 2h−, (See orbits 4© in Figures 1(a), 1(b), 2(a) and 2(b)) we have

a3y
3 + a2y

2 + a1y + a0 = a3(y − y0)(y − y−e )2, (2.22)

where y0 = −a2+2
√

∆
3a3

and y−e = −a2−
√

∆
3a3

. Solving for v from (2.9) and substituting
it into the first equation of (2.8) gives

dy

dξ
= ±(y − y−e )

√
a3(y − y0). (2.23)

Integrating (2.23) with respect to ξ gives (2.15), which corresponds to the orbit like
the left-hand side 4© in Figures 1(b) and 2(b).

Remark 2.1. From Theorem 2.2, we conclude that (2.10)-(2.16) are solutions of
the second-order ODE d2y/dξ2 = (1/2)P ′3(y), i.e. d2y/dξ2 = (3a3y

2 + 2a2y+a1)/2.
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3. Exact traveling wave solutions of KK equations

In this section, we will study the traveling wave solutions of the KK equation (1.1)
in terms of the two theorems obtained in Section 2. Notice that g in ODEs (2.6)
and (2.7) is a constant of integration, so the function y = y(ξ) is a traveling wave
solution of the KK equation (1.1) if it solves the fourth-order differential equation
(1.3) with arbitrary constant g. That is to say, we can obtain the traveling wave
solutions of the KK equation (1.1) by solving the first order ODEs (2.6) or (2.7)
with arbitrary constant g.

Inserting (a0, a1, a2, a3) = (− 4
3g,−

4
3c, 0, 4) and (a0, a1, a2, a3) = ( 4

39g,−
2
33c, 0,

1
2 )

into Theorem 2.2 respectively, we derive two families of solitary wave solutions and
two families of periodic wave solutions of the KK eqution (1.1), which we state in
the following theorem.

Theorem 3.1. The Kaup-Kupershmidt equation (1.1) has the following four fam-
ilies of bounded traveling wave solutions:

(1) The KK equation has two families of valley-form solitary wave solutions
given by

u(x, t) =
1

3

√
c−
√
c sech2

[
c

1
4 (x− ct− ξ0)

]
(3.1)

and

u(x, t) =
2

33

√
11c− 2

11

√
11c sech2

[
1

2

( c
11

) 1
4

(x− ct− ξ0)

]
, (3.2)

where the wave speed c > 0.
(2) For any arbitrary c > 0 and u3 ∈ (−2

√
c/3,−

√
c/3),

u(x, t) = u3 +
1

2

(
u3 +

√
∆5

)
sn2 (2Ω5(x− ct− ξ0), k5) , (3.3)

is a family of smooth periodic traveling wave solutions.
(3) For any arbitrary c > 0 and u3 ∈

(
−4
√

11c/33,−2
√

11c/33
)
,

u(x, t) = u3 −
1

2

(
3u3 +

√
∆7

)
sn2 (Ω7(x− ct− ξ0), k7) , (3.4)

is a family of smooth periodic traveling wave solutions, where Ω7 =
√
−3u3 + 2

√
∆7/4,

k7 =
2
√

3u2
3−4c/33

−3u3+
√

∆7
and ∆7 = 16c/33− 3u2

3.

It is easy to see that the solution (3.1) u(ξ) = u(x − ct) approaching 1
3

√
c as

ξ = x− ct→∞ and any n-th order derivative of u(ξ) with respect to ξ approaching
0 as ξ →∞, which implies that the point P1( 1

3

√
c, 0, 0, 0) is a equilibrium point of

system (1.4) with g = − 2
9c
√
c. There is at least one homoclinic orbit connecting

the equilibrium point P1. For the case when g = − 2
9c
√
c, we can see that P1 is the

unique equilibrium point of (1.4). The coefficient matrix of the linearized system of
(1.4) at the equilibrium point P1 can be

0 1 0 0
0 0 1 0
0 0 0 1
−4c 0 5

√
c 0

 . (3.5)
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(a) (b)

Figure 3. Portrait of the traveling wave solutions of the KK equation (1.1) with c = 3. (a) solitary
wave solution; (b) periodic wave solution.

