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Abstract A high order central-upwind scheme for approximating hyperbolic
conservation laws is proposed. This construction is based on the evaluation
of the local propagation speeds of the discontinuities and Peer’s fourth order
non-oscillatory reconstruction. The presented scheme shares the simplicity of
central schemes, namely no Riemann solvers are involved. Furthermore, it
avoids alternating between two staggered grids, which is particularly a chal-
lenge for problems which involve complex geometries and boundary condition-
s. Numerical experiments demonstrate the high resolution and non-oscillatory
properties of our scheme.
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1. Introduction

Systems of conservation laws are encountered frequently in science and engineering.
With analytical solutions being unavailable in most cases, numerical method has
become an indispensable tool in practical applications. Here, we are interested in
Godunov-type methods which can be divided into two categories—upwind schemes
and central schemes. For upwind schemes, solving Riemann problem at the dis-
continuous interfaces is required. Generally, this procedure is quite complicated
and costly when solving systems of conservation laws. On the other hand, cen-
tral schemes are based on averaging over Riemann fans. They require no Riemann
solvers and therefore the complicated and time-consuming characteristic decompo-
sition can be avoided. They are much simpler when compared with upwind schemes.

A general procedure used to obtain high order methods is based on high order
piecewise polynomial reconstructions. Second order scheme utilized a piecewise lin-
ear reconstruction [13]. For third order scheme, Kurganov and Petrova proposed
a piecewise non-oscillatory quadratic interpolant [9]. Alternatively, one can use
the essentially non-oscillatory (ENO) reconstruction or its variants [1, 5, 11, 12, 15].
For example, CWENO reconstructions were introduced in the central framework
to design central-upwind schemes for conservation laws or related problems [2,4,7].
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However, ENO-type method employs smooth indicators. A certain a-priori infor-
mation about the solution is needed and this may give rise to spurious oscillations
or smearing near discontinuities [17]. To overcome this obstacle, one of the other
strategies is to employ limiters to proceed the non-oscillatory polynomial recon-
struction.

A new non-oscillatory reconstruction in one-dimension, which is fourth order
accurate and avoids the computation of smooth indicators, was developed by Peer
et al. [14]. The aim of this work is to present a non-staggered version of Peer’s
central scheme. Unlike the approach in [3], in which the reconstructed values of
the staggered scheme are reaveraged, here we utilize the technique that is described
in [8]. In this paper, we compute the widths of the Riemann fans by evaluating the
local propagation speeds and present a semi-discrete form of fourth order central
scheme. Without giving up simplicity, the resulting scheme is still free of Riemann
solvers. What’s more, it avoids the need to alternate between two staggered grids,
which is particularly a challenge for practical problems with complex geometries
and boundary conditions. The new scheme possesses an upwind nature since one-
sided information is used to estimate the width of the Riemann fans. Thus, we
also call it central-upwind scheme. It should be emphasized here that our scheme
can avoid the calculation of smooth indicators and no a-priori information about
the solution is needed when compared with the existing high order central-upwind
schemes based on CWENO reconstruction. Such drawbacks of employing ENO-type
reconstruction can be eliminated.

The rest of the paper is organized as follows. Section 2 describes the detailed
procedure for designing our fourth order semi-discrete central-upwind scheme for
solving one-dimensional problems. In section 3, we first give the central-upwind
flux in two-dimensional case and then generalize the fourth order reconstruction to
two-dimensional case. Finally, the proposed scheme is applied to solve a large class
of test problems. Numerical results confirm the expected order of accuracy, high
resolution and non-oscillatory properties of the scheme.

