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IMPLICIT SIMULATION METHODS FOR
STOCHASTIC CHEMICAL KINETICS∗

Tae-Hyuk Ahn1, Xiaoying Han2 and Adrian Sandu3,†

Abstract In biochemical systems some of the chemical species are present
with only small numbers of molecules. In this situation discrete and stochas-
tic simulation approaches are more relevant than continuous and deterministic
ones. The fundamental Gillespie’s stochastic simulation algorithm (SSA) ac-
counts for every reaction event, which occurs with a probability determined by
the configuration of the system. This approach requires a considerable compu-
tational effort for models with many reaction channels and chemical species.
In order to improve efficiency, tau-leaping methods represent multiple firings
of each reaction during a simulation step by Poisson random variables. For
stiff systems the mean of this variable is treated implicitly in order to ensure
numerical stability.

This paper develops fully implicit tau-leaping-like algorithms that treat
implicitly both the mean and the variance of the Poisson variables. The con-
struction is based on adapting weakly convergent discretizations of stochastic
differential equations to stochastic chemical kinetic systems. Theoretical anal-
yses of accuracy and stability of the new methods are performed on a standard
test problem. Numerical results demonstrate the performance of the proposed
tau-leaping methods.

Keywords Stochastic simulation algorithm (SSA), stochastic differential e-
quations (SDEs), discrete time approximations, weak Taylor approximations,
tau-leaping methods.
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1. Introduction

In systems biology, the complex network of chemical reactions is influenced by s-
tochastic effects, as several species are present with a small number of molecules [22].
The Chemical Master Equation (CME) [17, 20] governs the time-evolution of the
probability function of the system’s state. Gillespie’s stochastic simulation algorith-
m (SSA) is a Monte Carlo approach that samples exactly the time evolving state
probability density [16]. Each reaction is accounted for individually leading to a
large computational effort. approximate sampling algorithms are needed in order
to simulate realistic systems.
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One approximate sampling algorithm is the “tau-leaping method” [18], in which
multiple reactions are simulated within a time interval of length τ . The “leap condi-
tion” requires that the propensity functions remain nearly constant during the time
step τ , and in this case the number of times each reaction fires is approximated
by a Poisson random variable. The tau-leaping method becomes unstable for stiff
systems with well-separated “fast” and “slow” time scales, and stable “fast modes”.
To improve stability the implicit [23] and the trapezoidal [11] tau-leaping meth-
ods have been proposed. Additional approaches to improve the efficiency of the
exact SSA include various approximations [9, 19, 24] and improved step size selec-
tion [18,19]. An alternative point of view is to understand the tau-leaping method
as the Euler scheme for stochastic differential equations (SDEs) [26–28], applied to
stochastic chemical kinetics. Here we adopt this point of view and propose new tau-
leaping-like methods motivated by weakly convergent discrete time approximations
of stochastic differential equations [21].

The existing implicit tau-leaping methods treat implicitly only the mean part
of the Poisson variables; the variance part is treated explicitly. Therefore current
algorithms can be characterized as partially implicit. This paper develops several
fully implicit algorithms, where both the mean and the variance parts of the random
variables are solved implicitly. The “BE–BE” method uses the stochastic backward
Euler method for both the mean part and the variance part of the Poisson variables.
The “BE–TR” method uses the implicit stochastic trapezoidal method for the vari-
ance part of the Poisson variables. The “TR–TR” method discretizes both the mean
and the variance of the Poisson variables with the trapezoidal method. This work
also proposes implicit second order weak Taylor tau-leaping methods for stochastic
chemical kinetics simulations. Numerical stability is investigated theoretically using
a reversible isomerization reaction test problem [10,28].

Numerical experiments are performed with three different chemical systems to
assess the efficiency and accuracy of the new implicit algorithms. The numerical
results show that the proposed methods are accurate, with an efficiency comparable
to that of the original implicit tau-leaping methods. They confirm the theoretical
stability analysis conclusions that out of the six new methods four are uncondition-
ally stable, and two are conditionally stable. These analyses perfectly explain our
preliminary results reported previously [7,8]. The numerical experiments show that,
for stiff systems, all three fully implicit tau-leaping methods avoid large damping
effects and are stable for any stepsize [7]. But two of the implicit second order weak
Taylor methods show unstable behavior for large stepsizes (although they are more
stable than the explicit tau-leaping method [7]).

The remaining part of the paper is organized as follows. Section 2 describes
the traditional SSA algorithm. Numerical schemes for the solution of SDEs are
presented in Section 3. In Section 4 the proposed new methods are introduced.
Section 5 performs a numerical stability analysis using a traditional test example.
Results from numerical experiments with three different systems are presented in
Section 6. Section 7 draws conclusions and points to future work.
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2. Stochastic Simulation Algorithms for Chemical
Kinetics

In this section we briefly review the traditional SSA and tau-leaping algorithms for
stochastic chemical kinetics.

2.1. Gillespie’s Stochastic Simulation Algorithm

We consider here a biochemical system that is assumed to be well-stirred in a
constant volume Ω and to be in thermal equilibrium at some constant temperature.
Let the system involve M chemical reaction channels {R1, . . ., RM} and N chemical
species {S1, . . ., SN} with Xi(t) denoting the number of molecules of species Si at
time t. With starting from an initial state vector X(t0), we want to investigate the
evolution of the state vector X(t) = (X1(t), ..., XN (t)) at time t.

Reaction channel Rj belongs to two mathematical representations: state change
vector and propensity function. The state change vector νj = ν·,j = (ν1,j , ..., νN,j)
is defined as the change in the population of molecule Si caused by one Rj reaction.
The array {νij} is commonly known as the stoichiometric matrix. The propensity
function aj represents the probability aj(x)dt that one Rj reaction will occur in the
next time interval [t, t+ dt).

The chemical master equation (CME) is the time-evolution equation for the
function of probability P (x, t|x0, t0) where X(t) = x is a vector of the numbers of
molecules at time t, given that X(t0) = x0. To deduce the time-evolution equation
P (x, t + dt|x0, t0), two conditions are considered by using the laws of probability.
The first condition is that if the system is already in state x at time t and no
reaction of any kind occurs in [t, t + dt), then the system is in state x at time
t+ dt. The second is that if the system is in state x− νj at time t and the reaction
occur in [t, t+ dt), then the system is in state x at time t+ dt. The mathematical
representation for the time-evolution equation is

P (x, t+ dt|x0, t0) = P (x, t|x0, t0)×

1−
M∑
j=1

aj(x)dt


+

M∑
j=1

P (x− νj , t|x0, t0)× aj(x− νj)dt.

The CME often makes it difficult to simulate biochemical systems because of its
intractable mathematical problems. Therefore, SSA, which simulates every reaction
event of the system, is appropriate to simulate the stochastic time evolution of
biochemical systems [16]. In different with the CME function P (x, t|x0, t0), the
SSA introduced a new function p(τ, j|x, t) where p(τ, j|x, t)dτ is defined as the
probability that the next reaction in the system will occur in the infinitesimal time
interval [t+τ, t+τ+dτ), and will be an Rj reaction. By letting a0(x) ≡

∑M
j=1 aj(x),

the reaction probability density function

p(τ, j|x, t) = aj(x) exp(−a0(x)τ)

can be deduced. The two random variables τ and j of the joint probability function
can be generated by a Monte Carlo technique. On each step of the SSA, draw two
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random numbers r1 and r2 from the uniform distribution, and select τ and j using
probability theory. The time for the next reaction to occur is given by t+ τ , where

τ =
1

a0(x)
ln

(
1

r1

)
.

The next reaction index j is given by the smallest integer satisfying

j∑
j′=1

aj′(x) > r2 a0(x).

After two random variables τ and j are obtained, the system states x are updated
by X(t + τ) := x + νj . These SSA steps are iterated until the time t reaches the
final time.

2.2. Tau-Leaping Method

The SSA has the same logical content as the CME; yet the SSA is more appropriate
stochastic method for simulating large scale biochemical systems by its adaptable
aspects. However, the SSA is often slow for many real systems because the SSA
only handles one reaction at one step. This drawback motivated an approximate
method to simulate multiple reactions at each step with a preselected time tau.
This computationally efficient approximate method is the tau-leaping method [18].

Given X(t) = x, Kj(τ ;x, t) is defined as the number of times that reaction
channel Rj fires during the time interval [t, t+τ). If the leap condition, the expected
state change induced by the leap must be sufficiently small so that propensity
functions remain nearly constant during the time step τ , is satisfied, Kj(τ ;x, t) can
be modeled by a Poisson random variable. The state X(t) = x is updated by

X(t+ τ) = x+
M∑
j=1

νj Pj(aj(x)τ), (2.1)

where Pj is a Poisson random variate parameter with mean and variable aj(x)τ .
Under the leap condition, the leap τ should be selected large enough for using the
tau-leaping simulation efficiently [19].

