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DYNAMICS OF A DAMPING OSCILLATOR
WITH IMPACT AND IMPULSIVE

EXCITATION

Tengfei Long1, Guirong Jiang1 and Zhaosheng Feng2,†

Abstract There exist many types of external excitations that make the
damping oscillator with impact have complex dynamics. In this study, both
external impulsive excitation and impact are considered to construct a vibro-
impact system. The fixed time pulse (impulsive excitation) and the state pulse
(impact) lead to the complex and interesting dynamics. The conditions of
the existence and stability of four kinds of periodic solutions are investigated,
and the bifurcations of period-(1, 0) and period-(1, 1) solutions are analytically
studied. Numerical simulations on periodic solutions and bifurcation diagrams
are shown by the illustrative example.

Keywords Damping oscillator, impulsive excitation, impact, periodic solu-
tion, bifurcation.

MSC(2010) 34C10, 37C20, 37M20.

1. Introduction

A vibro-impact system, where a vibrator collides with one or more rigid walls, exists
in a wide variety of engineering applications [9–11,13,18], particularly in mechanisms
and machines with clearances or gaps [1, 20]. The trajectories of such systems in
phase spaces have discontinuities caused by impacts. As an important type of non-
smooth systems [3], it has been studied extensively in the past several decades.
The strong nonlinearity, which is proposed because of the presence of impact, leads
to complex dynamics of vibro-impact systems. Shaw and Rand [22] dealt with
the saddle-node bifurcation in an inverted pendulum with rigid barriers. Hopf
bifurcation was proved in a two-degree-of-freedom vibro-impact system by using the
Poincaré map [15, 19]. The Melnikov method was used to explore the homoclinic
bifurcation [6]. Period-doubling and saddle-node bifurcations were discussed in a
vibro-impact system [21]. Besides these traditional bifurcations, there exist quite
a few new non-classical bifurcations in vibro-impact systems. Periodic motions
and grazing in a harmonically forced, piecewise, linear oscillator with impacts were
demonstrated [16]. A piecewise linear second order equation was considered in
[4] which is topologically equivalent to the sine-Gordon equation. The system is
subjected to a time harmonic disturbance and the behavior of the periodic solutions
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was examined. To reduce C-bifurcation to the ordinary types of bifurcations, a
visco-elastic model of impact was proposed and analyzed through a regular approach
[14]. Shen and Du [23] discussed double impact periodic orbits in an inverted
pendulum with harmonic excitation.

On the other hand, excitation plays a critical role in the dynamics of vibro-
impact systems. One of the most important dynamical problems is the analysis of
stability and bifurcations of periodic motions. In connect with excitation systems,
this problem can be handled through experimental, analytical, numerical and ap-
proximate methods etc. For example, a two-dimensional linear oscillator with har-
monic excitation was studied and periodic solutions were discussed by an analytical
method [24]. A three-degree-of-freedom vibro-impact with harmonic excitation was
considered, and double Neimark-Sacker bifurcation was presented by numerical sim-
ulations [7]. Vibration control capability of a combined tuned absorber and impact
damper, under a random excitation, was performed numerically and experimental-
ly [5]. Stochastic and chaotic response of a vibration system with random excitation
was investigated [8]. Gan and Lei [12] discussed the global stochastic dynamics of
a kind of vibro-impact oscillator under the multiple harmonic and bounded noisy
excitations.

In contrast with harmonic excitation, there is not much work on impulsive ex-
citation and its applications. Lenci and Rega [17] considered impulsive excitation
in an impact inverted pendulum and investigated single impact periodic solution
and non-classical bifurcation. In this study, we consider impulsive excitation of the
same form as described by Bainov and Simeonov [2].

The paper is organized as follows. In the next section, impact and impulsive
excitation are considered in a damping oscillator. In Section 3, we discuss the
existence of four types of periodic solutions. Bifurcation analysis of two kinds of
periodic solutions is presented in Section 4. In Section 5, numerical simulations on
periodic solutions and bifurcation diagrams are shown by an illustrative example.

2. Model Description

Consider a linear damping oscillator.

x′′ + 2αx′ + β2x = f(t),

where 2α (α > 0) and β2 are the damping coefficient and the rigidity coefficient,
respectively, and f(t) is an external excitation.