2. Fourth order central-upwind scheme

Consider hyperbolic systems of conservation laws in one spatial dimension,

ut + f(u)x = 0, u(x, t = 0) = u0(x), (2.1)

where u(x, t) = (u1, · · · , uN )T and f(u) = (f1, · · · , fN )T are vectors of conservative
variables and nonlinear fluxes respectively. For the sake of simplicity, the discretiza-
tion is done on a uniformly spatial grid. Let xi = i∆x, xi±1/2 = (i ± 1/2)∆x, i =
0, . . . , NX, where ∆x is the cell size. Meanwhile let tn = n∆t and denote the sliding
average of u(·, t) by ūn

i = 1
∆x

∫
Ii
u(ξ, tn)dξ over the interval Ii = (xi − ∆x

2 , xi +
∆x
2 )

at time t = tn, we will show how to construct a new semi-discrete central-upwind
scheme in the following.

2.1. Semi-discrete central-upwind scheme

Assuming we have known the cell-averages {ūn
i } at time t = tn, the remained work

is to obtain the cell-averages at the next time level tn+1. From {ūn
i }, we firstly
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consider the following piecewise polynomial function interpolant,

u(x, tn) =
∑
i

Ri(x)χi. (2.2)

Here, χi denotes the characteristic function of the interval Ii, and Ri(x) is a polyno-
mial defined in Ii which should satisfy three requirements—accuracy, conservation
and non-oscillatory. Unfortunately, u(x, tn) could be discontinuous at the cell in-
terfaces {xi+1/2}. We estimate the local propagation speeds of the discontinuities
in the left- and right-direction by

a−i+1/2 = min
u∈C(u−

i+1/2
,u+

i+1/2
)

{
λ1

(
∂f

∂u
(u)

)
, 0

}
and

a+i+1/2 = max
u∈C(u−

i+1/2
,u+

i+1/2
)

{
λN

(
∂f

∂u
(u)

)
, 0

}
,

respectively. Here, λ1 < · · · < λN represent the eigenvalues of the Jacobian ∂f
∂u .

u−
i+1/2 = Ri(xi+1/2) and u+

i+1/2 = Ri+1(xi+1/2) are the corresponding values of

u(x, tn) at the cell interfaces {x = xi+1/2} and C(u−
i+1/2, u

+
i+1/2) is the curve in the

phase space that connects u−
i+1/2 and u+

i+1/2 via the Riemann fan.

Next, we define two nonequal control volumes

[xn
i+1/2,l, x

n
i+1/2,r]× [tn, tn+1] and [xn

i−1/2,r, x
n
i+1/2,l]× [tn, tn+1],

with xn
i+1/2,l

= xi+1/2 + ∆ta−
i+1/2

and xn
i+1/2,r

= xi+1/2 + ∆ta+
i+1/2

. Due to the

finite speeds of propagation, the solution of (2.1) may be nonsmooth only inside
the interval [xn

i+1/2,l, x
n
i+1/2,r] for t ∈ [tn, tn+1]. Then integrating (2.1) directly over

the above control volumes, we obtain the cell averages

w̄n+1
i+1/2 =

1

xn
i+1/2,r − xn

i+1/2,l

[∫ xn
i+1/2

xn
i+1/2,l

Rn
i (x)dx+

∫ xn
i+1/2,r

xn
i+1/2

Rn
i+1(x)dx

−
∫ tn+1

tn

(
f(u(xn

i+1/2,r, t))− f(u(xn
i+1/2,l, t))

)
dt

] (2.3)

and

w̄n+1
i =

1

xn
i+1/2,l − xn

i−1/2,r

[∫ xn
i+1/2,l

xn
i−1/2,r

Rn
i (x)dx

−
∫ tn+1

tn

(
f(u(xn

i+1/2,l, t))− f(u(xn
i−1/2,r, t))

)
dt

]
.

(2.4)

Finally, from these obtained values {w̄n+1
i+1/2, w̄

n+1
i }, we employ the same recon-

struction of u(x, tn) which takes the form:

w̃n+1(x) =
∑
i

(
w̃n+1

i+1/2(x)χ[xn
i+1/2,l

,xn
i+1/2,r

] + w̃n+1
i (x)χ[xn

i−1/2,r
,xn

i+1/2,l
]

)
. (2.5)
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Here, {w̃n+1
i+1/2(x), w̃

n+1
i (x)} and the χ’s are the piecewise polynomial functions and

the characteristic functions on the corresponding intervals, respectively. Projecting
w̃n+1 back onto the cell Ii, we have

ūn+1
i =

1

∆x

∫ xn
i+1/2

xn
i−1/2

w̃n+1(x)dx =
1

∆x

[ ∫ xn
i−1/2,r

xn
i−1/2

w̃n+1
i−1/2(x)dx

+

∫ xn
i+1/2,l

xn
i−1/2,r

w̃n+1
i (x)dx+

∫ xn
i+1/2

xn
i+1/2,l

w̃n+1
i+1/2(x)dx

]
.