2.3. Implicit Tau-Leaping and Trapezoidal Methods

The tau-leaping method performs well when the system has single timescale as fast
or slow mode. Explicit method advances the solution from one time to the next
by approximating the slope of the solution curve at or near the beginning of the
time interval. When the explicit method simulates a chemical system that has fast
and slow time scales among which the fastest mode is stable, the leap condition
is used to bound the step size τ to be within the timescale of the fastest mode.
Therefore, the tau-leaping simulations under the leap condition are not feasible for
stiff systems as they result in no advantage compared to the exact SSA. In addition,
forced large time step sizes might lead to unstable population states.

It is this explicit nature of the tau-leaping method that leads to stability prob-
lems when stiffness is present in systems. An implicit tau-leaping method improves
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the drawback of the explicit tau-leaping method. To derive the implicit tau-leaping
method, the Pj from (2.1) can be split as

Pj = ajτ + (Pj − ajτ).

We then evaluate the mean value part ajτ and the zero-mean random part (variance
of the Poisson variables) Pj − ajτ at the known state X(t). Therefore,

X(t+ τ) = x+
M∑
j=1

νj {τaj (X(t+ τ)) + Pj(aj(x)τ)− τaj(x)} . (2.2)

This implicit tau-leaping method allows much large value of τ than the explicit
tau-leaping method in stiff systems. But large step sizes in the implicit tau-leaping
simulations might provoke damping effect. Damping effect means that when a large
step size is used to solve a stiff system, it yields a much smaller variance and damps
out the natural fluctuations of the stochastic nature [23].

The trapezoidal tau-leaping formula was proposed to reduce the damping effect
of the implicit tau-leaping formula [11]. The trapezoidal tau-leaping formula is

X(t+ τ) = x+
M∑
j=1

νj

{τ
2
aj
(
X(t+ τ)

)
+ Pj(aj(x)τ)−

τ

2
aj(x)

}
. (2.3)

Because the trapezoidal rule has a second order convergence without damping ef-
fect, this formula shows better accuracy and stability than the implicit tau-leaping
method in stiff systems.

3. Discrete Time Approximations for Stochastic D-
ifferential Equations

This section discusses the numerical solution of stochastic differential equations
(SDEs), with an emphasis on weak approximations [21].

3.1. Stochastic Differential Equations

SDEs incorporate white noise (the “derivative” of a Wiener process) to the differ-
ential equations and their solutions are random processes. Consider the following
d-dimensional SDE system [21]

dX(t) = µ(X(t)) dt+ σ(X(t)) dW (t) , (3.1)

X(t) ∈ Rd, {W (t) ∈ Rm, t ≥ 0} is an m-dimensional Wiener process, and the
functions µ : Rd → R

d and σ : Rd → R
d×m are sufficiently smooth. We call µ

the drift coefficient and σ the diffusion coefficient.
Non-differentiable Wiener process requires special rules of stochastic calculus

when deriving numerical methods for SDEs. In general, two versions of stochastic
calculus, Ito and Stratonovich, are widely used [21]. With Ito calculus, the solution
to SDE (3.1) can be represented as an Ito integral [21]

X(t) = X(t0) +

∫ t

t0

µ(X(s)) ds+

∫ t

t0

σ(X(s)) dW (s), t ∈ [t0, T ]. (3.2)
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With Stratonovich calculus, the solution to (3.1) is

X(t) = X(t0) +

∫ t

t0

µ(X(s)) ds+

∫ t

t0

σ(X(s)) dW (s), t ∈ [t0, T ],

µ
(
X(t)

)
= µ

(
X(t)

)
− 1

2
σ
(
X(t)

) ∂σ

∂x

(
X(t)

)
,

where µ is the modified drift coefficient.

3.2. Convergence of discrete approximations

Consider a time discretization of the SDE (3.2) that uses a maximum step size
δ and gives an approximation {Y δ(t)} of {X(t)}. The magnitude of the pathwise
approximation error at a finite terminal time T is measured by the expected absolute
value of the difference between the Ito process and the approximation [21]

ε(δ) = E
[
|X(T )− Y δ(T )|

]
.

In the analysis of discretization methods, the definitions of strong convergence and
weak convergence are useful.

Definition 3.1 (Strong convergence [21]). A time discrete approximation Y δ(t)
with maximum step size δ converges strongly to X at time T if

lim
δ→0

E
[
|X(T )− Y δ(T )|

]
= 0,

and if there exists a positive constant C, which does not depend on δ, and a finite
δ0 > 0 such that

E
[
|X(T )− Y δ(T )|

]
≤ C δγ

for each δ ∈ (0, δ0), then Y δ is said to converge strongly with order γ > 0.

In many practical situations, it is unnecessary and intractable to have numerical
solutions that precisely approximate each path of an Ito process. Therefore, the
weak convergence is useful in real applications [21].

Definition 3.2 (Weak convergence [21]). A time discrete approximation Y δ(t) with
maximum step size δ converges weakly to X(t) at time T as δ ↓ 0, with respect to
a class C of polynomials g : Rd → R if

lim
δ→0

∣∣E [g(X(T ))]− E
[
g(Y δ(T ))

]∣∣ = 0,

for all g ∈ C. If there exist a positive constant C, which does not depend on δ, and
a finite δ0 > 0 such that∣∣E [g(X(T ))]− E

[
g(Y δ(T ))

]∣∣ ≤ C δβ

for each δ ∈ (0, δ0), then Y δ is said to converge weakly with order β > 0.

These two convergence criteria lead to the development of different discretization
schemes.
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3.3. Discretization Schemes

Assume a time discretization t0 < t1 · · · < tn < · · · < tN = T of the time interval
[t0, T ]. The stochastic Euler approximation of the SDE (3.1) is

Y n+1
k = Y n

k + µk ∆tn +

m∑
j=1

σk,j ∆Wn
j , k = 1, · · · , d, (3.3)

where superscripts express vector and matrix components. We follow our convention
in writing

µk = µk(t
n, Y n) and σk,j = σk,j(t

n, Y n) .

Here
∆Wn

j = W tn+1

j −W tn

j

is the N(0; ∆tn) increment of the jth component of the m-dimensional standard
Wiener process W on [tn, tn+1], and ∆Wn

j1 and ∆Wn
j2 are independent for j1 ̸= j2.

It was shown [15] that the Euler scheme converges with strong order γ = 0.5 under
Lipschitz and bounded growth conditions on the coefficients µ and σ.

In the weak convergence condition, the random increments ∆Wn of the Wiener
process can be changed by other random variables ∆Ŵn that have similar moment
properties to the ∆Wn, but are less expensive to compute [21]. If the scalar case
d = m = 1, then a weak Euler approximation with weak order β = 1.0 is

Y n+1 = Y n + µ∆tn + σ∆Ŵn,

where ∆Ŵn satisfies moment condition [21]∣∣∣E [∆Ŵn
]∣∣∣+ ∣∣∣E [(∆Ŵn)3

]∣∣∣+ ∣∣∣E [(∆Ŵn)2
]
−∆tn

∣∣∣ ≤ C (∆tn)2 (3.4)

for some constant C. One simple example of such a random variable is the two-point
distributed ∆Ŵn with probability

P
(
∆Ŵn = ±

√
∆tn

)
=

1

2
. (3.5)

3.4. The Fully Implicit Euler Scheme

In the general multi-dimensional case the kth component of the weak Euler scheme
has the form

Y n+1
k = Y n

k + µk ∆tn +

m∑
j=1

σk,j ∆Ŵn
j , Y 0

k = X0 , (3.6)

where ∆Ŵn
j satisfies moment condition (3.4). The family of implicit Euler schemes

[21] reads

Y n+1
k = Y n

k + {αµk(t
n+1, Y n+1) + (1− α)µk}∆tn +

m∑
j=1

σk,j ∆Ŵn
j . (3.7)

The parameter α here can be interpreted as the degree of implicitness. With α = 1.0
it is the implicit Euler scheme, whereas with α = 0.5 it represents a stochastic
generalization of the trapezoidal method.
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From the definition of Ito stochastic integrals, a meaningful fully implicit Euler
scheme cannot be constructed by making the diffusion coefficient (σ) implicit in an
equivalent way to the drift coefficient (µ). To obtain a weakly consistent implicit
approximation it is necessary to appropriately modify the drift term [21]. Such a
family of fully implicit stochastic Euler schemes is

Y n+1
k =Y n

k +
{
αµη

k(t
n+1, Y n+1) + (1− α)µη

k

}
∆tn

+
m∑
j=1

{
ησk,j(t

n+1, Y n+1) + (1− η)σk,j

}
∆Ŵn

j , (3.8)

where ∆Ŵn
j is as in (3.5) and the corrected drift coefficient µη

k is defined by

µη
k = µη

k − η
m∑
j=1

d∑
k=1

σk,j
∂σj

∂xk
. (3.9)

For α = η = 1.0 the scheme (3.8) is the fully implicit Euler method. For η = 0.5
the corrected drift µη

k = µ
k
is the corrected drift of the corresponding Stratonovich

equation, and for α = 0.5 the scheme (3.8) yields the fully implicit trapezoidal
method.