At P1, one can easily calculate the eigenvalues of the matrix (3.5) ±2c
1
4 and ±c 1

4 ,
which implies that system (1.4) has a unique saddle-saddle point when g = − 2

9c
√
c

for any c > 0. From solution (3.1), we know there is a homoclinic orbit connecting
the equilibrium point P1 and the exact formula of the projection of this homoclinic
orbit onto the (x1, x2)−plane is

x2
2 = 4x3

1 −
4

3
cx1 +

8

27
c
√
c. (3.6)

Theoretically, we know that the fourth-order ODEs (1.4) can be reduced into
second order if we can solve for x3 and x4 from the two first integrals (1.5) and
(1.6). Unfortunately, one will realize that it is practically impossible to implement
because the roots of a general sixth-degree polynomial have to be find firstly. In
what follows, we will exploit the relationship of the subequations (2.6) and (2.7)
obtained in Section 2 and ODEs (1.4) and the two known first integrals (1.5) and
(1.6).

Note that subequation (2.6) is equivalent to

x2
2 = 4x3

1 −
4

3
cx1 −

4

3
g. (3.7)

Derivating subequation (3.7) with respect to ξ once and twice gives

x3 = 6x2
1 −

2

3
c (3.8)

and

x4 = 12x1x2, (3.9)

respectively. With the help of Maple and by inserting (3.7)-(3.9) into (1.5) and
(1.6) respectively, we get K1 = 0 and K2 = − 4

81c
3 − 4

9gc
√
c − g2. This mean-

s that all the solutions we derived through the subequation (2.6) are defined by
Φ1(x1, x2, x3, x4) = 0 and Φ2(x1, x2, x3, x4) = − 4

81c
3 − 4

9gc
√
c− g2. That is to say

that the solution curves of ODE (1.4) corresponding to (3.1) and (3.2) lie on the the
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supersurfaces Φ1(x1, x2, x3, x4) = 0 and Φ2(x1, x2, x3, x4) = − 4
81c

3− 4
9gc
√
c−g2. E-

specially, for the homoclinic solutions of (1.4) with g = − 2
9c
√
c corresponding to soli-

tary wave solution (3.1) are defined by the two supersurfaces Φ1(x1, x2, x3, x4) = 0
and Φ2(x1, x2, x3, x4) = 0. Similarly, we can get the two constants K1 = 196

143cg
and K2 = − 196

169g
2 − 196

3993c
3 corresponding to the solutions determined by (2.7).

Especially, the solitary wave solution (3.2) corresponds to the homoclinic orbit con-
necting the equilibrium point ( 2

33

√
11c, 0, 0, 0) of system (1.4) for the case when

g = 26c
1089

√
11c.

4. Conclusion and discussion

The exact traveling wave solutions of the fifth-order KK equation were studied in
this paper. By investigating the bifurcation and exact solutions to the subequations
of the corresponding traveling wave equation of the KK equation,we derived two
families of solitary wave solutions and two families of periodic wave solutions. From
the discussion above, one may find that the main reasons why we can find (2.6) and
(2.7) as subequations of the higher-order nonlinear equation (1.3) can be listed as
follows: (1) the even-order derivatives of y are all polynomials in y provided that y
satisfies ODE (2.1); (2) higher-order ODE (1.3) involves only even-order derivatives
of y, (dydξ )2 and polynomial in y. Consequently, for the other higher-order differential

equations one may find the subequations in the form (2.1), that is, the approach we
proposed in this paper might be applied to investigate other higher-order differential
equations in the form F (u(2k), u(2k−2), ..., u′′, u′2, u) = 0, where F is a polynomial
function.

There are amount of higher-order nonlinear wave equations such as the Lax
equation, the Ito equation and the general fifth-order wave equation (1.2) can be
reduced to the form F (u(2k), u(2k−2), ..., u′′, u′2, u) = 0. However, some nonlinear
wave equations, especially those equations with nonlinear dispersion, usually reduce
to singular dynamical systems. It has been proved that this class of nonlinear wave
equations possess non-smooth singular wave solutions, such as compacton, peakon,
etc by using the dynamical system method [12, 13, 17, 20] and other methods. The
singular dynamical systems possess abundant varieties of interesting wave solutions
reflecting some phenomena in the real world. To the best of our knowledge, this
method has only been used to investigate the lower-order wave equations. The
question now is whether the higher-order wave equations, such as the sixth-order
KdV equations, possess non-smooth singular wave solutions? How can we use the
planar singular dynamical systems to find the singular wave solutions to higher-
order singular differential equations? These questions will be investigated in our
future work.
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