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1. Introduction

One of the most important problems in infinite dimension dynamical or semigroup
generated by autonomous partial differential equations is to prove the existence of
global attractor(see [1,13,17,22,24]), which is a compact invariant set attracting all
bounded subsets of the phase space. To be more precise, let S(t) : X → X, t ≥ 0, be
an operator in a metric space (X, d), we call the family {S(t)|t ≥ 0} be a semigroup
in X if it satisfied the properties

S(t)S(τ) = S(t+ τ), t, τ ≥ 0, S(0) = Id,

where Id denotes the identity operator in X.
The subset A ⊂ X is the global attractor for the semigroup {S(t)|t ≥ 0} if

A ̸= ∅ is compact, strictly invariant, that is S(t)A = A for all t ≥ 0, and every
bounded subset D ⊂ X

lim
t→∞

dist(S(t)D,A) = 0.

Here, dist(·, ·) is the Hausdorff semidistance inX; that is dist(A,B) = sup
a∈A

inf
b∈B

d(a, b).

However, global attractor attract any bounded set of phase space, but the attrac-
tion to it may be arbitrarily slow. In order to describe the attracts speed, the
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concept of exponential attractors(see [7, 9–11, 18, 25, 26]) is put forward, which is a
compact, positively invariant set of finite fractal dimension(see Definition 2.6) and
exponentially attracts each bounded subset. The subset M ⊂ X is the exponential
attractor for the semigroup {S(t)|t ≥ 0} if M ̸= ∅ is compact and has finite fractal
dimension, semi-invariant, that is S(t)M ⊂ M for all t ≥ 0, and there exists a con-
stant k > 0 such that, for every bounded B ⊂ X, there exists a constant c = c(B)
and

dist(S(t)B,M) ≤ ce−kt.

We note that the existence of an exponential attractor M for semigroup implies the
existence of global attractor A and A ⊂ M. In contrast to the global attractor, an
exponential attractor is not uniquely defined.

Recently, many authors have paid much attention to more general nonautonomous
differential equations and the processes generated by them. Different approaches
were made to find the counterpart of the global attractors in this case. Pullback
attractors(see Definition 2.1, Definition 2.3, or [2–4,14,15,19,21,23]), as a suitable
notion, describes nonautonomous dynamical systems, which is a minimal family
of compact invariant sets under the process and pullback attracting each bounded
subset of the phase space.

As the global attractors, the attraction of the pullback attractors to it may
be arbitrarily slow. Like autonomous case, to overcome this drawback creates the
notion of the pullback exponential attractors(see Definition 2.7 or [5, 14]) which is
a family of nonempty compact and positively semi-invariant sets under the process
that fractal dimension uniformly bounded for all times and pullback attracts each
bounded subset of the phase space at an uniform exponential rate.

In [5, 14], the authors proved the existence of pullback exponential attractors
under some suitable conditions and applied it to some semilinear parabolic prob-
lem. These methods need the process U(t, τ) satisfies some strictly conditions. For
example, in [5, 14], which need the process satisfies

sup
τ∈T

∥U(τ, τ − TB)u1 − U(τ, τ − TB)u2∥V ≤ k∥u1 − u2∥W , u1, u2 ∈ B,

here V is compactly embedded in W , B is the uniformly bounded absorbing set for
the process and TB is the time corresponding to the absorbing set B. In fact, we
could not get the inequality for reaction diffusion equation.

As far as I know, only a few articles [5, 14, 20] study the existence of pullback
exponential attractors, to many equations it is difficulty to get the existence of
pullback exponential attractors by using these methods. In this paper, we study
the asymptotic behavior of nonautonomous dynamical system in the framework
of process. We prove that the process exists pullback exponential attractor under
suitable conditions by using pullback ω-limit compactness method. Then we present
a new method to prove the existence of pullback exponential attractors. As a
simple application, we prove the existence of pullback exponential attractors for
nonautonomous reaction diffusion equations.

The paper is organized as follows: In section 2, we recall some basic concept
about pullback attractors and pullback exponential attractors for a process. In
section 3, we prove the existence of pullback exponential attractors in Banach space
and provided a new method to verify the existence of it. In section 4, we apply
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our result to a non-autonomous reaction diffusion system and get the existence of
pullback exponential attractors.

2. Preliminaries

Let X be a complete metric space, B(X) be the set of all bounded subsets of X, and
a two-parameter family of mappings {U(t, τ)|t ≥ τ} = {U(t, τ) : t ≥ τ, t, τ ∈ R} act
on X : U(t, τ) : X → X, t ≥ τ, τ ∈ R.

Definition 2.1. A two-parameter family of mappings {U(t, τ)} is said to be a
process in X, if

(1) U(t, s)U(s, τ) = U(t, τ),∀t ≥ s ≥ τ,

(2) U(τ, τ) = Id, is the identity operator, τ ∈ R.

The pair (U(t, τ), X) is generally referred to as a nonautonomous dynamical
system, and (U(n,m), X)(n,m ∈ N) is called a non-autonomous discrete dynamical
system generated by (U(t, τ), X). If x → U(t, τ)x is continuous in X, we say that
the process is continuous process; if U(t, τ)xn ⇀ U(t, τ)x as xn → x, we say that
the process is the norm to weak continuous process. Obviously, continuous process
is also a norm to weak continuous process.

Definition 2.2. A family of bounded sets {B(t)|t ∈ R} ⊂ B(X) are called pullback
absorbing sets for the process (U(t, τ), X) if for any t ∈ R, and any bounded set
B ⊂ X, there exists a τ0(t, B) ≤ t such that U(t, τ)B ⊂ B(t) for all τ ≤ τ0.

Definition 2.3. The family A = {A(t)|t ∈ R} ⊂ B(X) is said to be a pullback
attractor for U(t, τ) if

(1) A(t) is compact for all t ∈ R.
(2) A is invariant, i.e.,

U(t, τ)A(τ) = A(t) for all t ≥ τ.