3.5. The Second Order Weak Taylor Scheme

In the general multi-dimensional case d,m = 1, 2, . . . the kth component of the
second order weak Taylor scheme reads [21]

Y n+1
k =Y n

k + µk ∆tn +
1

2
L0 µk (∆tn)2 +

m∑
j1,j2=1

Lj1 σk,j2 I
(j1,j2)

+
m∑
j=1

{
σk,j ∆Wn

j + L0 σk,j I
(0,j) + Lj µk I

(j,0)
}

, (3.10)

where operators L0 and Lj are

L0 =
∂

∂t
+

d∑
z=1

µz
∂

∂xz
+

1

2

d∑
z,ℓ=1

m∑
h=1

σz,h σℓ,h
∂2

∂xz ∂xℓ
and Lj =

d∑
z=1

σz,j
∂

∂xz

for j = 1, 2, . . . ,m. In addition, the multiple Ito integrals are abbreviated by

I(j1,...,jℓ) =

∫ tn+1

tn
· · ·
∫ s2

tn
dW s1

j1 · · · dW
sℓ

jℓ
.

Here we have multiple Ito integrals involving different components of the Wiener
process, which are generally not easy to generate. Therefore (3.10) is more of
theoretical interest than of practical use. However, for weak convergence we can
substitute simpler random variables for the multiple Ito integrals [21]. In this way
we obtain from (3.10) the following simplified order two weak Taylor scheme with
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the kth component

Y n+1
k =Y n

k + µk ∆tn +
1

2
L0 µk (∆tn)2 +

m∑
j1,j2=1

Lj1 σk,j2 Θj1,j2

+
m∑
j=1

{
σk,j +

1

2
∆tn (L0σk,j + Lj µk)

}
∆Ŵn

j , (3.11)

where Θj1,j2 = ∆Ŵn
j1
∆Ŵn

j2
+Vj1,j2 . Here the Ŵj for j = 1, 2, . . . ,m are independent

random variables satisfying moment conditions∣∣∣E[∆Ŵn]
∣∣∣+ ∣∣∣E [(∆Ŵn)3

]∣∣∣+ ∣∣∣E [(∆Ŵn)5
]∣∣∣

+
∣∣∣E [(∆Ŵn)2

]
−∆tn

∣∣∣+ ∣∣∣E [(∆Ŵn)4
]
− 3(∆tn)2

∣∣∣ ≤ C (∆tn)3 (3.12)

for some constant C. An N(0;∆tn) Gaussian random variable satisfies the moment

condition (3.12), and so does the three-point distributed ∆Ŵn with

P
(
∆Ŵn = ±

√
3∆tn

)
=

1

6
, P

(
∆Ŵn = 0

)
=

2

3
. (3.13)

The Vj1,j2 are independent two-point distributed random variables with

P (Vj1,j2 = ±∆tn) =
1

2
(3.14a)

for j2 = 1, . . . , j1 − 1,
Vj1,j1 = −∆tn (3.14b)

and
Vj1,j2 = −Vj2,j1 (3.14c)

for j2 = j1 + 1, . . . ,m and j1 = 1, . . . ,m.

4. Implicit Tau-Leaping-Like Schemes

We now propose several new fully implicit tau-leaping methods motivated by the
SDE solvers discussed in Section 3.

4.1. The Fully Implicit Tau-Leaping Methods

We apply the fully implicit weak Euler scheme (3.8) to the stochastic chemical
kinetic problem. Recall the explicit tau-leaping method (2.1). The Poisson variate
can be rewritten as the mean value part plus the variance part of the Poisson
variables. Then the variance term is scaled by the standard deviation of aj(x) as
below

Pj(aj(x) τ) = aj(x) τ +
√

aj(x) ∆Pj ,

where the Poisson noise

∆Pj =
Pj(aj(x) τ)− aj(x) τ√

aj(x)
(4.1)
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is close to a normal variable N(0; τ) when aj is large. The scheme (2.1) can be
written as

X(t+ τ) = x+

M∑
j=1

νj aj(x) τ +

M∑
j=1

νj

√
aj(x)∆Pj . (4.2)

The weak Euler scheme (3.6), in vector notation, reads

Y n+1 = Y n + µ∆tn +
m∑
j=1

σj ∆Wn
j , (4.3)

where σj is the jth column of σ. We note that (4.2) is similar to the Euler
scheme (4.3) with

µ =
M∑
j=1

νj aj(x) , ∆tn = τ , σj = νj

√
aj(x) . (4.4)

4.1.1. The Fully Implicit “BE–BE” Method

The fully implicit “BE–BE” tau-leaping method uses the Backward Euler discretiza-
tion for both the mean and variance of the Poisson variables. In (3.8) the choice
α = η = 1 simplifies the fully implicit weak Euler scheme to

Y n+1 = Y n + µ(tn+1, Y n+1)∆tn +

m∑
j=1

σj(t
n+1, Y n+1)∆Ŵn

j ,

where ∆Ŵn
j satisfies moment condition (3.4). Besides the original random variable

∆Ŵn
j = ∆Wn

j , simpler options like (3.5) are possible [21].
Using (4.4) the corrected drift coefficient (3.9) can be written as

µ = µ− 1

2

M∑
j=1

νj

(
N∑

k=1

νk,j
∂aj(x)

∂xk

)
.

Finally the “BE–BE” fully implicit tau-leaping method has the form

X(t+ τ) =x+ τ
M∑
j=1

νj (aj (X(t+ τ)))− τ

2

M∑
j=1

νj

(
N∑

k=1

νk,j
∂aj
∂xk

(X(t+ τ))

)

+

M∑
j=1

νj

√
aj (X(t+ τ))∆Ŵj , (4.5)

where ∆Ŵj = ∆Pj . For large aj , ∆Pj is close to a normal variable and ∆Ŵj can
be replaced by a random variable with the correct statistics, e.g., as given by (3.5).

4.1.2. The Fully Implicit “TR–TR” Method

The fully implicit “TR–TR” method uses an implicit trapezoidal discretization for
both the mean of and the variance of the Poisson variables. The choice α = η = 0.5
in (3.8) leads to

Y n+1 = Y n +
1

2

{
µ(tn+1, Y n+1) + µ

}
∆tn +

1

2

m∑
j=1

{σj(t
n+1, Y n+1) + σj}∆Ŵj ,
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where the corrected drift coefficient (3.9) is

µ = µ− 1

2

m∑
j=1

d∑
k=1

σk,j
∂σj

∂xk
, (4.6)

and is equivalent to the Stratonovich drift coefficient µ.
From (4.4) the “TR–TR” fully implicit tau-leaping method has the form

X(t+ τ) =x+
τ

2

M∑
j=1

νj (aj (X(t+ τ)) + aj(x))

− τ

2

M∑
j=1

νj

{
1

4

N∑
k=1

νk,j

(
∂aj(X(t+ τ))

∂xk
+

∂aj(x)

∂xk

)}

+
1

2

M∑
j=1

νj

(√
aj (X(t+ τ)) +

√
aj(x)

)
∆Ŵj , (4.7)

where the ∆Ŵj = ∆Pj or, for large aj , can be replaced by (3.5).

4.1.3. The Fully Implicit “BE–TR” Method

The fully implicit “BE–TR” method uses a backward Euler discretization for the
mean (deterministic) part, and the implicit trapezoidal discretization for the vari-
ance. In (3.8) the choice α = 1.0 and η = 0.5 simplifies the fully implicit weak Euler
scheme to

Y n+1 = Y n + µ (tn+1, Y n+1)∆tn +
1

2

m∑
j=1

{σj(t
n+1, Y n+1) + σj(tn, Yn)}∆Ŵj ,

where the corrected drift coefficient (3.9) is equal to (4.6). From (4.4) the “BE–TR”
fully implicit tau-leaping method has the form

X(t+ τ) =x+ τ
M∑
j=1

νj aj(X(t+ τ))− τ

4

M∑
j=1

νj

(
N∑

k=1

νk,j
∂aj(X(t+ τ))

∂xk

)

+
1

2

M∑
j=1

νj

(√
aj (X(t+ τ)) +

√
aj(x)

)
∆Ŵj , (4.8)

where the ∆Ŵj = ∆Pj or, for large aj , can be replaced by (3.5).