(2.6)

The above formula gives a fully discrete form of central-upwind scheme. With the
help of Eq.(2.6), the semi-discrete approximation can be obtained by computing the
derivative of ūi(t) with respect to t, namely

d

dt
ūi(t) = lim

∆t→0

ūn+1
i − ūn

i

∆t
= lim

∆t→0

1

∆t

[
1

∆x

∫ xi+1/2

xi−1/2

w̃n+1(x)dx− ūn
i

]
. (2.7)

Now suppose that the slopes of w̃n+1
i±1/2 are uniformly bounded. Since the Riemann

fans’ widths take an upper bound of (a+i+1/2 − a−i+1/2)∆t, we find

w̃n+1
i±1/2 = w̄n+1

i±1/2 +O(∆t) ∀x ∈ [xn
i±1/2,l, x

n
i±1/2,r]. (2.8)

Using the conservation property of the reconstruction we can have

1

xn
i+1/2,l − xn

i−1/2,r

∫ xn
i+1/2,l

xn
i−1/2,r

w̃n+1
i (x)dx = w̄n+1

i . (2.9)

From (2.7)—(2.9) and the definition of xn
i−1/2,r and xn

i+1/2,l, we obtain

d

dt
ūi(t) =

a+i−1/2

∆x
lim

∆t→0
w̄n+1

i−1/2 −
a−i+1/2

∆x
lim

∆t→0
w̄n+1

i+1/2

+ lim
∆t→0

1

∆t

(
xn
i+1/2,l − xn

i−1/2,r

∆x
w̄n+1

i − ūn
i

)
.

(2.10)

Note that

lim
∆t→0

1

∆t

(
xn
i+1/2,l − xn

i−1/2,r

∆x
w̄n+1

i − ūn
i

)
=

a−i+1/2u
−
i+1/2 − a+i−1/2u

+
i−1/2

∆x
−

f(u−
i+1/2)− f(u+

i−1/2)

∆x

(2.11)

and

lim
∆t→0

w̄n+1
i+1/2 =

a+i+1/2u
+
i+1/2 − a−i+1/2u

−
i+1/2

a+i+1/2 − a−i+1/2

−
f(u+

i+1/2)− f(u−
i+1/2)

a+i+1/2 − a−i+1/2

, (2.12)

we can cast the semi-discrete scheme into the conservative form:

d

dt
ūi(t) = −

Hi+1/2(t)−Hi−1/2(t)

∆x
(2.13)
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with the numerical flux Hi+1/2(t) expressed by

Hi+1/2(t) =
a+i+1/2f(u

−
i+1/2)− a−i+1/2f(u

+
i+1/2)

a+i+1/2 − a−i+1/2

+
a+i+1/2a

−
i+1/2

a+i+1/2 − a−i+1/2

(
u+
i+1/2 − u−

i+1/2

)
.

(2.14)
Here, we omit the trivial derivation. For more details, one can consult Kurganov’s
literature [8]. It should be realized that the resulting scheme’s space order depends
on the accuracy of the reconstructed u(x, tn) in (2.2).