It is notable that the external harmonic force f(t) = F cos(ωt) or f(t) =
F sin(ωt+ τ), and the external random excitation f(t) = F sinφ(t), where φ′(t) =
Ω+ ξ(t), were usually used to build impact systems in physical phenomena. In [17],
Lenci and Rega considered an impulsive excitation f(t) = [−δ(t−iT )+δ(t−iT−a)],
where δ(t) is the Dirac delta function and a is the time distance between the first
and the second impulse.

In [2], to describe impulsive excitation precisely, it takes

x(t)+ = x(t)−, x′(t)+ = x′(t)− + h, t = nT (n ∈ N),

as the external impulsive excitation. At t = nT , the damping oscillator is subject
to an external impulsive excitation or a shock effect, and its velocity x′(t) obtains
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a constant increment h. Then the system which describes the work of damping
oscillator with impulsive excitation and impact takes the form

x′′ + 2αx′ + β2x = 0, t ̸= nT, x < H,

x+ = x−, x′
+ = −γx′

−, x = H,

x+ = x−, x′
+ = x′

− + h, t = nT,

(2.1)

where n ∈ N, T is the time between two consecutive impulsive excitations, H
represents the distance from the system’s static equilibrium position to the single
rigid barrier, and γ is the restitution factor to be a known parameter of impact
losses, whereas subscripts “minus” and “plus” refer to values of response velocity
just before and after the instantaneous impact or shock, respectively. System (2.1)
is shown schematically in Figure 1(a), where the damping oscillator is supposed to
be on the left side of the rigid barrier. Furthermore, we suppose γ = 1, h < 0,
H < 0, and β2 > α2 in this system. Let y = x′, then system (2.1) is equivalent to

(
x

y

)′

=

(
0 1
−β2 −2α

)(
x

y

)
, t ̸= nT, x < H,(

x+

y+

)
=

(
1 0
0 −1

)(
x−

y−

)
, x = H,(

x+

y+

)
=

(
1 0
0 1

)(
x−

y−

)
+

(
0

h

)
, t = nT,

(2.2)

for which the phase portrait is shown in Figure 1(b). In the following, the values
of α, β, H, and T are fixed. Our goal is to investigate the complex dynamics of
system (2.2) by viewing h as a parameter.
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y

t=0

excitation
t=T

t=2T

impact
t=T+T

1

(b)

Figure 1. (a) Schematic representation of a damping oscillator with impulsive excitation and impact;
(b) phase portrait of system (2.2).

3. Periodic Solutions

The normalized (at t = 0) fundamental matrix of the first equation of system (2.2)
is

Φ(t) =

 cos
√

β2−α2t

eαt +
α sin

√
β2−α2t√

β2−α2eαt

sin
√

β2−α2t√
β2−α2eαt

−β2 sin
√

β2−α2t√
β2−α2eαt

cos
√

β2−α2t

eαt − α sin
√

β2−α2t√
β2−α2eαt

 . (3.1)
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The matrix Φ(t) satisfies the group property Φ(t1)Φ(t2) = Φ(t1 + t2). To discuss
the existence and stability of periodic solutions of system (2.2), we let the period-
(m, n) solution be the periodic solution to system (2.2), which denotes the periodic
orbit of period mT of system (2.2) that is subject to external impulsive excitation
m times and impacts at x = H n times per period. Assume that (x(t), y(t)) is a
period-(m, n) orbit, then there is a sequence T1, T2, · · · , Tn with 0 < T1 < T2 <
· · · < Tn ≤ mT such that x(Tk) = H for k = 1, 2, · · · , n and x(t) < H for
t ∈ (0, mT )− {T1, T2, · · · , Tn}.

3.1. Period-(1, 0) Solution

In the case of period-(1, 0) solution, there is no impact but one impulsive excitation
per period T . So we first discuss the condition for the existence of period-(1, 0)
solution.

Set the initial point of system (2.2) to be A(xA, yk), where xA < H and yk < 0.
The trajectory originating from the initial point A reaches the point B(xB , yB)
at t = T . We suppose xB = xA < H, then the trajectory jumps to the point
C(xC , yk+1) for the effect of external excitation. It follows from system (2.2) that

xB = φ11(T )xA + φ12(T )yk, yB = φ21(T )xA + φ22(T )yk,

xC = xB = xA < H, yk+1 = yB + h,

where φij(t), i, j = 1, 2, are the entries of the matrix Φ(t) defined by (3.1). So a
discrete map is obtained

yk+1 =

(
φ12(T )φ21(T )

1− φ11(T )
+ φ22(T )

)
yk + h. (3.2)

A direct calculation shows that the fixed point of map (3.2) is

y0 =

(
1− φ22(T )−

φ12(T )φ21(T )

1− φ11(T )

)−1

h,

and the abscissa value of point A is

xA =

(
−φ21 +

(1− φ11(T ))(1− φ22(T ))

φ12(T )

)−1

h.