4.2. Implicit Second Order Weak Taylor Tau-Leaping Meth-
ods

The simplified order two weak Taylor scheme (3.11) motivates the following family
of methods for stochastic kinetic equations:

Y n+1
k =Y n

k +
{
αµk(t

n+1, Y n+1) + (1− α)µk

}
∆tn

+
1

2
(1− 2α)

{
β L0 µk(t

n+1, Y n+1) + (1− β)L0 µk

}
(∆tn)2
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+
1

2

m∑
j1=1,j2=1

Lj1 σk,j2 Θj1,j2

+
m∑
j=1

{
σk,j +

1

2
(L0 σk,j + (1− 2α)Lj µk)∆tn

}
∆Ŵn

j . (4.9)

4.2.1. Implicit Second Order Weak SSA with α = 1.0 and β = 1.0

When α = 1.0 and β = 1.0 the scheme (4.9) becomes

Y n+1
k =Y n

k + µk(t
n+1, Y n+1)∆tn − 1

2
L0 µk(t

n+1, Y n+1)(∆tn)2

+
1

2

m∑
j1=1,j2=1

Lj1 σk,j2 Θj1,j2

+
m∑
j=1

{
σk,j +

1

2
(L0 σk,j − Lj µk)∆tn

}
∆Ŵn

j . (4.10)

We apply the implicit order two weak Taylor scheme to the stochastic chemical
kinetic problem in a similar manner to the fully implicit tau-leaping methods. Note
that

L0 µ =
d∑

k=1

µk
∂µ

∂xk
+

1

2

d∑
k,ℓ=1

m∑
h=1

σk,h σℓ,h
∂2µ

∂xk ∂xℓ
,

L0 σj =

d∑
k=1

µk
∂σj

∂xk
+

1

2

d∑
k,ℓ=1

m∑
h=1

σk,h σℓ,h
∂2σj

∂xk ∂xℓ
,

Lj µ =
d∑

k=1

σk,j
∂µ

∂xk
, and Lj1σj2 =

d∑
k=1

σk,j1

∂σj2

∂xk
. (4.11)

From (4.4), (4.10), and (4.11) the implicit order two weak tau-leaping SSA method
with α = 1.0 and β = 1.0 has the form

X(t+ τ) =x+ τ
M∑
j=1

νj (aj (X(t+ τ)))

− τ2

2

M∑
j=1

νj

{
N∑

k=1

∂aj(X(t+ τ))

∂xk

(
M∑
h=1

νk,hah(x)

)

+
1

2

N∑
k,ℓ=1

∂2aj(X(t+ τ))

∂xk ∂xℓ

(
M∑
h=1

νk,hνℓ,hah(x)

)}

+
1

4

M∑
j2=1

νj2
1√

aj2(x)


M∑

j1=1

√
aj1(x)

(
N∑

k=1

νk,j1
∂aj2(x)

∂xk

)
Θj1,j2


+

M∑
j=1

{
νj

√
aj(x)−

τ

2

√
aj(x)

N∑
k=1

νk,j

(
M∑
h=1

νh
∂ah(x)

∂xk

)}
∆Ŵj
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+
τ

4

M∑
j=1

νj

4
√
aj(x)

{
N∑

k=1

∂aj(x)

∂xk

(
M∑
h=1

νk,j ah(x)

)

− 1

4aj(x)

N∑
k,ℓ=1

∂2aj(x)

∂xk∂xℓ

(
M∑
h=1

νk,hνℓ,hah(x)

)}
∆Ŵj . (4.12)

4.2.2. Implicit Second Order Weak SSA with α = 1.0 and β = 0.0

When α = 1.0 and β = 0.0 the scheme (4.9) reads

Y n+1
k =Y n

k + µk(t
n+1, Y n+1)∆tn − 1

2
L0 µk(∆tn)2

+
1

2

m∑
j1=1,j2=1

Lj1 σk,j2 Θj1,j2 +
m∑
j=1

{
σk,j +

1

2
(L0 σk,j − Lj µk)∆tn

}
∆Ŵn

j .

The corresponding implicit order two weak tau-leaping SSA method has the form

X(t+ τ) =x+ τ

M∑
j=1

νj (aj (X(t+ τ)))− τ2

2

M∑
j=1

νj

{
N∑

k=1

∂aj(x)

∂xk

(
M∑
h=1

νk,hah(x)

)

+
1

2

N∑
k,ℓ=1

∂2aj(x)

∂xk ∂xℓ

(
M∑
h=1

νk,hνℓ,hah(x)

)}

+
1

4

M∑
j2=1

νj2
1√

aj2(x)


M∑

j1=1

√
aj1(x)

(
N∑

k=1

νk,j1
∂aj2(x)

∂xk

)
Θj1,j2


+

M∑
j=1

{
νj

√
aj(x)−

τ

2

√
aj(x)

N∑
k=1

νk,j

(
M∑
h=1

νh
∂ah(x)

∂xk

)}
∆Ŵj

+
τ

4

M∑
j=1

νj

4
√

aj(x)

{
N∑

k=1

∂aj(x)

∂xk

(
M∑
h=1

νk,j ah(x)

)

− 1

4aj(x)

N∑
k,ℓ=1

∂2aj(x)

∂xk∂xℓ

(
M∑
h=1

νk,hνℓ,hah(x)

)}
∆Ŵj . (4.13)

4.2.3. Implicit Second Order Weak SSA with α = 0.5

When α = 0.5 the scheme (4.9) does not depend on β. The method reads

Y n+1
k =Y n

k +
1

2

{
µk(t

n+1, Y n+1) + µk

}
∆tn +

1

2

m∑
j1=1,j2=1

Lj1 σk,j2Θj1,j2

+
m∑
j=1

(
σk,j +

1

2
L0 σk,j∆tn

)
∆Ŵn

j .
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The implicit order two weak tau-leaping SSA method for α = 0.5 has the form

X(t+ τ) =x+
τ

2

M∑
j=1

νj {aj (X(t+ τ)) + aj(x)}+
M∑
j=1

νj

√
aj(x)∆Ŵj

+
1

4

M∑
j2=1

νj2
1√

aj2(x)


M∑

j1=1

√
aj1(x)

(
N∑

k=1

νk,j1
∂aj2(x)

∂xk

)
Θj1,j2


+

τ

4

M∑
j=1

νj

4
√
aj(x)

{
N∑

k=1

∂aj(x)

∂xk

(
M∑
h=1

νk,j ah(x)

)

− 1

4aj(x)

N∑
k,ℓ=1

∂2aj(x)

∂xk ∂xℓ

(
M∑
h=1

νk,h νℓ,h ah(x)

)}
∆Ŵj . (4.14)

5. Stability Analysis

In this section we perform a theoretical stability analysis of the fully implicit meth-
ods proposed in Section 4. Specifically, we take the well established approach [10,24]
of applying the methods to the reversible isomerization model and comparing the
discrete results with the available analytical solution.

5.1. Reversible Isomerization Model

Following Rathinam et al., [10,24] we consider the reversible isomerization reaction
system

S1

c1−→←−
c2

S2 . (5.1)

Let Xt denote the population (number of molecules) of S1 at time t, XT the total
population of S1 and S2, and

λ = c1 + c2 . (5.2)

Usually the case with c1 = c2 is considered. Note that XT is constant in time, and
therefore the population of S2 at time t is XT −Xt. The deterministic reaction rate
equation for this system is the ODE:

dXt

dt
= −c1Xt + c2(X

T −Xt) = −λXt + c2X
T .

Therefore the mean E[Xt] and variance Var[Xt] satisfy the following ODEs:

dE[Xt]

dt
= −λE[Xt] + c2X

T ,

d Var[Xt]

dt
= −2λ Var[Xt] + c2X

T + (c1 − c2)E[Xt].

As t goes to infinity, the asymptotic value of the exact mean E[X∗
∞] and the exact

variance Var[X∗
∞] are [10,28]

E[X∗
∞] =

c2X
T

λ
, Var[X∗

∞] =
c1c2X

T

λ2
. (5.3)
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5.2. Stability Analysis of the Traditional Tau-leaping Methods

Recall the explicit tau-leaping method (2.1). Applying the explicit tau-leaping
method with a fixed step size τ to the test problem (5.1) gives

Xn+1 = Xn − P1(c1τXn) + P2(c2τ(X
T −Xn)) , (5.4)

where Xn is the numerical approximation of Xt at time tn.
The following lemma about the conditional probability from [25] will prove useful

for the derivation.

Lemma 5.1. If X and Y are random variables, then

E[Y ] = E[E[Y |X]],

Var[Y ] = E[ Var[Y |X]] + Var[E[Y |X]].

By Lemma 5.1, the mean of the Eq. (5.4) is

E[Xn+1] = (1− λτ)E[Xn] + c2X
T τ .

This imposes the stability condition

|1− λτ | < 1, (5.5)

which implies 0 < λτ < 2 for the stepsize. For n → ∞ we obtain the asymptotic
mean

E[X∞] =
c2X

T

λ
= E[X∗

∞].

For the variance we have

Var[Xn+1] = (1− λτ)2 Var[Xn] + (c1 − c2) τ E[Xn] + c2X
T τ . (5.6)

The stable domain for the variance is given by (1−λτ) < 1 and is the same as (5.5).
For n→∞ in (5.6), the asymptotic variance is

Var[X∞] =
2

2− λτ
Var[X∗

∞].

Thus the variance given by the explicit tau-leaping method does not converge to the
theoretical value, even if the stability condition is satisfied. If Eq. (5.5) is satisfied,
Var[X∞] is larger than Var[X∗

∞].
Similarly, the stability region, asymptotic mean, and asymptotic variance for

the traditional implicit tau-leaping method are∣∣∣∣ 1

1 + λτ

∣∣∣∣ < 1, E[X∞] =
c2X

T

λ
= E[X∗

∞], Var[X∞] =
2

2 + λτ
Var[X∗

∞]. (5.7)

For the trapezoidal method,∣∣∣∣2− λτ

2 + λτ

∣∣∣∣ < 1, E[X∞] =
c2X

T

λ
= E[X∗

∞], Var[X∞] =
c1c2X

T

λ2
= Var[X∗

∞].