(3) A is pullback attracting, i.e.,

lim
τ→−∞

dist((U(t, τ)B,A(t)) = 0, for all B ∈ B(X), and all t ∈ R.

(4) if {C(t)}t∈R is another family of closed attracting sets, then A(t) ⊂ C(t) for
all t ∈ R.

Now, we briefly review the basic concept about the Kuratowski measure of non-
compactness and restate its basic property, which will be used to characterize the
existence of pullback exponential attractors for non-autonomous dynamical system.

Let X be a Banach space and B be a bounded subset of X. The Kuratowski
measure of non-compactness α(B) of B is defined by

α(B) = inf{δ > 0 |B admits a finite cover by sets of diameter ≤ δ}.

The following summarizes some of the basic properties of this measure of non-
compactness.

Lemma 2.1 ( [8]). Let B, B1, B2 ⊂ X. Then
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(1) α(B) = 0 if, and only if, B is compact;

(2) α(B1 +B2) ≤ α(B1) + α(B2);

(3) α(B1) ≤ α(B2) for B1 ⊂ B2;

(4) α(B1

∪
B2) ≤ max{α(B1), α(B2)};

(5) If F1 ⊃ F2... are non-empty closed sets in X such that α(Fn) → 0 as n→ ∞,
then F =

∩∞
n=1 Fn is nonempty and compact.

In addition, let Xbe an infinite dimensional Banach space with a decomposition
X = X1 ⊕X2 and let P : X → X1, Q : X → X2 be projectors with dimX1 < ∞.
Then

(6) α(B(ε))) = 2ε, where B(ε) is a ball of radius ε.

(7) α(B) < ε for any bounded subset B of X for which the diameter of QB is less
than ε.

Definition 2.4. A process {U(t, τ)} is called pullback ω−limit compact if for any
ε > 0 and B ∈ B(X), there exists a τ0(t, B) ≤ t such that α(

∪
τ≤τ0

U(t, τ)B) ≤ ε.

Definition 2.5. A process {U(t, τ)} is called pullback ω − D−limit compact for

{B(t)|t ∈ R}if for any ε > 0, there exists a τ0(t, B̂) ≤ t such that α(
∪

τ≤τ0

U(t, τ)B(τ))

≤ ε.

Lemma 2.2 ( [4, 15, 23]). Assume that the process {U(t, τ)|t ≥ τ} is pullback
ω−limit compact, then for any sequence {τn} ⊂ (−∞, t], τn → −∞ as n → +∞,
and any sequence {xn} ⊂ B, there exists a convergence subsequence of {U(t, τn)xn}
whose limit lies in ω(B, t), here ω(B, t) defined by

ω(B, t) =
∩
s≤t

∪
τ≤s

U(t, τ)B.

Lemma 2.3 ( [4, 15, 23]). Assume that the process {U(t, τ)|t ≥ τ} is pullback ω −
D−limit compact for {B(t)|t ∈ R}, then for any sequence {τn} ⊂ (−∞, t], τn → −∞
as n→ +∞, and any sequence {xn ∈ B(τn)}, there exists a convergence subsequence

of {U(t, τn)xn} whose limit lies in ω(B̂, t), here ω(B̂, t) defined by

ω(B̂, t) =
∩
s≤t

∪
τ≤s

U(t, τ)B(τ).

Theorem 2.1 ( [4, 15, 23]). Let {U(t, τ)|t ≥ τ} be a continuous or norm-to-weak
continuous process and {U(t, τ)|t ≥ τ} is pullback ω−limit compact, {B(t)|t ∈ R} ⊂
B(X) be a family of pullback bounded absorbing sets for the process.Then the process
{U(t, τ)|t ≥ τ} exists pullback attractor A = {A(t)|t ∈ R}, and

A(t) =
∩
s≤t

∪
τ≤s

U(t, τ)B(t) =
∩
s≤t

∪
τ≤s

{U(t, τ)B|B ∈ B(X)}.

Definition 2.6. For any ε > 0, let n(M, ε) denote the minimum number of ball of
X of radius ε which is necessary to cover M. The fractal dimension of M, which
is also called the capacity of M, is the number

dimf M = lim
ε→0+

lnn(M, ε)

ln
1

ε

.
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Definition 2.7. Let {U(t, τ)|t ≥ τ} or {U(n,m)|n ≥ m} be a process in a metric
space X. We call the family M = {M(t)|t ∈ R} or M = {M(n)|n ∈ Z} be a
pullback exponential attractor for U(t, τ) or U(n,m) if

(1) The sets M(t) ∈ B(X) or M(n) ∈ B(X) are compact in X,∀t ∈ R or ∀n ∈ Z.
(2) It is positively semi-invariant, that is

U(t, τ)M(τ) ⊂ M(t), ∀t ≥ τ or U(n,m)M(m) ⊂ M(n), ∀n ≥ m.

(3) The fractal dimension of M(t) or M(n) are uniformly bounded in X, that is,
there exists F > 0 such that

dimf M(t) ≤ F, ∀t ∈ R or dimf M(n) ≤ F, ∀n ∈ N.

(4) The sets {M(t)|t ∈ R} or {M(n)|n ∈ Z} pullback exponential attracts bound-
ed subset of X; that is, there exists a constant l > 0, for every bound-
ed subset B ∈ B(X) and t ∈ R or n ∈ Z, there exists k > 0 such that
dist(U(t, τ)B,M(t)) ≤ ke−l(t−τ) or dist(U(n,m)B,M(n)) ≤ ke−l(n−m).

Where dist denotes the non-symmetric Hausdorff semidistance between sets, that
is dist(A,B) = sup

a∈A
inf
b∈B

d(a, b).

Lemma 2.4 ( [6]). Let BR be a ball of the radius R in Rd equipped with Euclidean
norm | · |. Then for any ε > 0 there exist a finite set {xk : k = 1, 2, . . . , nε} ⊂ BR

such that

BR ⊂
nε∪
k=1

{x ∈ Rd : |x− xk| < ε} and nε ≤ (1 +
2R

ε
)d.