Furthermore, the calculation also indicates if there holds

λ1 =
φ12(T )φ21(T )

1− φ11(T )
+ φ22(T ) ∈ (−1, 1), (3.3)

then the fixed point y0 of map (3.2) is stable.
Under the condition of yk < 0, xA < H and (3.3), the fixed point y0 of map

(3.2) corresponds to a stable period-(1, 0) solution of system (2.2). It follows that(
1− φ22(T )−

φ12(T )φ21(T )

1− φ11(T )

)−1

h < 0 (3.4)

and (
−φ21(T ) +

(1− φ11(T ))(1− φ22(T ))

φ12(T )

)−1

h < H. (3.5)
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In view of h < 0, condition (3.4) holds under condition (3.3). Hence, system (2.2)
has a stable period-(1, 0) solution without impacts under conditions (3.3) and (3.5).
This stable period-(1, 0) solution is also unique for the fixed point y0 of map (3.2),
which is stated in the following proposition.

Proposition 3.1. Suppose that conditions (3.3) and (3.5) hold. Then system (2.2)
has a unique stable period-(1, 0) solution without impact.

3.2. Period-(1, 1) Solution

Set the initial point of system (2.2) to be Ak(xk, yk), where xk < H. The tra-
jectory originating from the initial point Ak reaches the line x = H at the point
Ak0(xk0, yk0) for t = T1, where 0 < T1 < T . Then impact occurs and the trajectory
jumps to the point Ak1(xk1, yk1). The trajectory originating from the initial point
Ak1 reaches the point Ak2(xk2, yk2) at T2 = T−T1, then jumps to Ak+1(xk+1, yk+1)
because of the effect of external impulsive excitation. It follows from (2.2) that

xk0 = H = φ11(T1)xk + φ12(T1)yk, yk0 = φ21(T1)xk + φ22(T1)yk,

xk1 = xk0 = H, yk1 = −yk0,

xk2 = φ11(T − T1)xk1 + φ12(T − T1)yk1, yk2 = φ21(T − T1)xk1 + φ22(T − T1)yk1,

xk+1 = xk2, yk+1 = yk2 + h.

Thus we derive a corresponding discrete map{
xk+1 = φ11(T2)H − φ12(T2)(φ21(T1)xk + φ22(T1)yk),
yk+1 = φ21(T2)H − φ22(T2)(φ21(T1)xk + φ22(T1)yk) + h.

(3.6)

Apparently, we see that the fixed point (x0, y0) of map (3.6) is actually associated
with a period-(1, 1) solution of system (2.2). Assume 1 + φ22(T ) ̸= 0. A direct
calculation leads to the fixed point (x0, y0) of map (3.6)) as follows

∣∣∣∣ φ11(T2)H φ12(T2)φ22(T1)
φ21(T2)H + h 1 + φ22(T2)φ22(T1)

∣∣∣∣
1 + φ22(T )

,

∣∣∣∣ 1 + φ12(T2)φ21(T1) φ11(T2)H
φ22(T2)φ21(T1) φ21(T2)H + h

∣∣∣∣
1 + φ22(T )

 ,

(3.7)
and the associated characteristic polynomial is given by∣∣∣∣ λ+ φ12(T2)φ21(T1) φ12(T2)φ22(T1)

φ22(T2)φ21(T1) λ+ φ22(T2)φ22(T1)

∣∣∣∣ ,
where λ2 = 0 and λ3 = −φ22(T ). When

− 1 <
cos

√
β2 − α2T

eαT
− α sin

√
β2 − α2T√

β2 − α2eαT
< 1, (3.8)

where 1 + φ22(T ) ̸= 0 and |λ3| < 1, the fixed point (x0, y0) is stable.
In view of xk < H,∣∣∣∣ φ11(T2)H φ12(T2)φ22(T1)

φ21(T2)H + h 1 + φ22(T2)φ22(T1)

∣∣∣∣
1 + φ22(T )

< H, (3.9)
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where T2 = T − T1 and T1 is the positive root of equation

φ11(T1)x0 + φ12(T1)y0 = H. (3.10)

Thus, the following proposition about the existence of period-(1, 1) solution is
obtained.