(5.8)
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5.3. Stability Analysis of the Fully Implicit Tau-Leaping Meth-
ods

Recall the BE–BE fully implicit formula (4.5)

X(t+ τ) =x+

M∑
j=1

νj

{
τaj(X(t+ τ))− τ

2

(
N∑

k=1

νk,j
∂aj(X(t+ τ))

∂xk

)

+
√
aj(X(t+ τ))τ

(
Pj(aj(x) τ)− aj(x) τ√

aj(x)

)}
.

We apply the BE–BE tau-leaping methods with a fixed step size τ to the test
problem (5.1). For N = 1, M = 2, ν1,1 = −1, ν1,2 = 1, a1(x) = c1X, and
a2(x) = c2(X

T −X), we have that

Xn+1 =Xn − τλXn+1 + τ
(
c2X

T − c1
2

+
c2
2

)
(5.9a)

−
√

Xn+1

{
P1(τc1Xn)− τc1Xn√

Xn

}
(5.9b)

+
√

XT −Xn+1

{
P2(τc2(X

T −Xn))− τc2(X
T −Xn)√

XT −Xn

}
. (5.9c)

Derivation of the mean for the simplified equation (5.9) is quite intricate due to
the square root in the denominator. In order to derive the stability region we
first employ an inequality condition. Denote by En[ · ] = E[ ·|Xn]; from lemma 5.1
E[ · ] = E[En[ · ]]. Taking the expectation of (5.9b) leads to

− En

[√
Xn+1

{
P1(τc1Xn)− τc1Xn√

Xn

}]
≤1

2
En [Xn+1] +

1

2
En

[
(P1(τc1Xn)− τc1Xn)

2

Xn

]

=
1

2
En [Xn+1] +

1

2

Var (P1(τc1Xn))

Xn

=
1

2
En [Xn+1] +

1

2
τc1,

which implies that

− En

[√
Xn+1

{
P1(τc1Xn)− τc1Xn√

Xn

}]
≤ 1

2
E [Xn+1] +

1

2
τc1. (5.10a)

Similarly, the expectation of (5.9c) satisfies

E

[√
XT −Xn+1

{
P2(τc2(X

T −Xn))− τc2(X
T −Xn)√

XT −Xn

}]

≤1

2
E
[
XT −Xn+1

]
+

1

2
τc2. (5.10b)
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Plugging (5.10a) and (5.10b) into (5.9) and taking E[ · ] gives

E[Xn+1] ≤E[Xn]− τλE[Xn+1] + τ
(
c2X

T − c1
2

+
c2
2

)
+

1

2
E [Xn+1] +

1

2
τc1 +

1

2
E
[
XT −Xn+1

]
+

1

2
τc2,

which can be simplified to

E[Xn+1] ≤
1

(1 + λτ)
E[Xn] +

2τc2 + 2τc2X
T +XT

(2 + 2λτ)
. (5.11)

This imposes the sufficient stability condition∣∣∣∣ 1

1 + λτ

∣∣∣∣ < 1. (5.12)

The second approach for the stability analysis is using the Poisson approximation
method. Recall that the Poisson random variable can be rewritten as the mean value
plus the random deviation from the mean part

Pj(aj(x) τ) = aj(x)τ +
√

aj(x)∆Pj .

If aj is large the Poisson noise ∆Pj is close to a normal variable N(0; τ). In this
case the Poisson variable with mean aj(X(t+ τ)) τ can be approximated by

P(aj(X(t+ τ))τ) ≈ aj(X(t+ τ))τ +
√
aj(X(t+ τ))∆Pj . (5.13)

With this approximation the “BE–BE” fully implicit method has the alternative
form

X(t+τ) = x+

M∑
j=1

νjP(aj(X(t+τ))τ)− τ

2

M∑
j=1

νj

(
N∑

k=1

νk,j
∂aj(X(t+ τ))

∂xk

)
. (5.14)

Applying the alternative BE–BE formula (5.14) with a fixed step size τ to the test
problem (5.1) gives

Xn+1 = Xn − P1(c1τXn+1) + P2

(
c2τ(X

T −Xn+1)
)
− τ

2
(c1 − c2) . (5.15)

Denoting by En+1[ · ] = E[ · |Xn+1] and taking En+1 of (5.14) leads to

Xn+1 = En+1[Xn]− c1τXn+1 + c2τ(X
T −Xn+1)−

τ

2
(c1 − c2),

i.e.,

En+1[Xn] = (1 + λτ)Xn+1 − c2τX
T +

τ

2
(c1 − c2). (5.16)

Then by Lemma 5.1 we have

E[Xn] = E[En+1[Xn] ] = (1 + λτ)E[Xn+1]− c2τX
T +

τ

2
(c1 − c2).

Therefore

E[Xn+1] =
1

1 + λτ
E[Xn] +

τ

1 + λτ

(
c2X

T +
c1 − c2

2

)
, (5.17)
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which imposes the stability condition∣∣∣∣ 1

1 + λτ

∣∣∣∣ < 1. (5.18)

This approximate stability region is same to the sufficient BE–BE stability con-
dition (5.12) calculated via inequalities. We conclude that the BE–BE stability
is similar to that of the traditional implicit tau-leaping method for the reversible
isomerization test model.

The Poisson approximation (5.13) allows to deduce the asymptotic mean and
variance of the approximate solutions (5.14). Letting n→∞ in (5.17) we obtain

E[X∞] =
1

λ

(
c2X

T +
c1 − c2

2

)
.

For c1 = c2 (the common setting of the test problem)

E[X∞] =
c2X

T

λ
= E[X∗

∞].

The conditional variance of (5.15) with respect to Xn+1 is

Var[Xn|Xn+1] = (c2 − c1)τXn+1 − c2τX
T .

Therefore
E[ Var[Xn|Xn+1] ] = (c2 − c1)τ E[Xn+1]− c2τX

T . (5.19)

The variance of (5.16) is

Var[E[Xn|Xn+1] ] = (1 + λτ)2 Var[Xn+1]. (5.20)

From Lemma 5.1, (5.19) and (5.20)

Var[Xn] = (1 + λτ)2 Var[Xn+1] + (c2 − c1)τ E[Xn+1]− c2τX
T .

Letting n→∞

Var[X∞] = (1 + λτ)2 Var[X∞] + (c2 − c1)τ E[X∞]− c2τX
T .

After replacing the E[X∞] =
1

λ

(
c2X

T +
c1 − c2

2

)

Var[X∞] =
4c1c2X

T + (c1 − c2)
2

2λ2(2 + λτ)
.

For c1 = c2 as the E[X∞]

Var[X∞] =
2c1c2X

T

λ2(2 + λτ)
=

2

2 + λτ
· c1c2X

T

λ2
=

2

2 + λτ
Var[X∗

∞].

This asymptotic variance of the approximate BE–BE (4.5) is same as that of the
traditional implicit tau-leaping method (5.7).

A similar approach can be used to obtain the stability region, the asymptotic
mean, and the asymptotic variance of the TR-TR (4.7) and BE-TR (4.8) methods.
The results are summarized in Table 1.
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Method Stability condition E[X∞] Var[X∞]

BE–BE
∣∣∣ 1
1+λτ

∣∣∣ < 1 E[X∗
∞] 2

2+λτ Var[X
∗
∞]

TR–TR
∣∣∣ 2−λτ
2+λτ

∣∣∣ < 1 E[X∗
∞] Var[X∗

∞]

BE–TR
∣∣∣ 1
1+λτ

∣∣∣ < 1 E[X∗
∞] 2

2+λτ Var[X
∗
∞]

Table 1. Behavior of fully implicit methods applied to the reversible isomerization problem. All methods
are unconditionally stable and yield the exact asymptotic mean. TR–TR provides the exact asymptotic
variance as well.

5.4. Stability Analysis of the Implicit Second Order Tau-Leaping
Methods

Application of the implicit second order method with α = 1.0 and β = 1.0 (4.12)
to the test problem (5.1) yields

Xn+1 =Xn + τ(c2X
T − λXn+1) +

1

4
(r1 − r2 − r3 + r4) + r5 + r6

+
λτ2

2
(c2X

T − λXn), (5.21)

with

r1 =
{P1(τc1Xn)− τc1Xn}2

Xn
+ c1V1,1,

r2 =

{
P2(τc2(X

T −Xn))− τc2(X
T −Xn)

}2
XT −Xn

+ c2V2,2,

r3 =
{P1(τc1Xn)− τc1Xn} ·

{
P2(τc2(X

T −Xn))− τc2(X
T −Xn)

}
Xn

+

√
c1c2(XT −Xn)

Xn
V2,1,

r4 =
{P1(τc1Xn)− τc1Xn} ·

{
P2(τc2(X

T −Xn))− τc2(X
T −Xn)

}
XT −Xn

+

√
c1c2Xn

XT −Xn
V1,2,

r5 =

(
1 +

λτ

2

){
P2(τc2(X

T −Xn))− τc2(X
T −Xn)−P1(τc1Xn) + τc1Xn

}
,

r6 =
τ

16

[
(λXn − c2X

T )

{
P1(τc1Xn)− τc1Xn

Xn

+
P2(τc2(X

T −Xn))− τc2(X
T −Xn)

XT −Xn

}]
,

where The Vj1,j2 are independent two-point distributed random variables as (3.14).
In order to derive the mean of equation (5.21), we first compute En[r1], ...,En[r6].
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Using En[V1,1] = −τ ,

En[r1] = En

[
{P1(τc1Xn)− τc1Xn}2

Xn
+ c1V1,1

]
=

Var (P1(τc1Xn))

Xn
− τc1 = 0 .