3. Pullback exponential attractors for nonautonomous
dynamical system

3.1. Pullback exponential attractors for discrete processes in
Banach space

We assume X is a Banach space, {U(t, τ)|t ≥ τ} is a process in X, {U(n,m)|n ≥ m}
is a discrete process in X.

We first construct a pullback exponential attractor for discrete processes {U(n,m)|
n,m ∈ Z, n ≥ m}, and we assume that the process {U(n,m)|n ≥ m} satisfies the
following properties:

(H1) For the process {U(n,m)|n ≥ m} there exists a family of bounded absorb-
ing sets {B(n)|n ∈ Z} and it is positively semi-invariant for the process
{U(n,m)|n ≥ m} , that is

U(n,m)B(m) ⊂ B(n), for all n ≥ m.

(H2) There exist 0 < θ < 1,K,M > 0 and x1, x2, · · · , xN ∈ U(n,m)B(m) such
that {B(xi, θ

n−m)|i = 1, 2, · · · , N} is a covering of the U(n,m)B(m) and
N ≤ KMn−m for any n ≥ m.

(H3) ∀B ∈ B(X), ∃T > 0,∀n ≥ m, U(n,m− T )B ⊂ B(n).
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Lemma 3.1. Let {U(n,m)|n ≥ m} be a process in X and the assumption (H1) and
(H2) be satisfied. Then the process is pullback ω −D−limit compact for {B(n)|n ∈
Z}.

Proof. Though the assumption (H2), U(n,m)B(m) ⊂
N∪
i=1

B(xi; θ
n−m), and the

definition of the measure of non-compactness, we obtain that α(U(n,m)B(m)) ≤
2θn−m. Since 0 < θ < 1, we get that lim

m→−∞
α(U(n,m)B(m)) = 0, which imply that

the process {U(n,m)|n ≥ m} is pullback ω − D−limit compact for {B(n)|n ∈ Z}.

Lemma 3.2. Let{U(n,m)|n ≥ m} be a process in X and the assumption (H1)
and (H2) be satisfied. Then the process exists a family of positively semi-invariant
compact sets {D(n)|n ∈ Z} such that

D(n) =
∩

m≤n

∪
p≤m

U(n, p)B(p).

Proof. By Lemma 3.1, we know that the process {U(n,m)|n ≥ m} is pullback
ω −D−limit compact for {B(n)|n ∈ Z}, Lemma 2.3 implies that D(n) is compact.
Next, we will prove that the process is positively semi-invariant.

By Lemma 2.3, ∀ψ ∈ D(m), there exist two sequences τk ∈ (−∞, T ](τk →
−∞ as k → +∞) and ϕk ∈ B(k) such that ψ = lim

k→+∞
U(m, τk)ϕk. ∀n ≥ m,

U(n,m)U(m, τk)ϕk = U(n, τk)ϕk → (⇀)U(n,m)ψ. Since {U(n,m)|n ≥ m} is
pullback ω − D−limit compact for {B(n)|n ∈ Z}, by Lemma 2.3 U(n, τk)ϕk has a
convergent subsequence U(n, τki)ϕki , let U(n, τki)ϕki → φ, by Lemma 2.3 we know
that φ ∈ D(n). Obviously U(n,m)ψ = φ, which implies that U(n,m)D(m) ⊂ D(n).

Lemma 3.3. Let{U(n,m)|n ≥ m} be a process in X and the assumption (H1)-(H3)
be satisfied. Then the process is pullback ω−limit compact.

Proof. ∀B ∈ B(X), by the assumption (H3), there exists T ∈ Z+, such that,
U(n,m)B = U(n,m+T )U(m+T,m)B ⊂ U(n,m+T )B(m+T ). By (3) of Lemma
2.1, we have

α(U(n,m)B) ≤ α(U(n,m+ T )B(m+ T )) ≤ 2θ(n−(m+T )) → 0, as m→ −∞.

We get {U(n,m)|n ≥ m} is pullback ω−limit compact.
By Lemma 3.3 and Theorem 2.1 we know that the process exists pullback at-

tractor.

Theorem 3.1. Let{U(n,m)|n ≥ m} be a process in X and the assumption (H1)-
(H3) be satisfied. Then the process exists pullback attractor {A(n)|n ∈ Z}.

Theorem 3.2. Let {U(n,m)|n ≥ m} be a discrete process in X and the assump-
tions (H1)-(H3) be satisfied. Then there exists a pullback exponential attractor
{M(n)|n ∈ Z} for the process {U(n,m)|n,m ∈ Z, n ≥ m}, and the fractal dimen-
sion of {M(n)|n ∈ Z} can be estimated by

dimX
f (M(n)) ≤ lnM

ln 1
θ

, ∀n ∈ Z.
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Proof. By the assumption (H2), for any k ∈ Z,
r = 1, there exists W 0

k = {x1k,k, x2k,k, · · · , x
N0

k

k,k} ⊂ B(k) such that U(k, k)B(k) ⊂
N0

k∪
i=1

B(xik,k, 1) and N
0
k ≤ K;

for r = θ, there exists W 1
k = {x1k,k−1, x

2
k,k−1, · · · , x

N1
k

k,k−1} ⊂ B(k) such that

U(k, k − 1)B(k − 1) ⊂
N1

k∪
i=1

B(xik,k−1, θ) and N
1
k ≤ KM ;

for r = θ2, there exists W 2
k = {x1k,k−2, x

2
k,k−2, · · · , x

N2
k

k,k−2} ⊂ B(k) such that

U(k, k − 2)B(k − 2) ⊂
N2

k∪
i=1

B(xik,k−2, θ
2) and N2

k ≤ KM2;

...

for r = θm, there exists Wm
k = {x1k,k−m, x

2
k,k−m, · · · , x

Nm
k

k,k−m} ⊂ B(k) such that

U(k, k −m)B(k −m) ⊂
Nm

k∪
i=1

B(xik,k−m, θ
m) and Nm

k ≤ KMm; · · · .