Proposition 3.2. Suppose that equation (3.10) has a root T1 such that T1 ∈ (0, T ),
and conditions (3.8) and (3.9) hold, then system (2.2) has a stable period-(1, 1)
solution.

3.3. Period-(2, 1) and Period-(3, 2) Solutions

We first consider the period-(2, 1) solution, which is subject to external impulsive
excitation twice and impacts at x = H once per period. Set the initial point of
system (2.2) to be Ak(xk, yk), where xk ≤ H. The trajectory originating from
the initial point Ak reaches the point Ak0(xk0, yk0) at t = T , and x(t) < H for
t ∈ [0, T ]. External impulsive excitation encounters and the trajectory jumps to the
point Ak1(xk1, yk1). The trajectory originating from the initial point Ak1 reaches
the line x = H at the point Ak2(xk2, yk2) as t = T + T1, where 0 < T1 < T . Then
impact occurs and the trajectory jumps to the point Ak3(xk3, yk3). The trajectory
originating from the initial point Ak3 reaches the point Ak4(xk4, yk4) at t = 2T ,
and then jumps to Ak+1(xk+1, yk+1) because of the effect of external excitation. It
followed from system (2.2) that

xk0 = φ11(T )xk + φ12(T )yk, yk0 = φ21(T )xk + φ22(T )yk,

xk1 = xk0, yk1 = yk0 + h,

xk2 = H = φ11(T1)xk1 + φ12(T1)yk1, yk0 = φ21(T1)xk1 + φ22(T1)yk1,

xk3 = xk2 = H, yk3 = −yk2,

xk4 = φ11(T − T1)H + φ12(T − T1)yk3, yk4 = φ21(T − T1)H + φ22(T − T1)yk3,

xk+1 = xk4, yk+1 = yk4 + h,

and then we obtain a discrete map
xk+1 =φ11(T − T1)H − φ12(T − T1)((φ21(T1)φ11(T )xk + φ12(T )yk)

+ φ22(T1)(φ21(T )xk + φ22(T )yk + h)),

yk+1 =φ22(T − T1)H − φ21(T − T1)(φ21(T1)(φ11(T )xk + φ12(T )yk)

+ φ22(T1)(φ21(T )xk + φ22(T )yk + h)) + h.

(3.11)

While considering the period-(3, 2) solution, which is subject to external im-
pulsive excitation three times and impacts at x = H twice per period, by using a
similar discussion we get the discrete map{

xk+1 = φ11(T − T2)H − φ12(T − T2)(φ21(T1)x̃+ φ22(T1)ỹ),

yk+1 = φ22(T − T2)H − φ21(T − T2)(φ21(T1)x̃+ φ22(T1)ỹ) + h,
(3.12)

where 
x̃ =φ11(T − T1)H − φ12(T − T1)((φ21(T1)φ11(T )xk + φ12(T )yk)

+ φ22(T1)(φ21(T )xk + φ22(T )yk + h)),

ỹ =φ22(T − T1)H − φ21(T − T1)(φ21(T1)(φ11(T )xk + φ12(T )yk)

+ φ22(T1)(φ21(T )xk + φ22(T )yk + h)) + h.
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Note that the fixed point of map (3.11) corresponds to a period-(2, 1) solution
of system (2.2) while the fixed point of map (3.12) corresponds to a period-(3, 2)
solution of system (2.2). So maps (3.11) and (3.12) can be used to discuss the
existence of periodic solutions of system (2.2).

4. Bifurcation Analysis

4.1. Bifurcation of Period-(1, 0) Solution

As described in subsection 3.1, system (2.2) has a unique stable period-(1, 0) solution
under conditions (3.3) and (3.5). The fixed point of map (3.2) is

y0 =

(
1− φ22(T )−

φ12(T )φ21(T )

1− φ11(T )

)−1

h,

and the associated characteristic value of this fixed point is

λ1 =
φ12(T )φ21(T )

1− φ11(T )
+ φ22(T ).

A direct calculation shows that under condition (3.3) the fixed point of map
(3.2) is stable when h < 0. From (3.5), the critical value of h is

h0 =

(
−φ21(T ) +

(1− φ11(T ))(1− φ22(T ))

φ12(T )

)
H, (4.1)

and bifurcation occurs at h = h0.
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Figure 2. (a) Period-(2, 1) solution of system (2.2); (b) period-(3, 1) solution of system (2.2).

