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RANDOM ATTRACTOR FOR
NON-AUTONOMOUS STOCHASTIC
STRONGLY DAMPED WAVE EQUATION ON
UNBOUNDED DOMAINS*

Zhaojuan Wang!', Shengfan Zhou?

Abstract In this paper we study the asymptotic dynamics for the non-
autonomous stochastic strongly damped wave equation driven by additive
noise defined on unbounded domains. First we introduce a continuous cocycle
for the equation and then investigate the existence and uniqueness of tempered
random attractors which pullback attract all tempered random sets.
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1. Introduction

Consider the following non-autonomous stochastic strongly damped wave equation
with additive noise defined in the entire space R™ (n € N):

aw

Uy — aAug — Au+ug + Au+ f(z,u) = g(x, t) + h(x)ﬁ, (1.1)
with the initial value conditions
u(r, ) = uo(x), ue(r,z) =u1(z), = eR™, (1.2)

where A is the Laplacian with respect to the variable z € R™ with 1 < n <
3; u = u(t,x) is a real function of z € R" and ¢t > 7, 7 € R; a > 0 is the
strong damping coefficient; A is a positive dissipative coefficient; f is a nonlinearity
satisfying certain growth and dissipative conditions; g(z, -) and h are given functions
in L7 (R, L*(R™)) and H?(R), respectively; W (¢) is a two-sided real-valued Wiener
process on a probability space.

Eq.(1.1) can model a random perturbation of strongly damped wave equation.
In applications, the unknown u naturally represents the displacement of the body
relative to a fixed reference configuration. There have been a lot of profound re-

sults on the dynamics of a variety of systems related to Eq.(1.1). For example, the
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asymptotical behavior of solutions for deterministic strongly damped wave equation
has been studied by many authors (see [4,17,19-21, 24,27, 36-38,40-42], etc.). For
autonomous stochastic wave equation, the asymptotical behavior of solutions have
been studied by several authors (see [8,13-15,18, 22,23, 28-32, 39, 43]). Recently,
Wang [33] studied the non-autonomous stochastic damped wave equations on un-
bounded domain. So far as we know, there were no results on random attractors
for non-autonomous stochastic strongly damped wave equation (1.1) on unbound-
ed domains. The case of g depending on time is of great physical interest. It is
therefore important to investigate the existence of attractors for Eq.(1.1) when g is
dependent on time.

The goal of the present paper is to study random attractors of non-autonomous
stochastic equation (1.1). In this case, we need to deal with the deterministic per-
turbations as well as the stochastic perturbations. Since the behavior of stochastic
and deterministic perturbations is quite different, it is better to use two separate
parametric spaces to take care of these perturbations: one is for deterministic per-
turbations and the other is for stochastic perturbations.

Random attractors for non-autonomous stochastic PDEs have been investigated
in [9,12] in bounded domains and in [2,33-35] on unbounded domains. In the present
paper, by applying the abstract result in [35], we will prove the stochastic strongly
damped wave equation (1.1) has tempered random attractors in H(R™) x L?(R").

In general, the existence of global random attractor depends on some kind com-
pactness (see, e.g., [5-7,16]). To prove the existence of random attractors for (1.1)
in H'(R") x L?(R™), we must establish the pullback asymptotic compactness of
solutions. Since Sobolev embeddings are not compact on R™, we cannot get the
desired asymptotic compactness directly from the regularity of solutions. The non-
compactness of embeddings on R™ is a major obstacle for proving the existence
of random attractors for (1.1). We here overcome the difficulty by using uniform
estimates on the tails of solutions outside a bounded ball in R"™ and decomposing
the solutions in a bounded domain in terms of eigenfunctions of negative Laplacian
as in [28,32].

This paper is organized as follows. In the next section, we recall a sufficien-
t and necessary criterion for existence of pullback attractors for cocycle or non-
autonomous random dynamical systems. In Section 3, we define a continuous cocy-
cle for Eq.(1.1) in H'(R") x L?(R™). Then we derive all necessary uniform estimates
of solutions in Section 4. Finally, in Section 5, we prove the existence and uniqueness
of tempered random attractor for the non-autonomous stochastic strongly damped
wave equation.

Throughout this paper, we use || - || and (-,-) to denote the norm and the inner
product of L?(R"), respectively. The norms of LP(R") and a Banach space X are
generally written as || - ||, and || - || x, respectively. The letters c and ¢; (1 = 1,2,...)

are used to denote positive constants which do not depend on ¢ in the context.

2. Preliminaries

In this section, we recall some known results from [35] regarding pullback attractors
for non-autonomous random dynamical systems. All results given in this section
are not original and they are presented here just for the reader’s convenience. The
theory of pullback attractors for autonomous random dynamical systems can be
found in [1,5-7,10,16].
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Assume X is a separable Banach space. Let (2, F, P) be the standard probabil-
ity space where Q = {w € C(R,R) : w(0) = 0}, F is the Borel o-algebra induced by
the compact open topology of Q, and P is the Wiener measure on (€2, F) (see [1]).
There is a classical group {6; }+cr acting on (2, F,P) which is defined by

() =w(-+1) —w(t), forallwe,teR. (2.1)

We often say that (Q, F, P, {6:}+cr) is a parametric dynamical system.

Definition 2.1. A mapping ® : R™ x R x O x X — X is called a continuous
cocycle on X over R and (Q, F, P,{0; }1cr) if for all T € R,w € Q and ¢, s € RT, the
following conditions (1)-(4) are satisfied:

(1) ®(,7,+):RT xQx X = X is (B(RT) x F x B(X), B(X))-measurable;
(2) ®(0,7,w,-) is the identity on X;
(3) 2t +s,7w,) = (t,7 +5,05w,) 0 (s, 7,0, )
(4) ®(t,7,w,-) : X = X is continuous.

d
d

Hereafter, we assume @ is a continuous cocycle on X over R and (92, F, P, {0; }+er),
and D is the collection of all tempered families of nonempty bounded subsets of X.
Remember that a family D = {D(r,w) : 7 € R,w € 2} of nonempty bounded
subsets of X is said to be tempered if there exists 2y € X such that for every ¢ > 0,
7 € R and w € §, the following holds:

lim e“d(D(7 +t,0:w),z0) = 0. (2.2)

t——o0

Given D € D, the family Q(D) = {Q(D,1,w) : 7 € R,w € Q} is called the Q-limit
set of D where

QD,mw) = J @t 7 —t,0_w, D(r —t,0_w)). (2.3)

r>0t>r

The cocycle @ is said to be D-pullback asymptotically compact in X if for all 7 € R
and w € ), the sequence

{®(ty, T — tn,0_1,w,x,) }02, has a convergent subsequence in X (2.4)

whenever t, — 00, and z,, € D(7 — t,,0_;,w) with {D(1,w) : 7 € R,w € Q} € D.