Let M(k) =
+∞∪
n=0

n∪
i=0

U(k, k − i)Wn−i
k−i , we get

M(k + 1) =

+∞∪
n=0

n∪
i=0

U(k + 1, k + 1− i)Wn−i
k+1−i

=

+∞∪
n=0

n∪
i=0

U(k + 1, k)U(k, k + 1− i)Wn−i
k+1−i

⊃
+∞∪
n=1

n∪
i=0

U(k + 1, k)U(k, k − (i− 1))W
n−1−(i−1)
k−(i−1)

⊃ U(k + 1, k)
+∞∪
n=1

n∪
i=1

U(k, k − (i− 1))W
n−1−(i−1)
k−(i−1)

= U(k + 1, k)
+∞∪
n=1

n−1∪
i=0

U(k, k − i)Wn−1−i
k−i

= U(k + 1, k)

+∞∪
n=0

n∪
i=0

U(k, k − i)Wn−i
k−i

= U(k + 1, k)M(k).

Consequently, for all n ∈ Z, the family {M(n)|n ∈ Z} is positively semi-invariant.

By Lemma 3.2, we know that D(n) is a family of positively semi-invariant com-
pact sets. Let M(n) = D(n) ∪M(n), we claim that {M(n)|n ∈ Z} is a pullback
exponential attractor of {U(n,m)|n ≥ m};

(Compactness) For any sequence xk ∈ M(n), if there exists a subsequence
xkj ∈M(n), since the process {U(n,m)|n ≥ m} is pullback ω−D−limit compact, by
lemma 2.3, xkj exists subsequence convergent in D(n);if there exists a subsequence
xkj ∈ D(n), D(n) is compact, so we get xkj exists subsequence convergent in D(n);
that is, for any sequence in M(n), there exists subsequence convergent in M(n).
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(Positively semi-invariant) Since U(n+1, n)M(n) ⊂M(n+1), U(n+1, n)D(n) ⊂
D(n+1), we get that U(n+1, n)M(n) = U(n+1, n){M(n)∪D(n)} ⊂M(n+1)∪
D(n+ 1) = M(n+ 1) for all n ∈ Z.

(Having an uniformly bounded of fractal dimension) Let ε > 0, there exists

N = [
ln ε

ln θ
] ([

ln ε

ln θ
] is an integer part of the number

ln ε

ln θ
) such that θj < ε for all

j ≥ N .

M(k) =
+∞∪
n=0

n∪
i=0

U(k, k − i)Wn−i
k−i ⊂ E0

∪
E1

∪
E2,

here

E0 =
∪

i≤N,n≤N

U(k, k − i)Wn−i
k−i ,

E1 =
∪

i≤N,n>N

U(k, k − i)Wn−i
k−i ,

E2 =
∪

i>N,n>N

U(k, k − i)Wn−i
k−i .

Let i ≤ N,n > N , by the assumption (H1), we get

Wn−i
k−i ⊂ U(k − i, k − i− (n− i))B(k − i− (n− i)) = U(k − i, k − n)B(k − n)

=U(k − i, k −N)U(k −N, k − n)B(k − n) ⊂ U(k − i, k −N)B(k −N),

which implies

U(k, k − i)Wn−i
k−i ⊂ U(k −N)B(k −N), ∀i ≤ N,n > N.

For any i > N ,

U(k, k − i)Wn−i
k−i = U(k, k −N)U(k −N, k − i)Wn−i

k−i

⊂ U(k, k −N)B(k −N).

D(k) = U(k, k −N)D(k −N), and consequently

D(k) ∪ E1 ∪ E2 ⊂ U(k, k −N)B(k −N) ⊂
NN

k∪
i=1

B(xik,k−N , θ
N )

⊂
NN

k∪
i=1

B(xik,k−N , ε) =
∪

x∈WN
k

B(x, ε).

M(k) = D(k) ∪ E0 ∪ E1 ∪ E2 ⊂ E0

∪ ∪
x∈WN

k

B(x, ε), WN
k ⊂ E0. The number of

points in E0 is
N∑

n=0
(K+KM +KM2+ · · ·+kMn) at most. Hence, we can estimate

the number of ε−ball in X needed to cover M(k) by

NX
ε (M(k)) ≤

N∑
n=0

(K +KM + · · ·+ kMn)

=


K(N+1)(N+2)

2 , M = 1,

KN(1−M)−KM(1−MN+1)
(1−M)2 ≤ KMN+2

(1−M)2
, M > 1.
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For the fractal dimension of the sets M(k), N = [
ln ε

ln θ
], we conclued

dimX
f (M(k)) ≤ lim

ε→0+
sup

lnNX
ε (M(k))

ln 1
ε

≤


lim

ε→0+

ln
K(N+1)(N+2)

2

ln 1
ε

= 0, M = 1,

lim
ε→0+

ln(KMN/(1−M)2)

ln 1
ε

= lnM
ln 1

θ

,M > 1.

Consequently, the fractal dimension of the M(k) is uniformly bounded by the same

value
lnM

ln 1
θ

.

(Pullback exponential attraction) Let B ∈ B(X), by the assumption (H3), there
exists T ∈ Z+, for all n ≥ m, U(n,m−T )B ⊂ B(n). We get that for any k > l+T ,
U(k, l)B = U(k, T + l)U(T + l, (T + l) − T )B ⊂ U(k, T + l)B(T + l). By the
assumption (H2), we get

U(k, l)B ⊂ U(k, T + l)B(T + l) ⊂
N

k−(T+l)
k∪
i=1

B(xi, θ
k−(T+l)), xi ∈W

k−(T+l)
k ⊂ M(k).

Then

dist(U(k, l)B,M(k)) ≤ dist(U(k, l)B,W
k−(T+l)
k ) ≤ θk−(T+l) = νe−λ(k−l).

Here ν = eT ln 1
θ , λ = ln 1

θ .
This show that {M(k)|k ∈ Z} is a pullback exponential attractors for the process

{U(n,m)|n ≥ m} in X.