Suppose that system (2.2) has a period-(2, 1) solution at h = h0, which is shown
in Figure 2(a). The trajectory originating from the initial point A(H, yA) reaches
the point B(xB , yB) at t = T , jumps to the point C(xC , yC) for the effect of
excitation, reaches the point D(H, yD) at t = 2T , and then jumps to the point
A(H, yA), where yA = −yD + h. It follows from system (2.2) that

xB = φ11(T )H + φ12(T )yA, yB = φ21(T )H + φ22(T )yA,

xC = xB < H, yC = yB + h,

xD = H = φ11(T )xC + φ12(T )yC , yD = φ21(T )xC + φ22(T )yC ,

xA = xD = H, yA = −yD + h.
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Then we have

H = φ11(T )(φ11(T )H + φ12(T )yA) + φ12(T )(φ21(T )H + φ22(T )yA + h),

yA = −(φ21(T )(φ11(T )H + φ12(T )yA) + φ22(T )(φ21(T )H + φ22(T )yA + h)) + h.

That is {
H = φ11(2T )H + φ12(2T )yA + φ12(T )h,
yA = −(φ21(2T )H + φ22(2T )yA + φ22(T )h) + h,

and

h =
(1− φ11(2T ))(1 + φ22(2T )) + φ21(2T )φ12(2T )

φ12(T )(1 + φ22(2T )) + φ12(2T )(1− φ22(T ))
H =: h1. (4.2)

If h0 = h1, where h0 is given in (4.1), then we have

− φ21(T ) +
(1− φ11(T ))(1− φ22(T ))

φ12(T )

=
(1− φ11(2T ))(1 + φ22(2T )) + φ21(2T )φ12(2T )

φ12(T )(1 + φ22(2T )) + φ12(2T )(1− φ22(T ))
, (4.3)

and a period-(2, 1) solution bifurcates from the period-(1, 0) solution at h = h0. So
we obtain the following result.

Proposition 4.1. Suppose that condition (4.3) holds. Then a period-(2, 1) solution
bifurcates from a period-(1, 0) solution of system (2.2) at h = h0, where h0 is given
in (4.1).

Suppose that system (2.2) has a period-(3, 1) solution at h = h0, which is shown
in Figure 2(b). The trajectory originating from the initial point A(H, yA) reaches
the point B(xB , yB) at t = T , and jumps to the point C(xC , yC) because of the
effect of excitation. It reaches the point D(xD, yD) at t = 2T , jumps to the point
E(xE , yE), reaches the point F (H, yF ) at t = 3T , and then jumps to the point
A(H, yA), where yA = −yF + h. It follows from system (2.2) that

xB = φ11(T )H + φ12(T )yA, yB = φ21(T )H + φ22(T )yA,

xC = xB < H, yC = yB + h,

xD = φ11(T )xC + φ12(T )yC , yD = φ21(T )xC + φ22(T )yC ,

xE = xD < H, yE = yD + h,

xF = H = φ11(T )xE + φ12(T )yE , yF = φ21(T )xE + φ22(T )yE ,

xF = xA = H, yA = −yF + h.

Thus we get{
H = φ11(3T )H + φ12(3T )yA + φ12(2T )h+ φ12(T )h,
yA = −(φ21(3T )H + φ22(3T )yA + φ22(2T )h+ φ22(T )h) + h,

and

h =
(1− φ11(3T ))(1 + φ22(3T )) + φ21(3T )φ12(3T )

(φ12(2T ) + φ12(T ))(1 + φ22(3T )) + φ12(3T )(1− φ22(2T )− φ22(T ))
H =: h2.

(4.4)
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Let h0 = h2, where h0 is the same as (4.1). Then we obtain

(1− φ11(T ))(1− φ22(T ))

φ12(T )
− φ21(T )

=
(1− φ11(3T ))(1 + φ22(3T )) + φ21(3T )φ12(3T )

(φ12(2T ) + φ12(T ))(1 + φ22(3T )) + φ12(3T )(1− φ22(2T )− φ22(T ))
,

(4.5)

and a period-(3, 1) solution bifurcates from the period-(1, 0) solution at h = h0.
Hence, we have the following result.

Proposition 4.2. Suppose that condition (4.5) holds. Then a period-(3, 1) solution
bifurcates from a period-(1, 0) solution of system (2.2) at h = h0, where h0 is given
in (4.1).