Definition 2.2. A family K = {K(7,w) : 7 € R,w € Q} € D is called a D-pullback
absorbing set for ® if for all 7 € R and w € Q and for every D € D, there exists
T =T(D,7,w) > 0 such that

O(t, 7 —t,0_4w,D(t —t,0_w)) C K(r,w) forallt>T. (2.5)

If, in addition, K(7,w) is closed in X and is measurable in w with respect to F,
then K is called a closed measurable D-pullback absorbing set for ®.

Definition 2.3. A family A = {A(7,w) : 7 € R,w € Q} € D is called a D-pullback
attractor for ® if the following conditions (1)-(3) are fulfilled: for all t € RT, 7 € R
and w € ),

(1) A(7,w) is compact in X and is measurable in w with respect to F.
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(2) A is invariant, that is,
O(t, 7, w, A(T,w)) = A(T + t, 6w). (2.6)
(3) For every D ={D(r,w): 7 € R,w € Q} € D,
tlirgo dg(®(t, 7 —t,0_4w,D(T — t,0_,w)), A(T,w)) = 0. (2.7)
where dp is the Hausdorff semi-distance given by dg(F,G) = sup,cp inf,eq ||u —
v||x, for any F,G C X.

As in the deterministic case, random complete solutions can be used to charac-
terized the structure of a D-pullback attractor. The definition of such solutions are
given below.

Definition 2.4. A mapping ¢ : R x R x Q@ — X is called a random complete
solution of ® if for every t € R*,s,7 € R and w € ,

D(t, 7+ 8, 0w, Y(s,T,w)) =Yt + s, T,w). (2.8)

If, in addition, there exists a tempered family D = {D(7,w) : 7 € R,w € Q} such
that (¢, 7,w) belongs to D(7 + t,0:w) for every t € R, 7 € R and w € §, then % is
called a tempered random complete solution of ®.

We borrow the following result from [35] on D-pullback attractors for non-
autonomous random dynamical systems. Similar results can be found in [1,5-7,
10,16] for autonomous random dynamical systems.

Proposition 2.1. Suppose ® is D-pullback asymptotically compact in X and has a
closed measurable D-pullback absorbing set K inD. Then ® has a unique D-pullback
attractor A in D which is given by, for each T € R and w € €,

A(r,w) = UK, T,w) = U Q(D, r,w) (2.9)
DeD
= {(0,7,w) : Y is a tempered random complete solution of @ }. (2.10)

3. Stochastic strongly damped wave equation on R"

In this section, we outline the basic setting of (1.1)-(1.2) and show that it generates
a continuous cocycle in H!'(R™) x L?(R"™).

Let £ = us + du where 6 is a small positive constant whose value will be deter-
mined later. Then applying this transformation to (1.1)-(1.2) we find that

du

E = f - 5“7

% = aAE + (1 - ad)Au+ (5 —1)E+ (6 — A— 8%)u (3.1)
~ ) gl 1)+ () T

with the initial value conditions

u(r, ) = uo(x), &(1,2) = (), (3-2)



Non-autonomous stochastic wave equation 367

where &y(7) = uy(x )+5u0( ) z e R™

Denote by F(z,u) fo (z,s)ds for x € R™ and u € R. Throughout this paper,
we assume that the nonlinear functlon f satisfies the following conditions, for every
r € R" and u € R,

| fla,u) < e |ul” +61(z),  ¢i(x) € L2(R™), (3.3)
flz,u)u — coF (z,u) > ¢o(x), ¢ofx) € L'(R"), (3.4)
F(z,u) = ez |u ™ —gs(x), ¢3(z) € L'(R), (3.5)
| fu(,u) [< ca "™ +oa(2),  ¢a(z) € H'(R™), (3.6)

where ¢;(i = 1,2,3,4) are positive constants, v > 1 for n = 1,2 and v € [1,3) for
n = 3. The restriction for n < 3 is needed when deriving umform estimates on
solutions, see, e.g., Lemma 4.4. We also need the following condition on g: there
exists a positive constants o such that

/ e”lg(-,8)||Pds < 00, VT ER, (3.7

— 00

which implies that
lim / / e”®|g(x,s)*deds =0, VTR, (3.8)
T—00 |fl?|>’f'

where | - | denotes the absolute value of real number in R.

For our purpose, it is convenient to convert the problem (3.1)-(3.2) (or (1.1)-
(1.2)) into a deterministic system with a random parameter, and then show that it
generates a cocycle over R and (Q, F, P, {0; }ter)-

We identify w(t) with W (), ie., w(t) = W(t) = W(t,w), t € R. Consider
Ornstein-Uhlenbeck equation dy + ydt = dW (t), and Ornstein-Uhlenbeck process

y(bw) = ff *(Orw)(s)ds, t € R. From [3,11], it is known that the random
variable |y(w)]| is tempered, and there is a @y-invariant set € C € of full P measure
such that y(,w) is continuous in ¢ for every w € Q. Put

z2(Ow) = z(z, Ow) = h(z)y(Orw), (3.9

which solves
dz + zdt = hdW. (3.10)

Lemma 3.1 (See [26]). For any € > 0, there exists a tempered random variable k
: Q= RT, such that for allt € R, w € 0,