3.2. Pullback exponential attractors for continuous processes
in Banach space

Using the results of previous section we now construct pullback exponential attrac-
tors for time continuous process {U(t, τ)|t ≥ τ} in X. Moreover, we assume that
the process {U(t, τ)|t ≥ τ} satisfies the following properties:

(A1) For the process {U(t, τ)|t ≥ τ} there exists a family of bounded absorbing sets
{B(t)|t ∈ R} and it is positively semi-invariant for the process {U(t, τ)|t ≥ τ},
that is

U(t, τ)B(τ) ⊂ B(t) for all t ≥ τ.

(A2) There exists T̃ > 0, the process {U(t, τ)|t ≥ τ} is Lipschitz continuous within

the absorbing sets; that is for all k ∈ Z and t, τ ∈ [kT̃ , (k + 1)T̃ ], there exists
a constant λ > 0 such that

||U(t, τ)u− U(t, τ)v|| ≤ λ||u− v|| for all u, v ∈ B(kT̃ ).

(A3) ∀B ∈ B(X), ∃T > 0,∀t ≥ τ , U(t, τ − T )B ⊂ B(t).

(A4) Let U(n,m) = U(nT̃ ,mT̃ ), we get that U(n,m)|n ≥ m} is a discrete process
in X, and the assumption (H2) holds true for the process {U(n,m)|n ≥ m}
in {B(nT̃ )|n ∈ Z}.

Theorem 3.3. Let {U(t, τ)|t ≥ τ} be a time continuous process in X and the as-
sumptions (A1)-(A4) be satisfied. Then there exists a pullback exponential attractor
{M(t)|t ∈ R} for the process {U(t, τ)|t ≥ τ}.



Pullback exponential attractors 397

Proof. The assumptions of (A1)-(A4), we know that the discrete process {U(n,m)|
n ≥ m} satisfies the assumption (H1)-(H3), Theorem 3.2 implies the existence of a
pullback exponential attractor {M(n)|n ∈ Z} for the discrete process {U(n,m)|n ≥
m}.

To obtain a pullback exponential attractor for the continuous time process we
define

M(t) = U(t, kT̃ )M(k), t ∈ [kT̃ , (k + 1)T̃ ) for all t ∈ R.

Due to the Lipschitz continuity of the process, the sets M(t) are compact in X,
and the fractal dimension of the sets M(t) are uniformly bounded.

Let t, s ∈ R, and t ≥ s, then there exist k, l ∈ Z, k ≥ l and t1, s1 ∈ [0, T̃ ) such

that t = kT̃ + t1, s = lT̃ + s1. If k ≥ l + 1, we obtain

U(t, s)M(s) = U(kT̃ + t1, lT̃ + s1)U(lT̃ + s1, lT̃ )M(l)

= U(kT̃ + t1, lT̃ )M(l)

= U(kT̃ + t1, (k − 1)T̃ )U((k − 1)T̃ , lT )M(l)

⊂ U(kT̃ + t1, (k − 1)T̃ )M(k − 1)

= M(t).

If k = l, we have

U(t, s)M(s) = U(kT̃ + t1, kT̃ + s1)U(kT̃ + s1, kT̃ )M(k)

= U(kT̃ + t1, kT̃ )M(k)

= M(t).

We get the semi-invariant of the sets {M(t)|t ∈ R}.
Due to the continuity of the process and the assumption (A2), we get that for

any B ∈ B(X), the set D = U((l+1)T̃ , lT̃ + s1)B is bounded for s1 ∈ [0, T̃ ] and for
any l ∈ Z. Since the discrete process {U(n,m)|n ≥ m} exists pullback exponential
attractor, there exist µ0, λ0 > 0 such that

dist(U(n,m)D,M(n)) ≤ µ0e
−λ0(n−m).

By the assumption (A3), we get that there exists T > 0, for any s ≤ kT̃ − T ,

U(kT̃ , s)B ⊂ B(kT̃ ) and M(kT̃ ) ⊂ B(kT̃ ). By the Lipschitz continuity of the
process, we obtain

dist(U(t, s)B,M(t)) ≤ dist(U(kT̃ + t1, kT̃ )U(kT̃ , s)B,U(kT̃ + t1, kT̃ )M(kT̃ ))

≤ λdist(U(kT̃ , s)B,M(kT̃ ))

= λdist(U(kT̃ , lT + s1)B,M(kT̃ ))

= λdist(U(kT̃ , (l + 1)T̃ )U((l + 1)T̃ , lT̃ + s1)B,M(kT̃ ))

= λdist(U(k, l + 1)D,M(k)) ≤ λµ0e
−λ0(k−l−1)

= λµ0e
λ0(

1+t1−s1
T̃

)e−
λ0
T̃

(t−s)

= µe−λ(t−s),

This show that {M(t)|t ∈ R} is a pullback exponential attractor for the process
{U(t, τ)|t ≥ τ} in X.
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3.3. Pullback exponential attractors for continuous process in
uniformly convex Banach space

We now present a method to verify the existence of pullback exponential attractors
for the time continuous process.

Let X be an uniformly convex Banach space, i.e., for all ε > 0, there exists δ > 0

such that, given x, y ∈ X, ||x|| ≤ 1, ||y|| ≤ 1, ||x − y|| > ε, then ||x+y||
2 < 1 − δ.

Requiring a space to be uniformly convex is not a severe restriction in application,
since this property is satisfied by all Hilbert space, the Lp space with 1 < p < ∞,
and most Sobolev space W k,p with 1 < p <∞.

Theorem 3.4. Let X be an uniformly convex Banach space, {U(t, τ)|t ≥ τ} be a
time continuous process in X. Then the process {U(t, τ)|t ≥ τ} exists a pullback
exponential attractor in X if the following conditions hold true:

(i) There exists an uniformly bounded absorbing B ⊂ X, that is, for any t ≥ τ
and D ∈ B(X), there exists T0 > 0 such that

U(t, τ − s)D ⊂ B, ∀s ≤ T0.