2.2. Fourth order non-oscillatory reconstruction

In this subsection, we briefly describe the fourth order non-oscillatory reconstruc-
tion. Let us introduce some notation: ∆ūi+1/2 = ūi+1−ūi, ∆

2ūi = ūi+1−2ūi+ūi−1,
∆3ūi+1/2 = ∆2ūi+1 −∆2ūi. In every cell Ii, we choose a degree-three polynomial
reconstruction

Ri(x) = un
i + u′

i(
x− xi

∆x
) +

1

2!
u′′
i (

x− xi

∆x
)2 +

1

3!
u′′′
i (

x− xi

∆x
)3. (2.15)

Conservation requires 1
∆x

∫
Ii
Ri(x)dx = ūn

i , which, in turn, results with

un
i = ūn

i − u′′
i

24
. (2.16)

To achieve fourth order accuracy, the numerical derivatives 1
∆xu

′
i,

1
(∆x)2u

′′
i and

1
(∆x)3u

′′′
i must satisfy

1

∆x
u′
i =

∂

∂x
u(x = xi, t

n) +O(∆x)3, (2.17)

1

(∆x)2
u′′
i =

∂2

∂x2
u(x = xi, t

n) +O(∆x)2, (2.18)

1

(∆x)3
u′′′
i =

∂3

∂x3
u(x = xi, t

n) +O(∆x). (2.19)

Apart from this, the reconstruction here should satisfy the non-oscillatory property
under the meaning of WENO reconstruction.

Concluding the above requirements, u′
i, u

′′
i and u′′′

i are stated as follows:

u′
i =MM

(
∆ūi−1/2 +

1

2
MM(∆2ūi−1 +

7

12
u′′′
i−1,∆

2ūi −
5

12
u′′′
i ),

∆ūi+1/2 −
1

2
MM(∆2ūi +

5

12
u′′′
i ,∆2ūi+1 −

7

12
u′′′
i+1)

)
,

(2.20)

u′′
i = MM

(
∆2ūn

i−1 + u′′′
i−1,∆

2ūn
i ,∆

2ūn
i+1 − u′′′

i+1

)
, (2.21)

u′′′
i = MM

(
∆3ūi−1/2,∆

3ūi+1/2

)
, (2.22)

where the MM limiter can be expressed as

MM(x1, x2, · · · ) =

 maxq{xq}, if xq < 0 (∀q),
minq{xq}, if xq > 0 (∀q),
0, otherwise.

(2.23)
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3. Multidimensional extensions

The presented scheme in section 2 can be extended to several space dimension-
s easily. Without loss of generality, we now consider the two-dimensional (2-D)
hyperbolic conservation laws,

ut + f(u)x + g(u)y = 0. (3.1)

For the same purpose of simplicity, both space and time discretizations of (3.1)
are done on uniformly grids. We use the notation (xi, yj) = (i∆x, j∆y) for the
grid points and ūn

i,j = 1
∆x∆y

∫∫
Ci,j

u(x, y, tn)dxdy for the cell averages on Ci,j =

[xi−1/2, xi+1/2] × [yj−1/2, yj+1/2] at time t = tn. Following the ’dimension-by-
dimension’ approach, the extension of our fourth order semi-discrete scheme for
(3.1) is

d

dt
ūi,j(t) = −

Hx
i+1/2,j(t)−Hx

i−1/2,j(t)

∆x
−

Hy
i,j+1/2(t)−Hy

i,j−1/2(t)

∆y
, (3.2)

where Hx
i+1/2,j(t) and Hy

i,j+1/2(t) are x− and y−direction numerical fluxes, respec-

tively,

Hx
i+1/2,j(t) =

a+i+1/2,jf(u
−
i+1/2,j)− a−i+1/2,jf(u

+
i+1/2,j)

a+i+1/2,j − a−i+1/2,j

+
a+i+1/2,ja

−
i+1/2,j

a+i+1/2,j − a−i+1/2,j

(
u+
i+1/2,j − u−

i+1/2,j

)
,

Hy
i,j+1/2(t) =

b+i,j+1/2g(u
−
i,j+1/2)− b−i,j+1/2g(u

+
i,j+1/2)

b+i,j+1/2 − b−i,j+1/2

+
b+i,j+1/2b

−
i,j+1/2

b+i,j+1/2 − b−i,j+1/2

(
u+
i,j+1/2 − u−

i,j+1/2

)
.