12(8:0) | < e k(w) ],
IV2(8uw)| < k(W) VR],
1A2(6)]| < e k(W) AR,

where k(w) satisfies
ek (w) < k(Ow) < eME(w).
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To define a cocycle for problem (3.1)-(3.2), we let
U(t, T, OJ) = f(tv T, (.d) - Z(Gtw)v

then (3.1)-(3.2) can be rewritten as the equivalent system with random coefficients
but without white noise

% =v —ou+ z(6w),
f;t’ = alw+ (1 —ad)Au+ (6 — D)v + (6 — A — 62)u (3.11)
+ aAz(Oiw) + 02(6iw) — f(z,u) + g(z,t),
with the initial value conditions
w(r, 7, 1) = ug(x), v(r,7,2) = vo(T), (3.12)

where vo(x) = &o(z) — 2(0;w), v € R™.
We will consider (3.11)-(3.12) for w € © and write 2 as ) from now on.
Let E(U) = H'(U) x L?(U),U C R", endowed with the usual norm

1
1Yl @yx 2@y = (IVull® + Jul® + ol|?)* for ¥ = (u,v)" € E(U), (3.13)

where T stands for the transposition. We define a new norm || - || g7y by

Y llz@) = (Iol* + (62 + X = 8) [ull® + (1 — ad) [|Vul?)?, (3.14)

for Y = (u,v)" € E(U). It is easy to check that || - || z(r) is equivalent to the usual
norm || - || g (vyx 2y in (3.13).

By the classical theory concerning the existence and uniqueness of the solutions
[25,27,28], we have the following Lemma.

Lemma 3.2. Put o(t+7,7,0_,w, @) = (uw(t+7,7,0_,w, ug), v(t+71,7,0_rw,v0)) T,
where @y = (ug,vo) ", and let (3.3)-(3.6) hold. Then for every w € Q, 7 € R and
o € E(R™), problem (3.11)-(3.12) has a unique (F, B(H'(R™)) x B(L?*(R™)))-
measurable solution o (-, T,w, o) € C([1,00), E(R™)) with ¢(, T,w, vo) = o, ¢(t,T,
w, o) € E(R™) being continuous in ¢y with respect to the usual norm of E(R™) for
each t > 7. Moreover, for every (t,7,w,po) € RT x R x Q x E(R"), the mapping

(I)(taTawa(pO) = (p(t+7-7 T, 0—7"‘“]5()00) (315)

generates a continuous cocycle from RT x R x Q x E(R") to E(R™) over R and
(ij:v’Pv {et}tER)'

(u v)—r S

E(R™) with an inverse homeomorphism P~ (fw) (u v) = (u, v— Z(Otw)) . Then,
the transformation

Introducing the homeomorphism P(6;w) (u U) (u v+ z(Ow) )T

O(t,7,w, (ug, &)) = P(Biw) (¢, 7,w, (ug, v)) P~ (B1w) (3.16)

generates a continuous cocycle with (3.1)-(3.2) over R and (2, F, P, {0 }ier)-

Note that these two continuous cocycles are equivalent. By (3.16), it is easy
to check that ® has a random attractor provided ® possesses a random attractor.
Then, we only need to consider the continuous cocycle ®.
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4. Uniform estimates of solutions

In this section, we derive uniform estimates on the solutions of the non-autonomous
stochastic strongly damped wave equations (3.11)-(3.12) defined on R™ when t — co.
These estimates are necessary for proving the existence of D-pullback attractor for
the equations. In particular, we will show that the tails of the solutions for large
space variables are uniformly small when time is sufficiently large.

Let ¢ € (0,1) be small enough such that

24+AX—6>0, 1—ad>0,

and define o appearing in (3.7) by

a:min{l—é,é,%é}, (4.1)

where ¢ is the positive constant in (3.4).

Lemma 4.1. Assume that h € H*(R) and (3.3)-(3.7) hold. Then for every T € R,
weQ and D ={D(r,w) : 7 € Ryw € Q} € D, there exists T = T(1,w,D) >0
such that for allt > T,

lp(r, 7 —t,0_ w, ¢O)||%(Rn) + /Tt e |lu(s, T — t,0_rw, vo)||2ds
+ /T e? ™ u(s, T — t,0_rw, ug)||*ds
r—t
+ /T e?C | Vu(s, 7 — t,0_rw,up)||*ds
r—t
+ /T e”(S*T)HVv(s,T —t,0_,w,up)||*ds
r—t

0
<ct C/ e (IV2(0sw)|* + 12(8s)|1* + [l2(sw) [ 37 ds

— 00

+ c/ e (5= llg(x, s)||2d5,

— 0o

where o = (ug,v9) € D(1T —t,0_w) and c is a positive constant depending on
Ao, and 0, but independent of T,w and D.

Proof. Taking the inner product of the second equation of (3.11) with v in L?(R"),
we find that

d
%$||v||2 =—a||[Vol]> = (1= 8)|[v]|* = (6 + A = &) (u,v) + (1 — ad) (Au,v) (4.3)
+ (aAz(w),v) + (02(Ow), v) + (g(z,1),v) — (f(z,u),v).
By the first equation of (3.11), we have
v= du + ou — z(Ow). (4.4)

Todt
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Then substituting the above v into the third, fourth and last terms on the left-hand

side of (4.3), we find that

)

—|— ou — z(ﬂtw))
||u||2 +0llull® — (u, 2(0iw))

[ull® + olfull* = [|2(Bs)| - [lu]

WV

i
di
4
di

\\/

(u,
1
T2

1

2

1d

2

s Ll + 22 — (0,
(Au,v)
= —(Vu, Vv)

(Vu V(d + du — z(@tW)))

:_§%|\v ull* = 8[| Vull® + (Vu, Vz(8w))

\‘5%”v ull> = 8| Vull® + [ Vz(6:) | - |Vl

< 3 SVl 2 vull + v
(f(z,u),v)
du
- (f(z,u), o ou— z(&tw)>

= % F(z,u)dz + 6(f(z,u),u) — (f(z,u), 2(6w)).
R

From condition (3.4) we get

(f(x,u),u) > 02/ F(z,u)dx + ¢a(z)dx
R

n

By conditions (3.3) and (3.5) we have

(f(:c,u),z(&tw))
< [ (kP + @) (0w)ds

-
1
T 2(0:w) [y

<ler(a)l -l +ex ([ Jurias)
<lerta)l - o)l + e ([ (Pl +oa@)de) T @)l
< Sl @IE + 5@ + %2 [ P, wde