(ii) There exist 0 < δ < 1, 0 < θ < 1− δ, T1 > 0, and a finite dimension subspace
X1 ⊂ X, such that

∥U(t, τ)u1 − U(t, τ)u2∥ ≤ l∥u1 − u2∥, l > 0, ∀t, τ ∈ [kT1, (k + 1)T1], ∀k ∈ Z,

(3.1)

∥(I − Pm)(U(t, t− T1)u1 − U(t, t− T1)u2)∥ ≤ δ∥u1 − u2∥, (3.2)

∥(I − Pm)
∪

s≤T1

U(t, τ − s)u∥ ≤ θ, ∀t ≥ τ, (3.3)

for all u, u1, u2 ∈ B and t ∈ R, where δ is independent on the choice of t, and
∥ · ∥ is the norm in X, and Pm : X → X1 is a bounded projector, m is the
dimension of X1.

Next, we will prove that the process {U(t, τ)|t ≥ τ} satisfy all the conditions of
(A1)-(A4).
Proof. By the assumption (i), for the bounded absorbing set B, there exists
T ′ > T1 such that U(t, t − T ′)B ⊂ B for all t ∈ R. Let B(t) =

∪
τ≤T ′

U(t, t − τ)B,

and consequently B(t) ⊂ B for all t ∈ R. For any t, s ∈ R and t ≥ s, then

U(t, s)B(s) = U(t, s)
∪

τ≤T ′

U(s, s− τ)B =
∪

τ≤T ′

U(t, s− τ)B

=
∪

τ≤T ′

U(t, t− [τ + (t− s)])B =
∪

τ≤T ′+(t−s)

U(t, t− τ)B

⊂
∪

τ≤T ′

U(t, t− τ)B = B(t),

which imply that the process {U(t, τ)|t ≥ τ} exists a family of bounded absorbing
sets {B(t)|t ∈ R} and it is positively semi-invariant. We obtain that (A1)holds true.

By the assumption (i) and (ii), it is easy to get that (A2) and (A3) hold.
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For n,m ∈ Z and n ≥ m, let U(n,m) = U(nT1,mT1). We will prove that the
discrete process {U(n,m)|n ≥ m} satisfies the condition (H2), i.e.,(A4) holds for
the process {U(t, τ)|t ≥ τ}.

Let D(n) = B(nT1), then {D(n)|n ∈ Z} be a family of bounded absorbing sets
of the discrete process {U(n,m)|n ≥ m} and D(n) ⊂ B. From the assumption
(i) we know that there exists R > 0 such that diamD(n) ≤ 2R, ∀n ∈ Z, where
diamD(n) denotes the diameter of D(n).

D(n) =
∪

τ≤T ′

U(nT1, nT1 − τ)B

=
∪

τ≤T ′

PmU(nT1, nT1 − τ)B +
∪

τ≤T ′

(I − Pm)U(nT1, nT1 − τ)B.

∪
τ≤T ′

PmU(nT1, nT1−τ)B is a bounded set in finite dimension space X1, by Lemma

2.4, for δ > 0, there exist balls of {Bi}Ki=1 in X1 with radius δ such that {Bi}Ki=1 is
a cover of

∪
τ≤T ′

PmU(nT1, nT1−τ)B. Let Di = Bi+
∪

τ≤T ′
(I−Pm)U(nT1, nT1−τ)B,

i = 1, 2, · · ·K. By the assumption (3.3), we know that

||
∪

τ≤T ′

(I − Pm)U(nT1, nT1 − τ)x|| ≤ θ, ∀x ∈ B,

and consequently {Di}Ki=1 is a cover of the set D(n), ∀n ∈ Z and diamDi ≤diamBi+
2θ≤ 2(δ + θ), which implies D(n) exists a cover {Di}Ki=1 with radius δ + θ for all
n ∈ Z.

From the proof above and the arbitrary of n, we know that D(n − k) exists a
cover {Bi}Ki=1 with radius δ + θ for all n ∈ Z, k ∈ N. Let Dn−k

i = Bi ∩D(n − k),
therefore, {Dn−k

i }Ki=1 is also a cover of D(n − k) and Dn−k
i ⊂ D(n − k) ⊂ B. By

virtue of (3.1), we get ∥Pm(U(n − k + 1, n − k)u1 − U(n − k + 1, n − k)u2)∥ ≤
l∥u1−u2∥ ≤ 2l(δ+θ),∀u1, u2 ∈ Dn−k

i . By Lemma 2.4, Pm(U(n−k+1, n−k)Dn−k
i

exists a cover {Bij
n−k+1}

Nn−k+1

j=1 with the balls of the radius θ(δ + θ) and Nn−k+1 ≤
(1 + 2l(δ+θ)

θ(δ+θ) )
m = (1 + 2l

θ )
m, hence {Eij

n−k+1 = Bij
n−k+1 + (I − Pm)U(n− k + 1, n−

k)Dn−k
i , i = 1, 2, · · · ,K, j = 1, 2, · · ·Nn−k+1} is a cover of U(n−k+1, n−k)D(n−k).

By (3.2), diam(I − Pm)U(n − k + 1, n − k)Dn−k
i ≤ 2δ(δ + θ), which implies that

diamEij
n−k+1 ≤ 2(θ(δ+ θ)+ δ(δ+ θ)) = 2(δ+ θ)2 and {Eij

n−k+1| i = 1, 2, · · · ,K, j =
1, 2, · · ·Nn−k+1} is a cover of U(n − k + 1, n − k)D(n − k) with radius (δ + θ)2

and N(U(n − k + 1, n − k)D(n − k), (δ + θ)2) ≤ K(1 + 2l
θ )

m. Let Dij
n−k+1 =

Eij
n−k+1 ∩D(n− k + 1), By virtue of (3.1), we obtain

∥Pm(U(n− k + 2, n− k + 1)u1 − U(n− k + 2, n− k + 1)u2)∥
≤l∥u1 − u2∥ ≤ 2l(δ + θ)2, ∀u1, u2 ∈ Dij

n−k+1.