(3.3)

In practice, we may use

a−i+1/2,j = min

{
λ1

(
∂f

∂u

(
u−
i+1/2,j

))
, λ1

(
∂f

∂u

(
u+
i+1/2,j

))
, 0

}
,

a+i+1/2,j = max

{
λN

(
∂f

∂u

(
u−
i+1/2,j

))
, λN

(
∂f

∂u

(
u+
i+1/2,j

))
, 0

}
,

b−i,j+1/2 = min

{
λ1

(
∂g

∂u

(
u−
i,j+1/2

))
, λ1

(
∂g

∂u

(
u+
i,j+1/2

))
, 0

}
,

b+i,j+1/2 = max

{
λN

(
∂g

∂u

(
u−
i,j+1/2

))
, λN

(
∂g

∂u

(
u+
i,j+1/2

))
, 0

}
to estimate the local speeds. Here, λ1 < · · · < λN denote the N eigenvalues of
the Jacobian ∂f

∂u or ∂g
∂u . The values at the cell interfaces are defined by u±

i+1/2,j =

Ri+1/2±1/2,j(xi+1/2, yj) and u±
i,j+1/2 = Ri,j+1/2±1/2(xi, yj+1/2), which are obtained

from the reconstructed polynomial Ri,j(x, y).

Now, we generalize Peer’s reconstruction to the 2-D case. Similar to the 1-D
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case, the polynomial reconstruction is chosen of the form

Ri,j(x, y) =un
i,j + u′

i,j

(x− xi

∆x

)
+ u8

i,j

(y − yj
∆y

)
+

1

2!

(
u′′
i,j

(x− xi

∆x

)2
+ 2u′8

i,j

(x− xi

∆x

)(y − yj
∆y

)
+ u88

i,j

(y − yj
∆y

)2)
+

1

3!

(
u′′′
i,j

(x− xi

∆x

)3
+ u888

i,j

(y − yj
∆y

)3)
+

1

3!

(
3u′′8

i,j

(x− xi

∆x

)2(y − yj
∆y

)
+ 3u′88

i,j

(x− xi

∆x

)(y − yj
∆y

)2)
.

(3.4)

Actually, we only need to know Ri,j(x, y = yj) and Ri,j(x = xi, y). Thus, Ri,j(x, y)
reduces to

Ri,j(x, y = yj) = un
i,j + u′

i,j(
x− xi

∆x
) +

1

2!
u′′
i,j(

x− xi

∆x
)2 +

1

3!
u′′′
i,j(

x− xi

∆x
)3 (3.5)

and

Ri,j(x = xi, y) = un
i,j + u8

i,j(
y − yj
∆y

) +
1

2!
u88
i,j(

y − yj
∆y

)2 +
1

3!
u888
i,j(

y − yj
∆y

)3 (3.6)

with un
i,j = ūn

i,j −
u′′
i,j+u88

i,j

24 . Therefore, we can carry out the computation of the
coefficients u′

i,j , u
8
i,j , u

′′
i,j , u

88
i,j , u

′′′
i,j and u888

i,j in a similar way like (2.20)-(2.22). For

example, u′′′
i,j = MM(∆3ūi−1/2,j , ∆

3ūi+1/2,j), u
888
i,j = MM(∆3ūi,j−1/2,∆

3ūi,j+1/2),
etc.

4. Numerical examples

In this section, a number of numerical examples are provided to illustrate the poten-
tial of the proposed scheme, which is abbreviated by SD4. To make a comparison, we
present the results computed by the scheme from [3], which is also a non-staggered
version of Peer’s central scheme (we call it CNO4-N). For central-upwind scheme,
we assume that the discontinuities can not arrive at the cell interfaces in a small
time interval. Therefore, the CFL number should be chosen smaller than 0.5 to
keep the scheme’s stability. All cases are run with a CFL number of 0.3 and we
march in time using a fourth-order explicit Runge-Kutta method, which is given by

k1 = L(un),

k2 = L(un +
∆t

2
k1),

k3 = L(un +
∆t

2
k2),

k4 = L(un +∆tk3),

un+1 = un +
∆t

6
(k1 + 2k2 + 2k3 + k4),

(4.1)

where the operator L in (4.1) represents the right-hand side of (2.13) or (3.2).
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4.1. Assessment of accuracy