R

5c
2/ ¢3(x)dz + c||z(0w) || 1+

(4.5)

(4.9)
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Using the Cauchy-Schwartz inequality and the Young inequality, we have

(aAz(w),v) = fa(Vz(Htw),Vv) < - ||Vz(t9,g(.u)||2 + %HVUHZ, (4.10)
52 1-6
(32(0i), v) < Ollz(0) - o] < 75 l12(0u)1* + —=lloll?, (4.11)
2 1-9
(9(@.1),0) < llg(, D)l - lv]l < mﬂg(%t)ﬂz +—— Il (4.12)

By (4.5)-(4.12), it follows from (4.3) that

d
d—<||v||2 (52+)\—6)Hu||2+ (1—045)\\Vu||2+2/ F(:c,u)dx)
t R’Vl

4
4.13
5@ (4.13)

- —= F(z,u)dx — —||Vv||2 + c(l + HVZ(Htw)HQ
2 Jan 2

1
2

2
12 (Oo)l* + 120 lIF71) + =5 llg . DI

Recall the new norm || - || g(py in (3.14). By (4.1) we obtain from (4.13) that

d 2 2
£<|I¢||E(Rn) + 2/Rn F(x,u)dx) + O'(HQD”E(Rn) + 2/Rn F(x,u)dx)

5 5(624+X=96 0(1l —ad
o2 + &4 . )Hu||2+%nwu2+anwu2 (4.14)

<ce(l+ IIVZ(Qtw)II2 +[12)I? + 2(0w)[131) + %IIQ(N)HQ-

Multiplying (4.14) by et and then integrating over (7 — ¢, 7), we have

e’’ (”(P(Ta T— 1w, SOO)HQE(]R") + 2/ F(IE, U(Ta T— 1w, uo))dx>

1-4§ T os 2
+ — e |lv(s, T — t,w,vg)||*ds
2 T—t

2 _ T
+ W/ e”|lu(s, 7 — t,w,u0)||2ds
T—t

61 —ad) [T
+ w/ GUSHVU(S,T—t,w,uO)HQdS
T—t

2 (4.15)

i
+ a/ 7| Vu(s, T — t,w,vo)||*ds
T—1

<™ (lgolan +2 | Flaudo)

de [ et (U VO + [0 + (0.0} )ds

4 T os 2
—|—m e”?|lg(zx, s)||~ds.

T—1
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Substituting w by §_,w, then we have from (4.15) that

lo(r, 7 —t,0_w, @0)||%E(Rn) + Q/R F(z,u(r,7 —t,0_,w,ug))dx

1—-46 (7
T e (s, T — t, 0_rw, vo)||*ds
T—t
(2 +X=10) (7
%/ e u(s, T —t,0_ 1w, uo) || >ds
T—t
3(1 — ad)

-
/ e8| Vu(s, 7 — t,0_rw, up)||*ds
2 T—t1

+a/ 7| Vu(s, T —t,0_,w,v0)||*ds

T—1

< (ol +2 [ Flau)do) (416)
R?’I,

" C/ O (L V2 (Osmrt)|* + 12851 + [12(85—rw) [}/ ds

/ e |g(z, )|2ds

< e*ﬂ(||gaou%<m +2 [ Flo,u)ds)

0
re [ e IVOLIP + 12017 + 0.0 as

bty [ et gt s

By lemma 3.1 with € = we have that

_o
2(y+1)°

/ 7 (IV2(0w) 17 + |12(850)|1* + [|2(Bs) 175 ) ds

—t

0 2 2 +1
< [ e (Va0 + (O + 1(60) ) s )

0
< [ H(R@ VAR + A7) + B @ (IR + ) )ds

< +o0.
Note that (3.3) and (3.4) imply that
[ Pauods < c(t+ fuol + ol 7). (118)
Due to g = (ug,vo)' € D(1 —t,0_4w) and D € D, we get from (4.18) that
t—+

tim_ e (ol B +2 /R F(e,u0)dr) =0. (4.19)

Therefore, there exists T' = T'(7,w, D) > 0 such that e~ (”‘POH%(W)"‘Q Jan F(@,up)dz) <
1 for all ¢ > T. Thus the lemma follows from (3.7), (4.16) and (4.17). O
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Lemma 4.2. Assume that h € H*(R) and (3.3)-(3.7) hold. Then there exists a
random ball {A(T,w) : 7 € R,w € Q} € D centered at 0 with random radius

0
oty =cte [ (V017 + 017 + 1005 s

— 00

+e / "= | g(z, 5)|Pds

such that {A(T,w) : 7 € Ryw € Q} is a closed measurable D-pullback absorbing
set for the continuous cocycle associated with problem (3.11)-(3.12) in D, that is,
for every r € R, w € Q, and D = {D(1,w) : 7 € R,w € Q} € D, there exists
T=T(r,w,D) >0, such that for all t > T,

<I>(t, T—1t,0_w,D(T —1t, 9_tw)) C A(1,w). (4.20)
Proof. This is an immediate consequence of (3.15) and Lemma 4.1. O
Choose a smooth function p, such that 0 < p(s) < 1 for s € R, and
0, 0</[s|<1,
= 4.21
p(s) {17 5> 2, (4.21)

and there exist constants ., 4,, such that |p'(s)| < uy, |07 (s)| < p, for s € R.

Given r > 1, denote by H, = {z € R" : |z| < r} and R™\H, the complement
of H,.. To prove asymptotic compactness of solution on R™, we prove the following
lemma.

Lemma 4.3. Assume that h € H?(R) and (3.3)-(3.7) hold. Then for every T € R,
weQ, and D ={D(r,w) : 7 € Rw € Q} € D, there exist T = T(r,w,D,e) >0
and R = R(T w,e) = 1, such that for allt > T, r > R,

||50(7-7 T — t7 9775‘)7 @0)||2E(]Rn\]}][1) < g, (422)

where o = (ug,v0) " € D(T —t,0_;w).