Similarly, En[rj ] = 0 for j = 2, . . . , 6. Therefore

(1 + λτ)En[Xn+1] =

(
1− λ2τ2

2

)
En[Xn] + τc2X

T

(
1 +

λτ

2

)
.

From Lemma 5.1, the mean of the numerical solution satisfies

E[Xn+1] =

(
2− λ2τ2

2 + 2λτ

)
E[Xn] +

τc2X
T (2 + λτ)

2 + 2λτ
, (5.22)

which implies the stability restriction∣∣∣∣2− λ2τ2

2 + 2λτ

∣∣∣∣ < 1 ⇒ 0 < λτ < 1 +
√
5 . (5.23)

The second order weak Taylor method with α = 1.0 and β = 1.0 is conditionally
stable. For the asymptotic mean of the second order weak Taylor method with
α = 1.0 and β = 1.0, let n→∞ in (5.22). Then we obtain

E[X∞] =
c2X

T

λ
= E[X∗

∞], (5.24)

which is equal to its exact value (5.3). The stability condition and the asymptotic
mean for the implicit second order with α = 1.0 and β = 0.0 (4.13) are calculated
in a similar manner, and the results are the same as (5.23) and (5.24).

Application of the implicit second order method with α = 0.5 (4.14) to the test
problem (5.1) gives

Xn+1 = Xn +
τ

2
(2c2X

T − λXn+1 − λXn) +
1

4
(r1 − r2 − r3 + r4) + r5 + r6, (5.25)

with

r1 =
{P1(τc1Xn)− τc1Xn}2

Xn
+ c1V1,1,

r2 =

{
P2(τc2(X

T −Xn))− τc2(X
T −Xn)

}2
XT −Xn

+ c2V2,2,

r3 =
{P1(τc1Xn)− τc1Xn} ·

{
P2(τc2(X

T −Xn))− τc2(X
T −Xn)

}
Xn

+

√
c1c2(XT −Xn)

Xn
V2,1,

r4 =
{P1(τc1Xn)− τc1Xn} ·

{
P2(τc2(X

T −Xn))− τc2(X
T −Xn)

}
XT −Xn

+

√
c1c2Xn

XT −Xn
V1,2,
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r5 = P2(τc2(X
T −Xn))− τc2(X

T −Xn)− P1(τc1Xn) + τc1Xn,

r6 =
τ

16

[
(λXn − c2X

T )

{
P1(τc1Xn)− τc1Xn

Xn

+
P2(τc2(X

T −Xn))− τc2(X
T −Xn)

XT −Xn

}]
.

Similar to the calculation for the implicit second order weak SSA with α = 1.0 and
β = 1.0, taking expected value En and then E gives

E[Xn+1] =

(
2− λτ

2 + λτ

)
E[Xn] +

2τc2X
T

2 + λτ
. (5.26)

The asymptotic stability of E[Xn] requires∣∣∣∣2− λτ

2 + λτ

∣∣∣∣ < 1 ⇒ 0 < λτ . (5.27)

Because λτ is always greater than zero, the second order weak Taylor methods with
α = 0.5 is unconditionally stable. The condition (5.27) is the same as that (5.8) of
the trapezoidal tau-leaping method. Letting n→∞ we have

E[X∞] =
c2X

T

λ
= E[X∗

∞],

which is equal to its exact value (5.3).

Deriving analytically the asymptotic variances for the second order weak Taylor
methods becomes a very intricate task. For the variance of the implicit second order
method with α = 0.5 (4.14) to the test problem (5.1), we still use the fact

Var[Xn+1] = E[ Var[Xn+1|Xn] ] + Var[E[Xn+1|Xn] ]

using Lemma (5.1). By (5.26),

Var[E[Xn+1|Xn] ] =

(
2− λτ

2 + λτ

)2

Var[Xn].

To calculate the term E[ Var[Xn+1|Xn] ], we should consider the expectation of the
variance of (5.25). This involves the estimation of E[ 1

Xn
] and E[ 1

XT−Xn
] which

cannot be obtained simply. This intractable calculation will be analyzed in future
work.

6. Experimental Results

This section presents numerical results for the new implicit tau-leaping methods ap-
plied to three different systems. A fixed stepsize strategy is used in each simulation
for all methods; this allows for a clean comparison of the performance of different
algorithms.
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Figure 1. Time evolution of the numbers of molecules in the decaying-dimerizing problem (6.1). The
simulation is carried out using Gillespie’s SSA method.

6.1. The Decaying-Dimerizing Reaction Set

The decaying-dimerizing system [24] consists of three species S1, S2, and S3 and
four reactions

S1
c1−→ 0,

S1 + S1

c2−→←−
c3

S2,

S2
c4−→ S3.

(6.1)

We chose the following values for the parameters

c1 = 1, c2 = 10, c3 = 1000, c4 = 0.1,

which will render the problem stiff. The propensity functions are

a1 = X1, a2 = 5X1(X1 − 1), a3 = 1000X2, a4 = 0.1X2,

where Xi denotes the number of molecules of species Si. The initial conditions are

X1(0) = 400, X2(0) = 798, X3(0) = 0 [molecules].

The final time is T = 0.2 seconds. Figure 1 shows the species evolution for the
reaction set (6.1) solved with the original SSA.

In order to compare the solutions given by different methods we consider his-
tograms of X1, the number of molecules of S1, at the final time T = 0.2 seconds.
Specifically, an ensemble of simulation results is carried out for each method, and
the final distribution of the numerical X1 is plotted as a histogram from 100,000
independent simulations.

Figure 2(a) shows the histograms of X1 for the decaying-dimerizing system (6.1)
simulated with Gillespie’s SSA and with the traditional explicit tau-leaping, implicit
tau-leaping, and trapezoidal tau-leaping methods. A fixed stepsize τ = 2 × 10−4

seconds is used. Figure 2(b) also shows the histograms generated with Gillespie’s
SSA, and with the methods proposed herein: fully implicit BE–BE, TR–TR, BE–
TR, implicit order two weak Taylor with α = 1.0 and β = 1.0, α = 1.0 and β = 0.0,
and α = 0.5. The same fixed stepsize τ = 2× 10−4 is used.
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Figure 2. The histograms of the number of molecules X1 at the final time for the decaying-dimerizing
reaction system (6.1). All histograms are based on 100,000 runs of the corresponding methods with a

fixed stepsize τ = 2 × 10−4 seconds.

Figures 2 (a) and (b) reveal that the histograms of the trapezoidal tau-leaping
method, fully implicit TR–TR method, and implicit order two weak Taylor method
with α = 0.5 are closer to the reference (SSA) histogram than those of other meth-
ods, for the specific time step chosen.

The explicit method gives very unstable and varying results. Other implicit
order two weak Taylor methods with α = 1.0 provoke a little wide varying results,
but those escape the damping effect such as implicit tau-leaping method in Figure 2
(a). From the stability analysis, we have proved that the implicit order two weak
Taylor methods with α = 1.0 are unstable for large stepsizes, and these experimental
results confirm the conditional stability.

In order to numerically assess the accuracy of each method, we carry out simu-
lations with different stepsizes, and obtain the corresponding histograms. For each
method and step size the numerical errors are quantified by the difference between
the numerical histograms and the reference (SSA) histogram. Two metrics of the d-
ifference are employed: the Kullback-Leibler (K-L) divergence [13] and the distance
metric.

The K-L divergence is a non-commutative measure of the difference between two
probability distributions P and Q, typically P representing the “true” distribution
and Q representing arbitrary probability distribution. Therefore we set P to be the
distribution obtained from SSA, and Q the distribution obtained with one of the
other formulae. The K-L divergence is defined to be

DKL(P ||Q) =
∑
i

P (i) log
P (i)

Q(i)
, (6.2)

where Q(i) ̸= 0, and the summation is taken over the histogram bins. Smaller values
of K-L divergence represent more similar distributions. Because K-L divergence is
not useful when there exists zeros for Q, we also use the distance metric, which
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Table 2. The mean, variance, K-L divergence, and distance for X1 at T = 0.2 based on 100,000 samples
for different stepsizes of the decaying-dimerizing reaction system (6.1).