To test the accuracy, let us consider the transport equation ut + ux = 0 with the
initial data u(x, t = 0) = sin(πx) on the interval [−1, 1]. The solutions are computed
on different grids up to time T = 10. The time step ∆t is chosen to be ∆x×CFL.
We displayed the L1- and L∞-errors and the corresponding convergence rate in
Table 1, respectively. It is noticed that both SD4 and CNO4-N can achieve fourth
order accuracy in L1 norm as the grids are refined. In L∞ norm, both schemes can’t
achieve the desired accuracy. This is mainly due to the fact that the non-smooth
limiters employed in the reconstruction lack regularity and make the scheme less
accurate [16]. We can also observe SD4 gives errors of smaller magnitude and less
computational time as compared with CNO4-N.

Table 1. Accuracy test for ut + ux = 0 with u(x, t = 0) = sin(πx)

Method NX L1 error L1 order L∞ error L∞ order Time(s)
SD4 40 2.242 e-3 - 2.951 e-3 - 2.367

80 1.603 e-4 3.806 3.375 e-4 3.128 9.065
160 1.133 e-5 3.823 3.782 e-5 3.158 35.30
320 7.773 e-7 3.866 4.197 e-6 3.172 136.8
640 5.193 e-8 3.904 4.634 e-7 3.179 978.8

CNO4-N 40 3.582 e-3 - 4.288 e-3 - 2.876
80 2.417 e-4 3.889 4.847 e-4 3.145 10.93
160 1.701 e-5 3.829 5.386 e-5 3.170 42.88
320 1.176 e-6 3.854 5.954 e-6 3.177 170.7
640 7.879 e-8 3.899 6.563 e-7 3.181 1030.1

4.2. Systems of conservation laws

Here, the proposed scheme is applied to the Euler equations of gas dynamics for an
ideal gas with γ = 1.4,

∂

∂t

 ρ
ρu
E

+
∂

∂x

 ρu
ρu2 + p
(E + p)u

 = 0, E =
1

2
ρu2 +

p

γ − 1
, (4.2)

where the variables ρ, u, p and E denote the density, velocity, pressure and total
energy, respectively. We will solve the following three different test problems which
are commonly used by researchers. Here, the time step ∆t is determined by

∆t =
∆x× CFL

maxi(ci + |ui|)

with the local sound speed ci =
√

γpi/ρi.

Sod’s shock tube problem. We solve Eq. (4.2) with the initial data ρ
u
p

 =

{
(1, 0, 1)T , −0.5 ≤ x < 0,

(0.125, 0, 0.1)T , 0 ≤ x ≤ 0.5.
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This initial discontinuity evolves into a left-going rarefaction wave, a right-going
shock wave and a right-going contact discontinuity. We compute the solution at
time T = 0.16. Comparing the results in Fig.1, we notice that both SD4 and
CNO4-N resolve all the waves correctly. But, SD4 gives slightly higher resolution.
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Figure 1. Density of Sod’s shock tube problem with NX=100

Lax’s shock tube problem. We consider another initial data ρ
u
p

 =

{
(0.445, 0.698, 3.528)T , −0.5 ≤ x < 0,

(0.5, 0, 0.571)T , 0 ≤ x ≤ 0.5.

This is a more severe shock tube problem and oscillation may appear near discon-
tinuities. Fig.2 shows the approximations to density at T = 0.16. As expected, we
observe that there are slight oscillations near discontinuities for both schemes. How-
ever, SD4 is still less oscillatory than CNO4-N between the contact discontinuity
and the shock.
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Figure 2. Density of Lax’s shock tube problem with NX=100

Shock-entropy problem. Here, we consider the following initial data ρ
u
p

 =

{
(3.857134, 2.629369, 10.33333)T , −5 ≤ x < −4,

(1 + 0.2 sin(5x), 0, 1)T , −4 ≤ x ≤ 5.