Proof. We first consider the random equations (3.11)-(3.12). Then taking the
inner product of the second equation of (3.11) with p(=% lef? Ju in L2(R™), we obtain

i fo ot

:oz/”(Av) (l il )Ud(IJ (1—5)/Rnp(|9:f>|v|2da:

_(52_’_)\_5)/np(|r|2
p(%)z(@tw)vdz

2
+a/ (Az(@w))p(%)vderé
R™ r Rn
2

+ / P(%)g(x,t)vdx — / p(%)f(x,u)vdg;,

j/?

)uvdx—l—( 5)/n(Au) < 2

|z

)vdm (4.23)
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Substituting v in (4.4) into the third, fourth and last terms on the left-hand side of

(4.23), we get that

|z

/ p( " )uvdx
/ |x| — + ou — z(Qw))da
/ 2dt u? 4 6u? — z(0,w)u )dx
1 d ] lz|%, o
§d— o) ufPdr + - 5 /n p(r—z)|u\ dx

1 2

“% ), z(Oyw)|*dex,
/ Uda:

]Rn

|m| du

/
L

—I—p(—

</
<a:<\fr
_5/

\I2

7) (E + du — Z(Qtw))) p

|1’| )(dt + du — Z(@tw))

)V(— + du — z(@tw)))dm

dt

2u, 1d z|?
(Vupelas 55 [ o2

7"2 )| Vul*d

121 u2de - /p(%)|Vu\-|Vz(9tw)|dx
R7l

2 1d 2
< / \CNI |(Vu)vlde — - — p(‘i—|)|Vu|2dx
R n

2dt Jy

2 2
—(5/ p(lx—|)|Vu|2dx+§/ p(%HVMde
R™ 2 R™ r
1

"%/

—~

|z 2
( )| Vz(0w) P da

|Zj—|2)F(a¢,u)d$ + 6/11@" p(lf—f)f(x, w)udz

(4.24)

(4.25)

(4.26)
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B /Lp(|ﬂ ) f (2, u)z(0,w)d.

From condition (3.4), we find

|z

i p(%)ﬂx u)uda

(4.27)
025/ mudx—|—5/ x)dx.
By conditions (3.3) and (3.5), we get
J2*
p( 2 ) f (@, u)z(0w)dx
o Ll ( y
< | p(Cs)(alul” +61(2) )|z (0nw)lda
e (4.28)
< 1/ (ﬁ)w (a:)|2dx—|—1/ (|x|2)| (0;w)|*dx
) Rnp r2 /171 2 Jau PV 02 K
2 K} 2
+c/ p(|m| )z(0w) " dz +c; / p(lx—L)(F(x,u)—&-%(x))dx
Rn 7’ R T
By the Cauchy-Schwartz inequality and the Young inequality, we obtain
|z
a/n(Av)p(TT)vdx
:fa/ (Vu)V ( (—') )dx
:—a/ (Vv)(zx ,(\m| Ju+ (ﬁ)Vzde (4.29)
o P )v+o(3 :
20‘:“/13j _ |$|2 2
< /KK\@T 3 |(Vv)v|dz a/Rn p(T—Q)|Vv| dz
Vo, :
< P (9l ol) —a [ o) TP
R™ r
|z
a/ (Az(@tw))p(TT)vdx
2
x
= 7a/n (Vz(@tw))V(p(%)v)dx
2 2 2
- —a/ (Vz(fw)) (—fp/(%)vH—p(@)Vv)dx
n r r r
(4.30)

20é,u1 |$|2
</<x<ﬁ 2 [(V2(uw))vlda — /Rnp(T)(|Vv|)(|Vz(9tw)|)dm

< Y2 (17 )| + o) + / o) woftar

a x
+ Z/ p(%)|v,z(9tw)|2dx,
Rn T
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(4.31)

(4.32)

| 1- 5/ 22\ 2
5 |g z,t)|?dx + 1 Rnp( 2 )|v|*dz.
Then it follows from (4.24)-(4.32)

1d (|L
2.dt p r2
Jhm

| )(W’ + (024 A= O)[ul + (1 — ad)|Vul? + 2F(x,u))daz

//\

(IVoll* +2[lo )1 + [ V2(0u)1?)

#0-a0) Z (wul + i) - 150 [ o o

(4.33)
5(0%2+X—9) ||? 5(1 — ad) |z] 5
e I Sy I ST
c20 x|? x|?
- %/ p(%)F(m,u)dw + c/ p(%) (14 |Vz(0w)]? + |2(6w)|?
Rn r R™ T
+ |2(0s0) " 4 g (@, 1)) .
Let
X =+ (62 + X =0)|ul> + (1 — ab)|Vul>. (4.34)
Then, by (4.1) we have from (4.33) and (4.34) that
d |z jz?
— p( ) (X +2F(z,u))dz + o p(—Z)(X—i—QF(x,u))dx
dt R T' R™ r
c
< ;(HVUH2 v + IVull® + [V2(8:w) %)
al? (4.35)
+c/ p(= )(1+|VZ(9tw)|2—|—| (Byw)|?
R T
+ |2(0) " + g (2, D) ) da.
Multiplying (4.35) by et and then integrating over (7 — ¢, 7), we have
jz?
(—2) <X(7’7 T —t,w, Xo)+ 2F (z,u(r,7 — t,w, uo)))dx
n r
2
<e ot / p(%) (Xo + 2F(z,up))dx (4.36)

c

+ - / e?(s=7) (||Vv(s, T — t,w,vo)HQ + lv(s, T — t, w, vo)||2
T—1

+ IVuls, 7 — tw,uo)|? + [1V2(6,0)]1% ) ds
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‘ 2

e[ et [ D) (14 19s0mP + 0.0
+ |20, + g(a,5)|? ) dads.
By replacing w by 6_,w, it then follows from (4.36) that