4.2. Bifurcation of Period-(1, 1) Solution

A period-(1, 1) solution of system (2.2) corresponds to a fixed point of map (3.6), in-
dicated as in (3.7). The multipliers of the fixed point are λ2 = 0 and λ3 = −φ22(T ),
which have nothing to do with h. Figure 3(a) shows a period-(1, 1) solution of sys-
tem (2.2), where

A(x0, y0)
T1

−→
B(H, yB)

impact

−→
C(H, −yB)

T2

−→
D(xD, yD)

excitation

−→
A(x0, y0).

The location of the point D varies as the parameter h changes. To discuss the
bifurcation of the period-(1, 1) solution, the limit location of point D is analyzed.
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Figure 3. Three period-(1, 1) solutions of system (2.2), where T1 + T2 = T .

In Figure 3(b), T2 = 0 and the point D reaches the point C on the line
x = H. The trajectory originating from the initial point A(H, yA) reaches the
point B(H, yB) at t = T . The external impulsive excitation and impact make the
trajectory jump to the point A(H, yA), where yA = −yB+h. It follows from system
(2.2) that

xB = H = φ11(T )H + φ12(T )yA, yB = φ21(T )H + φ22(T )yA, (4.6)

yA = −yB + h. (4.7)

Then we have

h = φ21(T )H +
(1− φ11(T ))(1 + φ22(T ))

φ12(T )
H =: h3. (4.8)
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In Figure 3(c), T2 ̸= 0 and the point D is above the point C on the line x = H. The
trajectory originating from the initial point A(H, yA) reaches the point B(H, yB)
at t = T1, jumps to the point C(H, yC) for the effect of impact, where yC = −yB.
It reaches the point D(H, yD) at t = T , and jumps to the point A(H, yA) for the
effect of impulsive excitation, where yA = yD +h. It follows from system (2.2) that

xB = H = φ11(T1)H + φ12(T1)yA, yB = φ21(T1)H + φ22(T1)yA,

xC = H, yC = −yB ,

xD = H = φ11(T2)H + φ12(T2)yC , yD = φ21(T2)H + φ22(T2)yC ,

xA = H, yA = yD + h.

So we have

yA =
1− φ11(T1)

φ12(T1)
H, yC = −yB = −φ21(T1)H − (1− φ11(T1))φ22(T1)

φ12(T1)
H, H = φ11(T2)H + φ12(T2)

(
−φ21(T1)H − (1−φ11(T1))φ22(T1)

φ12(T1)
H
)
,

yA = φ21(T2)H + φ22(T2)
(
−φ21(T1)H − (1−φ11(T1))φ22(T1)

φ12(T1)
H
)
+ h,

and

h = (φ21(T1)φ22(T2)− φ21(T2) +
(1− φ11(T1))(1 + φ22(T1)φ22(T2))

φ12(T1)
)H =: h4,

(4.9)
where T1 + T2 = T and T1 is the solution of equation

φ11(T − T1) + φ12(T − T1)

(
−φ21(T1)−

(1− φ11(T1))φ22(T1)

φ12(T1)

)
= 1. (4.10)

The values of the bifurcation parameter h at the bifurcation points of period-
(1, 1) solution are calculated and shown in (4.8) and (4.9). It follows from Proposi-
tion 3.2 that the period-(1, 1) solution of system (2.2) is stable for h ∈ (h3, h4) or
h ∈ (h4, h3). So we have

Proposition 4.3. The period-(1, 1) solution in Proposition 3.2 is stable for h ∈
(h3, h4) or h ∈ (h4, h3), where h3 and h4 are given in (4.8) and (4.9), respectively.
Furthermore, bifurcation occurs at h = h3 and h = h4.

5. Numerical Results

Consider 

(
x

y

)′

=

(
0 1
−0.2 −0.8

)(
x

y

)
, t ̸= 5n, x < −0.1,(

x+

y+

)
=

(
1 0
0 −1

)(
x−

y−

)
, x = −0.1,(

x+

y+

)
=

(
1 0
0 1

)(
x−

y−

)
+

(
0

h

)
, t = 5n, n ∈ N.