By Lemma 2.4, PmU(n − k + 2, n − k + 1)Dij
n−k+1 exists a cover {Bijk

n−k+2}
N−k+2
k=1

with the balls of the radius θ(δ+θ)2 and Nn−k+2 ≤ (1+ 2l(δ+θ)2

θ(δ+θ)2 )
m = (1+ 2l

θ )
m, Let

Dijk
n−k+2 = Bijk

n−k+2 + (I − Pm)U(n − k + 2, n − k + 1)Dij
n−k+1, i = 1, 2, · · · ,K; j =

1, 2, · · · , Nn−k+1; k = 1, 2, · · · , Nn−k+2. By (3.2), we know that diam(I−Pm)U(n−
k + 2, n − k + 1)Dij

n−k+1 ≤ 2δ(δ + θ)2, which imply that diamDijk
n−k+2 ≤ 2(δ + θ)3
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and {Dijk
n−k+2| i = 1, 2, · · · ,K; j = 1, 2, · · · , Nn−k+1; k = 1, 2, · · · , Nn−k+2} is cover

of U(n−k+2, n−k+1)D(n−k+1) with radius (δ+θ)3 and N(U(n−k+2, n−k+
1)D(n− k+1), (δ+ θ)3) ≤ 2(1+ 2l

θ )
2m. After iterations, we get there exist at most

K(1 + 2l
θ )

km balls in X covering U(n, n − k)D(n − k) with radius (δ + θ)k+1. By
the assumption of (ii) we know that δ + θ < 1, and consequently that the discrete
process {U(n,m)|n ≥ m} satisfing the condition (H2).

4. The existence of pullback exponential attractors
for non-autonomous reaction diffusion equation

In this section we will apply our theory developed in section 3 to obtain the pullback
exponential attractors for non-autonomous reaction diffusion equation.

We consider the following non-autonomous differential equation
ut −△u+ f(u) = g(t), x ∈ Ω,

u|∂Ω = 0,

u(τ) = uτ .

(4.1)

Where f ∈ C1(R,R), g(·) ∈ L2
loc(R, L2(Ω)), Ω is a bounded open subset of Rn

and there exist p ≥ 2, ci > 0, i = 1, ..., 5, l > 0 such that

c1|t|p − c2 ≤ f(t)t ≤ c3|t|p + c4, (4.2)

f ′(t) ≥ −l, |f ′(t)| ≤ c5(1 + |t|p−2) (4.3)

for all s, t ∈ R.
Denote H = L2(Ω) with norm | · | and scalar product (·), H1

0 (Ω) with norm ∥ · ∥,
| · |k denote the norm of Lk(Ω), c denote constants which may change from line to
line and even in the same line.

Suppose that the function g(t) is normal( [16]) in L2
loc(R;H) that is, for any

ε > 0, there exists η > 0 such that

sup
t∈R

∫ t+η

t

|g(s)|2ds < ε. (4.4)

Lemma 4.1 ( [1, 13, 22]). Let the assumption (4.2) and (4.3) hold and g(t) be

translation bounded in L2
loc(R,H), that is sup

t∈R

∫ t+1

t
|g(s)|2ds < c. Then for any

initial data uτ ∈ H and any T ≥ τ , there exists a unique solution u for (4.1) which
satifies

u ∈ L2(τ, T ;H1
0 ) ∩ Lp(τ, T ;Lp(Ω)).

If furthermore, uτ ∈ H1
0 , then

u ∈ C([τ, T );H1
0 ) ∩ L2(τ, T ;H2(Ω)).

By Lemma 4.1, we can define the process {U(t, τ)|t ≥ τ} as follows:

U(t, τ)uτ : H × [τ,+∞) → H1
0 (Ω).
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Theorem 4.1 ( [19, 21]). If g(t) is normal in L2
loc(R;H), f(t) satisfies conditions

(4.2) and (4.3) where 2 ≤ p <∞(n ≤ 2), 2 ≤ p ≤ n
n−2 + 1(n ≥ 3), then the process

U(t, τ) corresponding to problem (4.1) possesses an uniformly pullback absorbing set
D and a pullback attractor Â = {A(t) : t ∈ R} in H1

0 .

We set A = −△, since A−1 is a continuous compact operator in H, by the
classical spectral theorem, there exist a sequence {λj}∞j=1,

0 < λ1 ≤ λ2 ≤ ... ≤ λj ≤ ..., λj → +∞, as j → ∞,

and a family of elements {ej}∞j=1 of H1
0 (Ω) which are orthogonal in H such that

Aej = λjej , ∀j ∈ N.

Let Hm = span{e1, e2, ..., em} in H and P : H → Hm is a orthogonal projector.
For any u ∈ H we write

u = Pu+ (I − P )u , u1 + u2.

Theorem 4.2. Assume that g(t) and f(t) satisfies conditions of Theorem 4.1 and
D is the uniformly pullback absorbing set in H1

0 corresponding to problem (4.1).
Then the process {U(t, τ)|t ≥ τ} possesses a pullback exponential attractor in H1

0 .

Proof. By Theorem 4.1, there exists T0 > 0 such that U(t, τ − T0)D ⊂ D for any
t ≥ τ . Let B =

∪
t∈R

∪
τ≤T0

U(t, t− τ)D, we obtain that B is also a uniformly pullback

bounded absorbing set in H1
0 (Ω) and U(t, τ)B ⊂ B for any t ≥ τ .

We set u1(t) = u1(t, τ)u1τ and u2(t) = u2(t, τ)u2τ to be solutions associated
with equation (4.1) with initial data u1τ , u2τ ∈ B, since B is the uniformly pullback
absorbing set in H1

0 , so there exists M > 0, such that ∥uiτ∥2 ≤M, i = 1, 2.
Let w(t) = u1(t)− u2(t), by (4.1) we get

wt −△w + f(u1(t))− f(u2(t)) = 0. (4.5)

Taking inner product of (4.5) with −△w in H, we have

1

2

d

dt
∥w∥2 + |△w|2 + (f(u1)− f(u2),−△w) = 0.