2
/ p('i—l) (X(T, T—1t,0_,w, Xo) + 2F(x,u(r, 7 — t,0_,w, uo)))dx

2
< e—at/’ p(‘%) (Xo 4+ 2F(z,up))dx

+f/ e (V05,7 — £,0_w,00) > + o(s, 7 — 1,00, )]
r T—1

+ Vs, 7 = 00, u0) |2 + | V2(0,—r)]|? ) ds
|2

o [ e [ o) (14 920w+ a0,
T—t1 R™ r

|20, —w) T+ Jg(w, 5)|? ) dads
< —ot ‘.’L'|2 X 2F d
<e [ p(55) (Xo+2F(w,u0))de
+9/ 60(877)(\\V’u(5,7ft,G_Tw,vo)W
r T—t

+ [[o(s, 7 — t,0_rw,v0) || + [|Vu(s, 7 — t, 977%%)”2)&9 (4.37)

0 T
+ E/ e8| V2(0.w)||*ds —|—c/ 605/ lg(z, 5)|*dxds
TSt T—t |z|>r
0
+ c/ e’® / (1 + |V2(05w)|? + |2(0sw) | + \z(&sw)|7+1)dxds
—t |z|>r
—ot ‘Jf|2
<e p(rT) (Xo 4+ 2F(z,up))dx
R’!L

Cc

+ - / e?(s=7) (HVU(S, T —t,0_rw,v0)|?
T—1
o5, ™ = 6,07, 00)[2 + [ Vuls, 7 = 1, 60, u0) | ) ds

c

0 T
+ 7/ e"s||Vz(95w)H2ds+c/ e"s/ lg(z, ) |>dxds
"J)-—x —0o0 |z|>r
0
+ c/ e”s/ (1 + [V2(0:w) ]2 + |2(0sw)|* + |z(98w)\”+1)da:ds.
—o0 |z|>r

In what follows, we estimate the terms on the right-hand side of (4.37). Due to
o € D(T7—1t,0_4w) € D and (4.18), we have that, there exists Ty = T1(7,&,w, D) >
0, such that for all t > 17,

2
e_gt/ p(‘%) (Xo + 2F (2, ug))de < c. (4.38)
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By Lemma 4.1, there are T2 TQ(T,s,w,D) >0 and Ry = El(s,w,D) > 1, such
that for all ¢ > T2 and r > Rl,

f/ e7(s=7) (||Vv(s77 — 1,0, 00)|1 + (s, T — t,0_rw, )2
T—t

.
+ [ Vu(s, 7 — t,e_rw,uo)HQ)ds (4.39)

L e

By Lemma 3.1 with € = j» there are Ts = Ts(e,w) > 0 and Ry = Ry(e,w) > 1,

3
such that for all ¢t > T3 and r > RQ,

/ /|£>7 1 +|Vz(8s w)|2 + |2(6, w)|2 + |2(6, W)|7+1)dxds

4.40
" ;/ €7 |[V2(0,) |2ds (440)
<e.
By condition (3.8), there is Ry = ]%3(735) > 1, such that for all r > R,
c/ e"s/ lg(z, s)[>dzds < e. (4.41)
—00 |z| =7

Letting T = max {fl, Ts, T3}, R = max {El, Ro, Eg}, then combining (4.38)-(4.41),
we have for all t > T and r > E,
2

/ p(%) (X(T, T—t,0_rw, Xo)+ 2F(z, (1,7 — t,0_;w, uo))>dx < de, (4.42)

which implies

lo(r,m —t,0_rw, @0)||%(RH\HT) < 4e. (4.43)

Then we complete the proof. O
Let p =1 — p with p given by (4.21). Fix r > 1 and set

2
U(t, 7, w, ) = ﬁ("””' Yut, 7w, uo),
, (4.44)
||
(t T, W ’l)o) 7p( 7"2 )U(t,T,u},Uo),

then @(t, 7,w, Po) = (u(t, 7,w, o), v(t, T,w,Vp)) " is the solution of problem (3.11)-
(3.12) on the bounded domain Hy,, where @y = p(‘ e ) po € E(Ha,.).
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2

Multiplying (3.11) by p( ) and using (4.44) we find that

==+ 5(2F) 00
(g:ozAﬁJr(éf1)§+(17Q5)Aa+(57)\752)a
+ap(| ") (o) + 09( 2L f) (0w + (|Tf)g(z,t) (4.45)
,ﬁ(lif)f(u t) — avA (u) 90 ToY (|m|2)
“*M)UM('”TP) ~2(1 - ad)VuV (W)

Considering the eigenvalue problem
— Au=\u in Hy., with u=0 on OHs,,. (4.46)

The problem (4.46) has a family of eigenfunctions {e;};cny with the eigenvalues
{Nitien :
A< A <K <ee A = Hoo(i = 400),

such that {e; };en is an orthonormal basis of L?(Ha,.). Given n, let X,, = span{ey, --
- en}t and P, : L?(Hy,) — X,, be the projection operator.
Lemma 4.4. Assume that h € H*(R) and (3.3)-(3.7) hold. Then for every T € R,
weQ, and D ={D(r,w) : 7 € R,w € Q} € D, there exist T= f(T,w,D,s) > 0,
R = E(T,w,a) > 1 and N = N(r,w,e) > 0, such that for all t > T\, r > R and
n> N,

H(I - Pn)@(7—7 T—t0_;w, @0)||2E(H2T) <6, (4'47)

x|

where @y = p( )apo, wo = (ug,v0)" € D(T —t, G,tw).
Proof. Let u,, = Pu, u,, = (I = P,)u, v,, = P,v and v,, = (I — P,)v.

Applying I — P, to the first equation of (4.45) we obtain

R du R |2
V,, = d’f +ou, , — (I — P.)p (|r|

)2(0yw). (4.48)

Then applying I — P, to the second equation of (4.45) and taking the inner product
of the resulting equation with ¥, , in L?(Hy, ), we have

1d, .
gl
= VO, 2+ (6 = DT, P+ (6= A= ) (@, . 7,..)
jaf?