Stepsize (τ in seconds)
Method Metrics 8× 10−4 4× 10−4 2× 10−4 1× 10−4

Gillespie Mean 387.19
SSA Variance 349.87

Explicit Mean ∞ ∞ 384.71 386.92
tau-leaping Variance ∞ ∞ 2503.30 614.64

K-L div. ∞ ∞ 0.740 0.092
Distance ∞ ∞ 8.799 2.665

Implicit Mean 387.95 387.86 387.92 387.81
tau-leaping Variance 79.42 128.46 185.93 242.84

K-L div. 0.329 0.176 0.080 0.030
Distance 6.689 4.829 3.156 1.817

Trapezoidal Mean 387.63 387.70 387.73 387.60
tau-leaping Variance 351.29 346.61 346.38 347.24

K-L div. 0.004 0.004 0.002 0.002
Distance 0.617 0.584 0.444 0.370

Fully implicit Mean 387.27 387.35 387.37 387.49
BE–BE Variance 79.02 128.21 184.31 239.5

K-L div. 0.329 0.174 0.080 0.031
Distance 6.583 4.744 3.078 1.859

Fully implicit Mean 387.26 387.43 387.51 387.61
TR–TR Variance 348.09 343.71 344.10 346.91

K-L div. 0.003 0.002 0.001 0.001
Distance 0.413 0.312 0.296 0.276

Fully implicit Mean 387.63 387.63 387.77 387.59
BE–TR Variance 79.54 127.60 187.74 241.69

K-L div. 0.326 0.177 0.077 0.030
Distance 6.604 4.818 3.031 1.905

Implicit 2.0 Mean ∞ ∞ 386.49 387.12
weak Taylor Variance ∞ ∞ 584.70 407.24
(α = 1, β = 1) K-L div. ∞ ∞ 0.076 0.007

Distance ∞ ∞ 2.426 0.672

Implicit 2.0 Mean ∞ ∞ 386.07 387.03
weak Taylor Variance ∞ ∞ 591.80 409.78
(α = 1, β = 0) K-L div. ∞ ∞ 0.080 0.007

Distance ∞ ∞ 2.455 0.726
Implicit 2.0 Mean 387.29 387.26 386.44 386.25
weak Taylor Variance 356.93 350.17 348.72 348.89
(α = 0.5) K-L div. 0.004 0.003 0.002 0.002

Distance 0.625 0.421 0.386 0.318

measures the difference between two distributions by

Dist =
∑
i

∆X · |P (i)−Q(i)| . (6.3)

Here ∆X is the bin size of the histogram.
Table 2 shows these metrics based on 100,000 samples generated by different

methods for fixed stepsizes τ = (8/k)× 10−4 where k = 1, 2, 4, 8. The results show
that the mean is accurately computed by all accelerated methods. However, the
variance and distance are different for each formula. For example, the explicit tau
formula becomes very unstable for a stepsize of 4 × 10−4 seconds. The implicit
tau-leaping, BE–BE, BE–TR are far superior to explicit tau, but those formulae
produce smaller variances compared to the variance of the exact SSA that is called
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Table 3. Elapsed CPU times (in seconds) for each method and time step for 100,000 simulations of the
decaying-dimerizing reaction system (6.1).

CPU time (seconds) Stepsize (τ in seconds)
Method 8× 10−4 4× 10−4 2× 10−4 1× 10−4

Gillespie SSA 16210.13
Explicit tau-leaping 27.32 46.91 130.55 260.24
Implicit tau-leaping 170.57 340.58 657.51 1389.29

Trapezoidal tau-leaping 180.42 350.66 688.98 1301.21
Fully implicit BE–BE 344.98 686.49 1395.1 2638.74
Fully implicit TR–TR 377.06 746.24 1400.96 2752.39
Fully implicit BE–TR 340.65 690.56 1373.31 2657.25

Implicit 2.0 weak Taylor
(α = 1, β = 1)

398.23 784.43 1587.69 3121.32

Implicit 2.0 weak Taylor
(α = 1, β = 0)

391.31 765.39 1532.98 3076.23

Implicit 2.0 weak Taylor (α = 0.5) 381.34 752.84 1425.83 2798.54

as damping effect.

Three methods (the trapezoidal-tau, the fully implicit TR–TR, and the implicit
second order weak Taylor with α = 0.5) generate accurate variance results even with
large stepsizes. The fully implicit TR–TR results are the most accurate among all
methods for similar time steps, as demonstrated by the smaller distance to the
reference histogram in Table 2. The implicit second order weak Taylor methods
with α = 1.0 are accurate until they become unstable for large stepsizes.

10
2

10
3

10
4

0

1

2

3

4

5

6

7

8

9

10

CPU time [seconds]

D
is

ta
nc

e

 

 

Gillespie SSA
Explicit tau−leaping
Implicit tau−leaping
Trapezoidal tau−leaping
Fully implicit BE−BE
Fully implicit TR−TR
Fully implicit BE−TR
Imp. 2.0 weak α=1, β=1
Imp. 2.0 weak α=1, β=0
Imp. 2.0 weak α=0.5

τ = 2 × 10−4

τ = 1 × 10−4

τ = 8 × 10−4

τ = 1 × 10−4

Figure 3. Relationship between solution accuracy (measured by the distance (6.3) between the accel-
erated method and the SSA produced histograms) and CPU time for different methods applied to the
decaying-dimerizing reaction system (6.1).

The elapsed CPU times for each method are presented in Table 3. Figure 3
considers the relationship between accuracy and computation time for each of the
accelerated methods. From the figure, the trapezoidal tau-leaping, the fully implicit
TR–TR, and the implicit second order weak Taylor with α = 0.5 methods generate
accurate solutions with a large step size (τ = 8×10−4 seconds) and in a short CPU
time. For comparison, 100,000 simulations using the SSA took 16,210 CPU seconds,
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Figure 4. The histograms of the number of molecules X at the final time for the Schlögl bistable
system (6.4). All histograms are based on 100,000 runs of the corresponding methods with a fixed
stepsize τ = 0.4 seconds.

while 100,000 simulations of the fully implicit TR–TR took only 377 seconds (2.3%
of the SSA time) and provided an accurate solution (distance value is only 0.276).
The implicit second order weak Taylor method of the α = 0.5 with τ = 8 × 10−4

fixed step took 381 seconds and produced results of similar accuracy.

6.2. Schlögl Reaction Set

The Schlögl reaction model [10] is a simple but famous bistable system. The system
contains four reactions

B1 + 2S
c1−→←−
c2

3S,

B2

c1−→←−
c2

S,
(6.4)

where B1 and B2 are buffered species whose populations are assumed to remain
constant over the time interval.

c1 = 3× 10−7, c2 = 10−4, c3 = 10−3, c4 = 3.5, N1 = 1× 105, N2 = 2× 105,

which will render the bistable system. Hence the propensity functions are given by

a1 =
c1
2
N1X(X − 1), a2 =

c2
6
X(X − 1)(X − 2), a3 = c3N2, a4 = c4X,

where X denotes the number of molecules of species S. Initial condition X(0) = 250
at T = 0, and final time T = 4 second.

The histograms generated from 100,000 independent samples of SSA, existing
improved SSA methods, and proposed methods including fully implicit tau-leaping
methods and implicit order two weak Taylor methods with fixed stepsize τ = 0.4



446 T.-H. Ahn, X. Han & A. Sandu

Table 4. The mean, variance, distance, and elapsed CPU times (in seconds) for X at T = 4 based on
100,000 samples for different stepsizes of the Schlögl bistable system (6.4).

Stepsize (τ in seconds)
Method Metrics 0.8 0.4 0.2 0.1

Gillespie Mean (Var) 305.2 (46465.9)
SSA CPU time 682.96

Explicit Mean 296.9 306.2 309.5 308.5
tau-leaping Variance 40957.6 42915.6 44981.5 45929.9

Distance 5.680 3.155 2.057 1.860
CPU time 1.41 2.1 3.43 6.21

Implicit Mean 343.4 326.3 316.9 315.1
tau-leaping Variance 52245.0 49876.8 48364.8 47644.7

Distance 4.464 2.877 2.136 1.936
CPU time 4.41 7.03 12.24 22.4

Trapezoidal Mean 324.6 317.4 312.6 311.2
tau-leaping Variance 47837.6 47161.6 46727.0 46719.1

Distance 2.036 1.906 1.849 1.818
CPU time 4.2 6.79 12.07 22.6

Fully implicit Mean 316.4 318.8 313.5 312.2
BE–BE Variance 51137.7 49359.6 47919.2 47401.1

Distance 4.360 2.808 2.158 1.956
CPU time 8.64 13.6 23.74 43.86

Fully implicit Mean 316.2 312.4 312.2 309.9
TR–TR Variance 47195.7 46743.9 46624.0 46601.9

Distance 1.943 1.857 1.836 1.818
CPU time 8.13 13.63 24.51 46.4

Fully implicit Mean 335.5 322.3 315.9 311.1
BE–TR Variance 51920.4 49566.8 (48011.9 47325.1

Distance 4.417 2.761 2.147 1.917
CPU time 8.80 13.38 24.98 46.76

Implicit 2.0 Mean 1122.4 310.3 310.2 310.0
weak Taylor Variance 51112.5 49157.7 47332.8 46612.9
(α = 1, β = 1) Distance 3.501 1.890 1.830 1.766

CPU time 12.53 18.72 30.98 55.08

Implicit 2.0 Mean 296.4 306.2 309.5 309.7
weak Taylor Variance 50810.1 46870.6 46566.0 46498.5
(α = 1, β = 0) Distance 2.475 1.869 1.842 1.839

CPU time 11.74 17.48 28.76 52.64
Implicit 2.0 Mean 313.2 309.9 309.7 310.2
weak Taylor Variance 47441.4 46880.3 46494.3 46503.7
(α = 0.5) Distance 1.862 1.840 1.809 1.803

CPU time 10.71 16.34 26.47 50.23

are shown in Figure 4. We notice that the histogram given by the trapezoidal tau-
leaping method, fully implicit TR–TR method, and implicit order two weak Taylor
method with α = 0.5 are very close to the exact SSA method than other methods
for the specific time step as the histogram of the decaying-dimerizing system. The
histograms produced by the fully implicit BE–BE and BE–TR exhibit damping
effect (sharp peaks) while the histogram given by the implicit order two weak Taylor
method with α = 1.0, β = 1.0 and α = 1.0, β = 0.0 methods provoke a little wide
varying results (broad peaks).