This problem describes a moving Mach 3 shock interacting with sine waves in den-
sity. Here, the computation is performed up to time T = 1.8 and the reference
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solution is computed by WENO5 scheme [6] on a mesh of 5001 grid points. We
present the results in Fig.3. For this problem, one can easily observe that the
approximation of SD4 is more accurate than CNO4-N in sine wave regions.
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Figure 3. Density of shock-entropy problem with NX=200

4.3. Riemann problems for two-dimensional Euler equations

Finally, let us consider the 2-D Euler equations of gas dynamics for an ideal gas
with γ = 1.4,

∂

∂t


ρ
ρu
ρv
E

+
∂

∂x


ρu

ρu2 + p
ρuv

(E + p)u

+
∂

∂y


ρv
ρuv

ρv2 + p
(E + p)v

 = 0. (4.3)

Here, ρ is the density, u and v are the velocity components in x- and y-dimension, p
is the pressure, and E is the total energy given by E = 1

2ρ(u
2+v2)+ p

γ−1 . Similarly,
the time step is evaluated by

∆t =
CFL

maxi,j
( ci,j+|ui,j |

∆x ,
ci,j+|vi,j |

∆y

)
with the local sound speed ci,j =

√
γpi,j/ρi,j .

We solve the Riemann problem for (4.3) with the following initial condition

(ρ, u, v, p)(x, y, 0) =


(ρ1, u1, v1, p1), if x > 0.5, y > 0.5,

(ρ2, u2, v2, p2), if x < 0.5, y > 0.5,

(ρ3, u3, v3, p3), if x < 0.5, y < 0.5,

(ρ4, u4, v4, p4), if x > 0.5, y < 0.5.

The computational domain is chosen to be [0, 1]× [0, 1]. According to [10], there are
19 different admissible configurations separated by rarefaction, shock and contact
wave. The solutions of all the different configurations are computed on a 400× 400
grid and we just show the following two initial data only:
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1⃝


(ρ1, u1, v1, p1) = (0.5313, 0, 0, 0.4),

(ρ2, u2, v2, p2) = (1, 0.7276, 0, 1),

(ρ3, u3, v3, p3) = (0.8, 0, 0, 1),

(ρ4, u4, v4, p4) = (1, 0, 0.7276, 1),

2⃝


(ρ1, u1, v1, p1) = (1, 0, 0.3, 1),

(ρ2, u2, v2, p2) = (2, 0,−0.3, 1),

(ρ3, u3, v3, p3) = (1.0625, 0, 0.2145, 0.4),

(ρ4, u4, v4, p4) = (0.5197, 0,−0.4259, 0.4).
For initial data 1⃝, the exact solution consists of two shocks and two contact

waves. For initial data 2⃝, the exact solution contains one shock, one rarefaction
and two contact waves. The density contour lines subject to the above two initial
conditions are shown in Fig.4. From these figures, we notice that SD4 computes the
wave structures correctly and gives similar resolutions of discontinuities as in [10].
Especially, the proposed scheme avoids the intricate and time-consuming calcula-
tions of the specific problems’ eigensystem in contrast to upwind schemes.
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Figure 4. Contour plots of the density

5. Conclusion

In this work, we have developed a high order semi-disctete central-upwind scheme
for solving nonlinear hyperbolic conservation laws. The new scheme can be seen as
a modification of Peer’s central scheme. The main technique here is the use of more
precise information of the local propagation speeds. We also generalize the pro-
posed scheme for the computations in two-dimensional case. The resulting scheme
is still free of Riemann-solver. What’s more, it is based on non-staggered grids and
therefore our scheme is very simple to be implemented, especially in multidimen-
sional case. In numerical experiments, the scheme is compared to CNO4-N scheme,
which is another non-staggered version of Peer’s scheme, and it is observed that our
scheme has a better accuracy and resolution with less computational time.
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