+(1—a6)(Aun2,A )+a(( )Az((‘)tw) 72)

|zl _ . | |2 R (4.49)
+0(p(55)2(0w), 7,.) + (P(Tz)g(%t)v 0.2)
1’2 1’2 .’L'2
— () p. 5,,) — alean() +2vevs(UE). 5,)

|z

— (1 a8) (udp(5) +2VuVp(“),



380 Z. Wang & S. Zhou

Substituting v, , in (4.48) into the third, fourth and last terms on the left-hand side
of (4.49), we obtain

(@2 D)

. du,, |zl
= (’Z,Lng, W +5Um2 *p(?)Z(etw)) ( )

1d ) ) ~ |x‘2 4.50
> 5 ST 4 81,2~ 1, 1T~ PA(y)2(00)]

1d, .. = 1 _|z)?
> 24 - 2_ - _ 1 2
> 2l + 21— T~ PR )20,

(Aun2’ n2)

N du,, = . ||
:_(vuw V(e 461, = () 2(0w))
) S R |2 (4.51)
<—ﬁnwnzu 41V, +||Vu",2|~||<I—Pn>V(p(r—2)z<etw>)||
30 . x|?

<3 TV, 2 = 219, I 4+ 1 POV (B )20u) P,

@@ﬁﬁuwvw)

- (,a('%z)f(x,u), dZ— + o0, , - A(E)z(etw))

I (4.52)
xr
- G5 rewa..) - (o5 )fwuw )
]2 _ o2
#(( 2 ) e0.3,.) = () 0. 1 = PR s(0).
From condition (3.6), we find
o2
(A( 55 ) fulw wus i, )
< cllalls - el - 11, s + clluel] - [l - |, . o
<C 1 |lu .Anzé.van2%
ol - el 17l 19,001 .
+cludll - Nl - 1@, 7 - Ve, L7
<Aty -l 19, L]+ A lludl -l - 193,
o(1
< 29 ygi 1 eyl + AT el - 37
By condition (3.3), we get
~ .’L‘2 ~ $2
(B0 s, (= 2 2(0)
| | | |2 (4.54)
< cllullfp - 1T = Pa)p(S5 )20l + el (T = Pu)(“5)2(0)]l-
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By using the Cauchy-Schwartz inequality and the Young inequality, we have

2 N
a(p(r )Az(@tw) n,z)
< all(r = P)p( 2L A0 - 1. | (455)
7a® |z[? 2, 1=0,- 2
< mH(I—Pn) p(—5 ) Az(0w)[* + EVE 2l
|z N
0(p(=5)2(0ww), v,,)
2
X
<l = Pp(5) 20119, (4.50
70? |z o 1=0, o
< 2(1 )H(I P) (T ) (etw)” +THUH’2H )
—~/ | ~
(2L )gtan). 5,.)
2
X
<= 2R E gt )15, (4.57)
7 ||? o 1=4 . 5
<ﬁ\|(-’ Po)p (r )a(z, t)]| JFTH"UW,JH )
2
—a(vAp(' i ) +2VoV (m ) ﬁng)
42?2, |x|? 2, |z? 4x S L
= —a(v(5 () + 57 () + 5 Ve B (5), )
(4.58)
200(4pt, + 1, N 4{ 42p,a
< 20 ) g+ D2 ) s,
7a? (8M2+2M) 2, /~L1 2 L 1=0, - o
<3a-5( loll? + =5 1Vel?) + =115, . 1%
2
—(1—a5)(uAp(|x‘ ) +2Vuv (|;v| ) %,2)
422 2 4 N S
= o) (w25 (D) 4 250Dy 4 Hou 5 (B, 5,)
(4.59)
2(1 — ad) (4p, + i1, . 42, (1 — ad .
< Ao i ’nun~||vn,2||+ann~||vn,2||
7(170‘6)2 (8:“2 +2N1) 2 1 1-94 ~ 2
< Sy ( Jul? + 245 7)) + 113, .
From (4.50)-(4.59) we can obtain that
ld 24 (82 . ~ 2 . ~ 2
57 (18,07 + (2 + A= 9) [, o> + (1 = ad) |V, .|
220 fww.,.) )
. 1-6 1) B
—al[ V3, 1|12 = =515, .2 = 5 (02 + A= 8) |, .1 (4.60)

jz?

-V, — (I

: ), u). 3, .)
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|z

(Il = PR ) 20w + (1 = P)V (p(F ) 2(0,) I

1= Pop(E) Axow) 2 + 1 - Poa(ED Yot 0 )

C 1
= (hal® +1012) + 5 (19l + 19002) 4+ ex, fy e

|z

2y—2 ~
+e n+1IIUt||2 leall ™™ + ellullzp - 1T = Pa)p(=5) 2(6u) -

Recalling the new norm || - || gy in (3.14), we have from (4.1) and (4.60) that

412,y + 260 f@.3,.)
_|z|? .
r )f(xvu)vun,z))

0 (18, 2y +2((5
R (e R e S e S R T
1 = Pap(ED) Ax0) 2+ 1 - PR ) a(e )

C
= (hal + 1002) + 5 (9l + 19012) + ex 2yl
jaf?

2vy—2 ~ 1T
1 el - I = Pp(S

)2(0uw)-

Since 1 < v < 3, A, = oo and (3.9), there exist Nl = J/\fl(g) > 0 and ]:’,1 = ﬁl(a) >0
such that for all n > Ny and » > Ry,
||

d /. ~/|T ~
%( P2 ; ) +2(p(r—2)f(x,u),um2))
e T
< _U(I (pn,Z |E(H27-) + 2(/)(7)]6(.'1},’&), un,2>) (462)
2
el = Pp(Ih g 02 + 5 (Jul + o))

C
+ 5 (Il + IV0112) + €(lfuel® + llullf + [y (6w)?)-

AT el -l 3

Multiplying (4.62) by ¢ and then integrating over (7 —t,7), we have for all n > Ny
and r > Ry,

||@n,2 (7—7 T = ta w, an,z,o)H?E(ng)

=
+2(0(5 5

)f(x, u(T, T — t,w,uo)), U, , (7,7 — t,w, @n)m))
2
Y z .
< (1B no o) + 20 £ w0).7,.,)) (463
T 2
+C/ 60(6_7—)”(1_Pn)ﬁ(%)g(xﬂs)Hst
T—1

c T
5 e (uls = s ug) [P+ (s, 7 = tw,v,) ) ds

T—t

+ r%/ e?(5=7) (||Vu(s,7 - t,w,uO)H2 + IVu(s, 7 — t,w,v0)||2)ds
T—t
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+ 6/ e?(s=7) (||ut(s,7' —t,w,uo) || + flu(s, 7 — t,w,u0)||%
T—t
+ y(0) ) ds.
By substituting w by 0_,w, we can get from (4.63) that,

||@n z(T T = tv 977'("}’ @n,z,o)HQE(Hh)

L2(p (' ) s ulrr — 1,00, u0)), T (7o — 40T, )
< (1m0 P + 2650 F200).7,.,.,))
we [ et - papE gt s as
+ 2 / e (s, 7 — 1,010, )2+ Jo(s, 7 — 1,0-r0,0,)|”)ds (4.64)

+5 [ e (IVuls, T = 4,0, u,)|?