Table 4 shows the mean, variance, distance, and elapsed CPU times based on
100,000 samples generated by different methods for fixed stepsizes. Four fixed step-
sizes τ = 0.8/k where k = 1, 2, 4, 8 were selected to evaluate accuracy for each time
step. The variance for all methods are large for the bistability property of the sys-
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tem. Proposed fully implicit TR–TR, and the implicit second order weak Taylor
with α = 0.5 produce accurate results even with large stepsize τ = 0.8.
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Figure 5. Relationship between solution accuracy measured by the distribution distance (6.3) and CPU
time for different methods applied to the Schlögl bistable system (6.4).

Figure 5 shows the relationship between distance of two distributions (the SSA
and each accelerated method distributions) and computation time for the different
stepsizes of Schlögl bistable system. As the previous dimer reaction system, the
fully implicit TR–TR and the implicit second order weak Taylor method with the
α = 0.5 show small distance (good accuracy) compared to other accelerated meth-
ods with the big stepsize τ = 0.8. 100,000 simulations of the fully implicit TR–TR
method with the τ = 0.8 took 8.13 seconds with accuracy. With the limited results
investigated here, the explicit tau-leaping method is the most efficient for this sys-
tem. 100,000 simulations of the explicit tau-leaping method for the small stepsize
τ = 0.1 took 6.21 seconds with small distance as ones of fully implicit TR–TR
results for the stepsize τ = 0.4. All accelerated methods show efficiency (at least 10
times faster) compared to the SSA that took 683 seconds for 100,000 simulations.

6.3. The ELF System

We now consider a more complex system containing 8 species and 12 reactions [12,
28, 29] to evaluate the accuracy of the proposed tau-leaping methods. We use the
initial conditions and parameter values given in the literature [28]. The chemical
reactions, propensity functions, and initial values are listed in Table 5.

We consider the simulation time interval [0, 3] seconds, and perform 100,000 in-
dependent runs with the Gillespie SSA and with each one of the accelerated meth-
ods. The histograms of X5 and X1 concentrations at the final time are presented
in Figures 6 and 7, respectively, for different fixed time steps between τ = 0.04 and
τ = 0.005 seconds. Figure 6 shows a similar qualitative behavior as in the previ-
ous stiff examples. For a large stepsize τ = 0.04 seconds, the histograms produced
by the fully implicit BE–BE and BE–TR methods exhibit a weak damping effect
(small sharp peaks), while the histograms given by the implicit order two weak
Taylor methods with α = 1.0 exhibit a dispersive effect (broader peaks). Figure
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Table 5. List of reactions and propensity functions for the ELF system.

Reaction Propensity Rate con-
stant

Species Initial
value
(molec.)

R1 EA → EA +A a1 = c1[EA] c1 = 15 X1 A 2000
R2 EB → EB +B a2 = c2[EB ] c2 = 15 X2 B 1500
R3 EA +B → EAB a3 = c3[EA][B] c3 = 0.0001 X3 EA 950
R4 EAB → EA +B a4 = c4[EAB] c4 = 0.6 X4 EB 950
R5 EAB+B → EAB2 a5 = c5[EAB][B] c5 = 0.0001 X5 EAB 200
R6 EAB2 → EAB+B a6 = c6[EAB2] c6 = 0.6 X6 EAB2 50
R7 A → 0 a7 = c7[A] c7 = 0.5 X7 EBA 200
R8 EB +A → EBA a8 = c8[EB ][A] c8 = 0.0001 X8 EBA2 50
R9 EBA → EB +A a9 = c9[EBA] c9 = 0.6
R10 EBA+A → EBA2 a10 = c10[EBA][A] c10 = 0.0001
R11 EBA2 → EBA+A a11 = c11[EBA2] c11 = 0.6
R12 B → 0 a12 = c12[B] c12 = 0.5
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Figure 6. The histograms of X5 at the final time obtained with different, fixed stepsizes for the ELF
system (Table 5). Each histogram uses 100,000 samples.
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Figure 7. The histograms of X1 at the final time obtained with different, fixed stepsizes for the ELF
system (Table 5). Each histogram uses 100,000 samples.
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Figure 8. The relationship between the error in distribution (the distance (6.3) between SSA and each
of the proposed methods’ histograms) and the different stepsizes for X5 and X1 for the ELF system.

7 shows a different behavior. For a large stepsize τ = 0.04 seconds the BE–BE,
the BE–TR, and the implicit order 2.0 weak Taylor with α = 1.0 methods show
dispersive behavior (broad peaks). Therefore the errors in variance for the ELF
system have a complex behavior when stepsizes are very large. In Figures 6 and 7,
the histograms given by the fully implicit TR–TR method and implicit order two
weak Taylor method with α = 0.5 are very similar to the exact SSA histogram. If
the stepsize τ is decreased to τ = 0.005 seconds, all approximation methods show
very good accuracy.
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Figure 9. The relationship between accuracy and CPU time for X5 of the ELF system

Figures 8 (a) and (b) show the error in distribution (the distance (6.3) between
the SSA and each of the accelerated methods’ histograms) versus simulation stepsize
for the ELF system. The y-scale in Figure 8 (b) is much larger than that of Figure 8
(a) because the number of molecules for X1 is much larger than that of X5 (see the
Figures 6 and 7). The results indicate that, similar to the previous examples, the
TR–TR and the implicit second order weak Taylor method with the α = 0.5 are
the most accurate accelerated methods.

Figure 9 shows the relationship between accuracy and CPU time for the differ-
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ent stepsizes of the ELF system. The accuracy is measured by the distance (6.3)
between the accelerated method and the SSA histograms for X5, as in Figure 8 (a).
100,000 simulation of the SSA took 178,364 seconds (approximately 50 hours), while
100,000 simulations of the implicit order two weak Taylor method with α = 1.0 and
β = 1.0 for the smallest stepsize τ = 0.005 took 6,216 seconds (3.5% of the S-
SA time) and provided an accurate solution (distance value is only 0.15). For the
largest fixed stepsize τ = 0.04 seconds, the fully implicit TR–TR and the implicit
second order weak Taylor method with the α = 0.5 provide high accuracy and high
efficiency (only 0.4% of the SSA time).

7. Conclusions

This paper develops new implicit tau-leaping-like algorithms for the solution of
stochastic chemical kinetic systems. The fully implicit tau-leaping methods, “BE–
BE”, “TR–TR”, and “BE–TR”, are motivated by the fact that existing implicit
tau-leaping algorithms treat implicitly only the mean part of the Poisson process.
The newly proposed methods treat implicitly the variance of the Poisson variables as
well. The implicit second order weak Taylor tau-leaping methods are motivated by
the theory of weakly convergent discretizations of stochastic differential equations,
and by the fact that Poisson variables with large mean are well approximated by
normal variables.

Theoretical stability and consistency analyses are carried out on a standard test
problem – the reversible isomerization reaction. The fully implicit tau-leaping meth-
ods are unconditionally stable; the implicit weak second order Taylor tau-leaping
methods with α = 1.0 are conditionally stable, and with α = 0.5 unconditionally
stable. The asymptotic means of the solutions given by all proposed methods con-
verge to the analytical mean of the test problem. The asymptotic variances of the
proposed methods, however, converge to different values, as it is also the case for
traditional tau-leaping methods.

Numerical experiments are carried out using the decaying-dimerizing system,
the bistable Schlögl reaction system, and the ELF system to validate the theoretical
results. The accuracy of the solutions is evaluated by comparing the probability
densities obtained with the new methods and with Gillespie’s SSA. The numerical
results verify that the prosed methods are accurate, with an efficiency comparable
to that of the traditional implicit tau-leaping methods. The theoretical analyses
and numerical experiments shows that the fully implicit TR–TR and the implicit
second order weak Taylor tau-leaping methods with α = 0.5 are the most accurate
methods for large stepsizes.
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