(5.1)

Let α = 0.4, β2 = 0.2, T = 5 and H = −0.1. The normalized fundamental matrix
is

Φ(t) =

(
e−0.4t(cos 0.2t+ 2 sin 0.2t) 5e−0.4t sin 0.2t
−e−0.4t sin 0.2t e−0.4t(cos 0.2t− 2 sin 0.2t)

)
.
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Set h = −0.2, φ22(T ) +
φ12(T )φ21(T )

1−φ11(T ) ≈ −0.2474 ∈ (−1, 1) and

(
−φ21(T ) +

(1− φ11(T ))(1− φ22(T ))

φ12(T )

)−1

h ≈ −0.1306 < H = −0.1.

Assume that conditions (3.3) and (3.5) hold. It follows from Proposition 3.1 that
system (5.1) has a unique stable period-(1, 0) solution, which is shown in Figure
4(a).

Set h = −0.08. After calculations, we find that the fixed point of map (3.6)
with is A(−0.1105, −0.0859), T1 ≈ 4.342 and T2 = T − T1 ≈ 0.658. Since xA =
−0.1105 < H = −0.1, condition (3.9) holds. Furthermore, we see that φ22(T ) ≈
−0.1546 ∈ (−1, 1) and condition (3.8) holds. It is observed from Figure 4(b) that
system (5.1) has a stable period-(1, 1) solution

A(−0.1105,−0.0859)
T1

−→
B(−0.1, 0.0282)

impact

−→
C(−0.1,−0.0282)

T2

−→
D(−0.1105,−0.0059)

excitation

−→
A(−0.1105, −0.0859),

which is in agreement with Proposition 3.2.

Set h = −0.12 in system (5.1). It is observed from Figure 5 that system (5.1)
has a period-(2, 1) solution. The damping oscillator is subject to the impulsive
excitation twice and collides with the rigid wall once every period 10. Set h =
−0.106. It is shown from Figure 6 that system (5.1) has a period-(3, 2) solution,
where the damping oscillator is subject to impulsive excitation three times of and
collides with the rigid wall twice every period 15.
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A

D
C

B

(b)

Figure 4. (a) A period-(1, 0) solution (red) of system (5.1) with h = −0.2, and the trajectory (blue)
originating from the initial point (-0.13, -0.37) tending to the period-(1, 0) solution; (b) a period-(1,
1) solution (red) of system (5.1) with h = −0.08, and the trajectory (blue) originating from the initial
point (-0.18, -0.2) tending to the period-(1, 1) solution.

It is illustrated in Figure 4(b), Figure 5, and Figure 6 that system (5.1) has a
solution with period-(1, 1), with period-(3, 2), and with period-(2, 1) in the cases
of h = h̃1 = −0.08, h = h̃3 = −0.106 and h = h̃2 = −0.12, respectively, where
h̃2 < h̃3 < h̃1.

Now we consider the bifurcation of the period-(1, 0) solution. A straightforward
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Figure 5. For system (5.1) with h = −0.12: (a) the period-(2, 1) solution; (b) the time series of x and
y.
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Figure 6. For system (5.1) with h = −0.106: (a) the period-(3, 2) solution, (b) the time series of x
and y.
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Figure 7. (a) The bifurcation diagram of system (5.1) for h ∈ (−0.17, −0.11); (b) a period-(3, 1)
solution of system (5.1) for h = −0.151.

calculation gives

(1− φ11(T ))(1− φ22(T ))

φ12(T )
− φ21(T )

=
(1− e−2(cos1 + 2sin1))(1− e−2(cos1− 2sin1))

5e−2sin1
+ e−2 sin 1

≈1.53,
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and

(1− φ11(3T ))(1 + φ22(3T )) + φ21(3T )φ12(3T )

(φ12(2T ) + φ12(T ))(1 + φ22(3T )) + φ12(3T )(1− φ22(2T )− φ22(T ))
≈ 1.53,

where T = 5. It is easy to see that condition (4.5) holds and h0 = h2 = −0.153.
It is demonstrated from Figure 7(a) that system (5.1) has a stable period-(1, 0)
solution for h < −0.153 and a period-(3, 1) solution bifurcates from this period-(1,
0) solution at h = h0 ≈ −0.153, which is in agreement with Proposition 4.2. The
phase portrait of a period-(3, 1) solution for h = −0.151 is shown in Figure 7(b).

It follows from (4.8) that

h3 =
(
− e−2 sin 1 + (1−5e−2(0.2 cos 1+0.4 sin 1))(1+5e−2(0.2 cos 1−0.4 sin 1))

5e−2 sin 1

)
× (−0.1)

≈ −0.09241.