T—t

+ |[Vu(s, T — ¢, O,Tw,UO)HZ)ds
+ s/ 75— (Hut(s,T 0w, u0)||
T—t
s, 7 = 0w, u0)|Grs + [y(Bs—r)? ) ds.

We next estimate each term on the right-hand side of (4.64). By condition (3.3),
o € D( —t,0_4w) and D(1 —t,0_,w) € D, there exist T} = Ty (r,e,D,w) >0
and R1 Rl(T g,w) > 1, such that if ¢t > T1 and r> Rl, then

|z

(12, 0 ) + 2(0(55) F(@00), T, 0,) ) < (4.65)

For the second term on the right-hand side of (4.64), by condition (3.7), there
is N = N(7,e,w) > 0, such that for all n > N, then

c/ e?C=D|(I - P)p (| il )a(z, s)||*ds < e. (4.66)

For the third and fourth terms on the right-hand side of (4.64), by Lemma 4.1,
there exist To = To(7,¢, D,w) > 0 and Ry = Ra(7,¢,w) > 1, such that for all ¢t > T
and r > Ry, we obtain

I
7’4 6 (s )(HU(S T—t,H,Tw,UD)HQ + ||’U(87T_t’977w’1}0)”2)d8
+ 7/ U |V’LL(S T_t 0_ TW, Uy )||2 (467)

+ I Vo(s, T —t,0_w, v0)||2)ds

N

€.



384 Z. Wang & S. Zhou

For the last term on the right-hand side of (4.64), by Lemma 4.1 and Lemma

3.1 with e = 5, there is T3 Tg(’r,{f, D,w) > 0, such that for all t > fg, we obtain

/ (577 (||ut(s, T—t,0_rw,up)°
T—t
o luls, 7 = 00, u0) |1+ [y(B— )| ) ds

<[ et (lutsir = 0w [+ olo T - L0 (168)
T—t
+[l2(0s—rw)[1°
s, ™ = 070, u0) |52 + ly(Bs—r0)|? ) ds
< 00.
Let T = max {T17 TQ, Tg} and R = max {Rl, Rz} Then, it follows from (4.65),
(4.66), (4.67) and (4.68) that, for all t > T, r > R and n > N,

||¢n‘2(7-77- t 0 TW, (pnzo)”E (Hop) X CE (469)
which completes the proof. O

5. Random attractors

In this section, we prove the existence of D-pullback attractors for the stochastic
problem (3.11)-(3.12) in E(R™). We are now ready to apply the lemmas in Section
4 to prove the asymptotic compactness of solutions in E(R™).

Lemma 5.1. Assume that h € H*(R) and (3.3)-(3.7) hold. Then the solution
of problem (3.11)-(3.12) is asymptotic compactness in E(R™); that is, for every
TER, weQ and B={B(r,w) : 7 € Ryw € Q} € D, the sequence {go(T,T —
tm,G_Tw,¢07m)} has a convergent subsequence in E(R™) provided t,, — oo and
0o,m € B(T — tim,0_1,,w).

Proof. We first let ¢, — 00, B € D, and o, € B(T — ty,0_;, w). By Lemma

m

4.1, {(p(T,T —tm, 0_rw, gpo,m)} is bounded in E(R™); that is, for every 7 € R and
w € Q, there exists M; = M;(7,w, B) > 0 such that for all m > M,

o (7,7 = tm, 0—rw, po,m) [F@n) < €*(T,w). (5.1)

In addition, it follows from Lemma 4.3 that there exist k, = k, (1,e,w) > 0 and
Mg MQ(T B,e,w) > 0, such that for every m > Mg,

||80<7'v7' —lm, 07w, SDO,m) ”E(R"\Hk ) SE (5.2)

Next, by using Lemma 4.4, there are N = N(r,e w) >0, k, =k,(1,6,w) =k
and M3 M3( B,e,w) > 0, such that for every m > M37

I(Z = PN)B(7, 7 =t 0, 00.m) [ ) < € (5:3)

Using (4.44) and (5.1), we find that {PN@(T,T — tmﬁ,Tw,apo,m)} is bounded in
the finite-dimensional space Py F(Hag,), which associates with (5.3) implies that
{&(7,7 — tm,0—rw, po,m)} is precompact in Hj (Hap, ) x L?(Hap, ).
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||

vn Recalling (4.44), we find that {@(7—,7- —
2

tim, 0—7w, @0,m)} is precompact in E(Hy, ), which along with (5.2) shows that the
precompactness of this sequence in F(R™). This completes the proof. O
The main result of this section can now be stated as follows.

Theorem 5.1. Assume that h € H*(R) and (3.3)-(3.7) hold. Then the continuous
cocycle ® associated with problem (3.11)-(3.12) has a unique D-pullback attractor
o ={d(r,w): 7 € Rw € Q} in E(R™).

Note that p(3) = 1 for |z| < k,.

Proof. Notice that the continuous cocycle ® has a closed measurable D-pullback
absorbing set by Lemma 4.2. On the other hand, by (3.15) and Lemma 5.1, the
continuous cocycle ® is asymptotically compact in E(R™). Then, by Proposition
2.1, the continuous cocycle ® associated with (3.11)-(3.12) has a unique D-pullback
random attractor in E(R"). O
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