Taking into account (4.3) and Hölder inequality, it is immediate to see that

|(f(u1)− f(u2),−△w)| ≤
∫
Ω

|f(u1)− f(u2)||△w|dx

≤ 1

2
|△w|2 + 1

2

∫
Ω

|f(u1)− f(u2)|2dx

and ∫
Ω

|f(u1)− f(u2)|2dx =

∫
Ω

|f ′(u1 + θ(u2 − u1))|2|u1 − u2|2dx

≤ c

∫
Ω

(1 + |u1|p−2 + |u2|p−2)2|u1 − u2|2dx

≤ c(

∫
Ω

(1 + |u1|2(p−1) + |u2|2(p−1)dx)
p−2
p−1

(

∫
Ω

|u1 − u2|2(p−1))
1

p−1

≤ c(1 + |u1|2(p−2)
2(p−1) + |u2|2(p−2)

2(p−1))|w|
2
2(p−1).
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Since 2 ≤ p < ∞(n ≤ 2), 2 ≤ p ≤ n
n−2 + 1(n ≥ 3), using Sobolev embedding

theorem, and∫
Ω

|f(u1)− f(u2)|2dx ≤ c(1 + ∥u1∥2(p−2) + ∥u2∥2(p−2))∥w∥2 ≤ c∥w∥2, (4.6)

we get
d

dt
∥w∥2 ≤ c∥w∥2,

hence
∥w(t)∥2 ≤ ∥w(τ)∥2ec(t−τ). (4.7)

Let w = w1 + w2, w1 be the project in PH. Taking inner product of (4.5) with
−△w2 in H, we have

1

2

d

dt
∥w2∥2 + |△w2|2 + (f(u1)− f(u2),−△w2) = 0. (4.8)

|(f(u1)− f(u2),−△w2)| ≤
∫
Ω

|f(u1)− f(u2)||△w2|dx

≤ 1

2
|△w2|2 +

1

2

∫
Ω

|f(u1)− f(u2)|2dx.

Taking into (4.6) account, we obtain

d

dt
∥w2∥2 + |△w2|2 ≤ c||w∥2.

Using the Poincaré inequality λn∥w2∥2 ≤ |∆w2|2, it is immediate that

d

dt
∥w2∥2 + λn∥w2∥2 ≤ c∥w∥2,

by Gronwall’s lemma, we have

∥w2(t)∥2 ≤ e−λn(t−τ)∥w(τ)∥2 + ce−λnt

∫ t

τ

eλns∥w(s)∥2ds. (4.9)

Using (4.7), we get

e−λnt

∫ t

τ

eλns∥w(s)∥2ds ≤ e−λnt

∫ t

τ

eλnsec(s−τ)∥w(τ)∥2ds ≤ ec(t−τ)

λn
∥w(τ)∥2,

hence

∥w2(t)∥2 ≤ e−λn(t−τ)∥w(τ)∥2 + c0
ec(t−τ)

λn
∥w(τ)∥2. (4.10)

Let u(t) = u1(t) + u2(t), u1 be the project in PH. Taking inner product of (4.1)
with −∆u2, we get

1

2

d

dt
∥u2(t)∥2 + |△u2|2 + (f(u),−△u2) = (g(t),−△u2).

Since

|(g(t),−∆u2)| ≤ |g(t)|2 + 1

4
|∆u2|2
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and

|(f(u),−∆u2)| ≤
∫
Ω

|f(u)|2dx+
1

4
|∆u2|2,

using (4.2) and Sobolev embedding theorem, we have∫
Ω

|f(u)|2dx ≤ c(1 + ∥u∥2(p−1)) ≤ c,

and by Poincaré inequality λn∥u2∥2 ≤ |∆u2|2, we have

d

dt
∥u2(t)∥2 + λn∥u2∥2 ≤ c+ 2|g(t)|2.

By Gronwall’s lemma, we get

∥u2(t)∥2 ≤ e−λn(t−τ)∥u∥2 + ce−λnt

∫ t

τ

eλns(1 + |g(s|2)ds,

By (4.4), we obtain that there exists c > 0 such that∫ t+1

t

|g(s)|2ds ≤ c, ∀t ∈ R,

and for any ε > 0, there exits η > 0, such that∫ t

t−η

|g(s)|2ds < ε

3
,

we obtain

e−λnt

∫ t

τ

eλns|g(s)|2ds =
∫ t

τ

e−λn(t−s)|g(s)|2ds

≤
∫ t

t−η

e−λn(t−s)|g(s)|2ds+
∫ t−η

t−η−1

e−λn(t−s)|g(s)|2ds

+

∫ t−η−1

t−η−2

e−λn(t−s)|g(s)|2ds+ · · ·

≤ε
3
+ |g|2be−λnη(1 + e−λn + e−2λn + · · · )

≤ε
3
+ |g|2b

e−λnη

1− e−λn
,

and ∫ t

τ

e−λn(t−s)ds ≤ 1

λn
,

we get

∥u2(t)∥2 ≤ e−λn(t−τ)∥u∥2 + c(
1

λn
+
ε

3
+

e−λnη

1− e−λn
). (4.11)

Let T1 = t− τ = 1, by (4.7), we get

∥U(t, τ)u1τ − U(t, τ)u2τ∥ ≤ ec∥u1τ − u2τ∥. (4.12)
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Since λn → +∞, for 0 < ε < 1, from (4.10) and (4.11), there exist m ∈ N+,
0 < δ < 1, 0 < θ < 1 and δ + θ < 1 such that

∥w2(t)∥ = ∥(I − Pm)(U(t, τ)u1τ − U(t, τ)u2τ )∥ ≤ δ∥u1τ − u2τ∥, (4.13)

∥u2(t)∥ ≤ ∥(I − Pm)
∪
s≤1

(U(t, τ − s)u∥ ≤ θ. (4.14)

By Lemma 4.1, we know that the process is continuous for time in B, and,
applying inequality (4.12), (4.13) and (4.14), we know that the process {U(t, τ)|t ≥
τ} generated by (4.1) satisfies all conditions of Theorem 3.4.
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