Similarly, it follows from (4.9) and (4.10) that

h4 ≈ −0.06899, T1 ≈ 3.2453.

By viewing h as a parameter, the bifurcation diagram of periodic solutions of
(5.1) for h ∈ (−0.12, −0.04) is presented in Figure 8. The bifurcation diagram of
the period-(m, n) solutions is divided into two parts for the fact that there exist
a fixed time pulse and a state pulse in system (5.1). Assume that (x(t), y(t)) is a
period-(m, n) orbit for some parameter h0, the m points (h0, x(T )), (h0, x(2T )),
· · · , and (h0, x(mT )) are plotted in the lower half of the bifurcation diagram. Set
the impact surface x = −0.1 as the Poincaré section. The trajectory reaches the
Poincaré section at (−0.1, y(Tk)), where k = 1, 2, · · · , n, x(Tk) = −0.1, and
0 < T1 < T2 < · · · < Tn ≤ mT . The n points (h0, y(T1)), (h0, y(T2)), · · · , and
(h0, y(Tn)) are plotted in the upper half of the bifurcation diagram.
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Figure 8. Bifurcation diagrams of system (5.1) with respect to the parameter h.

System (5.1) has a stable period-(1, 1) solution for h ∈ (−0.09241, −0.06899),
and bifurcation occurs at h = h3 = −0.09241 and h = h4 = −0.06899, which agrees
well with Proposition 4.3.
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Figure 9. Periodic solutions of system (5.1): (a) the period-(3, 2) solution with h = −0.11; (b) the
period-(7, 5) solution with h = −0.1037; (c) the period-(4, 3) solution with h = −0.1.

Figure 8 shows that system (5.1) has a stable period-(3, 2) for h ∈ (−0.104,
−0.01138) and a stable period-(2, 1) solution for h ∈ (−0.12, −0.01155). It is
demonstrated that the period-(3, 2) solution locates between the period-(1, 1) and
the period-(2, 1) solutions. It is also seen that the period-(4, 3) solution locates
between the period-(3, 2) and the period-(1, 1) solutions, the period-(5, 3) solution
locates between the period-(2, 1) and the period-(3, 2) solutions, the period-(5,
4) solution locates between the period-(4, 3) and the period-(1, 1) solutions, and
the period-(7, 5) solution locates between the period-(3, 2) and the period-(4, 3)
solutions (See Figure 9).
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Figure 10. Periodic solutions of system (5.1): (a) the period-(3, 4) solution with h = −0.061; (b) the
period-(5, 7) solution with h = −0.059; (c) the period-(2, 3) solution with h = −0.056.

Compared with the case of h ∈ (−0.12,−0.069), the bifurcation of periodic
solution of system (5.1) looks more complicated for h ∈ (−0.069, −0.04). It is
illustrated in Figure 8 that there exist many periodic windows in the bifurcation
diagram. For example, the windows of period-(4, 5), period-(3, 4), period-(5, 7),
period-(2, 3), period-(3, 5), and period-(1, 2) solutions appear near h = −0.064,
h = −0.061, h = −0.059, h = −0.056, h = −0.0515, h = −0.041, respectively. The
period-(3, 4), period-(5, 7), and period-(2, 3) solutions are shown in Figure 10. It
follows from Figure 8, Figure 9, and Figure 10 that the period-(m1 +m2, n1 + n2)
solution locates between the period-(m1, n1) and the period-(m2, n2) solutions. Set
h = −0.0458, the phase portrait of system (5.1) is shown in Figure 11(a). It is seen
from Figure 11(a) that there exists a period-120 orbit in (5.1). The orbit reaches
the Poincaré section x = −0.1 at (−0.1, yk) and the portrait of (yk, yk+1) is shown
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Figure 11. For system (5.1) with h = −0.0458 and t ∈ (7000, 7500): (a) the phase portrait, (b) the
time series of x and y, (c) the portrait of (yk, yk+1).

in Figure 11(c).
The dynamics of a damping oscillator with impact and impulsive excitation was

studied in this paper. It was seen that the fixed time pulse and the state pulse
lead to the complex and interesting dynamics of system (2.2). The conditions for
the existence of four kinds of periodic solutions were particularly investigated. The
bifurcations of period-(1, 0) and period-(1, 1) solutions were analytically studied.
Numerical results were provided to show the relationship of periodic solutions, that
is, the period-(m1+m2, n1+n2) solution is between a period-(m1, n1) and a period-
(m2, n2) solution.
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