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Abstract In this paper, a new class of fractional impulsive partial neu-
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1. Introduction

Fractional differential equations have attracted the attention of many researchers
in the last decades, because of their applications in numerous fields of science, engi-
neering, physics, economy and so on (see [20,26,28]). In particular, the existence of
solutions for fractional semilinear differential or integro-differential equations is one
of the theoretical fields that investigated by many authors [11, 12, 14, 35]. On the
other hand, the deterministic models often fluctuate due to noise, which is random
or at least appears to be so. Therefore, we must move from deterministic problems
to stochastic ones. In fact, stochastic partial differential equations arise naturally
in the mathematical modeling of various phenomena in the natural and social sci-
ences; see [33]. The existence, uniqueness, and qualitative analysis of solutions of
stochastic differential equations have been considered in abstract spaces. For some
of these applications, one can see [3,25,34] and the references therein. Furthermore,
fractional stochastic partial differential equations involving the Riemann-Liouville
fractional derivative or the Caputo fractional derivative have been paid more and
more attentions (see, e.g. [8, 15,29]).
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In addition, the theory of impulsive differential equations has been an object
of interest because of its wide applications in physics, biology, engineering, medical
fields, industry, and technology (see [21]). The reason for this applicability arises
from the fact that impulsive differential problems are an appropriate model for
describing process which at certain moments change their state rapidly and which
cannot be described using the classical differential problems. Therefore, it seems
interesting to study the fractional impulsive differential equations. For some recent
work on the existence and uniqueness of mild solutions for these equations in an
abstract space; see [2,4,9,32] and the references therein. However, besides impulsive
effects, stochastic effects likewise exist in real systems. So, impulsive stochastic
differential equations describing these dynamical systems subject to both impulse
and stochastic changes have attracted considerable attention [1, 22, 36]. Among
them, Sakthivel et al. [30] studied the existence of mild solutions for the fractional
impulsive stochastic differential equation with infinite delay in Hilbert spaces. Also,
the existence of solutions for fractional impulsive stochastic semilinear differential
equations with nonlocal conditions has been discussed.

Recently, Hernández and O’Regan [18] introduced a new class of first order ab-
stract impulsive differential equations for which the impulses are not instantaneous.
In the model, the impulses start abruptly at the points ti and their action continue
on a finite time interval [ti, si]. This situation as an impulsive action which starts
abruptly and stays active on a finite time interval. Further, Pierri et al. [27] studied
the existence of solutions for a class of first order semi-linear abstract impulsive dif-
ferential equations with not instantaneous impulses by using the theory of analytic
semigroup and fractional power of closed operators.

Motivated by the researches mentioned previously, we will study the following
fractional impulsive partial neutral stochastic integro-differential equations with
infinite delay of the form

dD(t, xt) =

∫ t

0

(t− s)α−2

Γ(α− 1)
AD(s, xs)dsdt+ σ(t, xt)dt+ f(t, xt)dw(t),

t ∈ (si, ti+1], i = 0, 1, . . . , N,

(1.1)

x(t) = gi(t, xt), t ∈ (ti, si], i = 1, . . . , N, (1.2)

x0 = φ ∈ B, (1.3)

where the state x(·) takes values in a separable real Hilbert space H with inner
product ⟨·, ·⟩H and norm ∥ · ∥H . 1 < α < 2, A : D(A) ⊂ H → H is a linear densely
defined operator of sectorial type on H. Let K be another separable Hilbert space
with inner product ⟨·, ·⟩K and norm ∥ · ∥K . Suppose {w(t) : t ≥ 0} is a given
K-valued Wiener process with a covariance operator Q > 0 defined on a complete
probability space (Ω,F , P ) equipped with a normal filtration {Ft}t≥0, which is
generated by the Wiener process w. The time history xt : (−∞, 0] → H given by
xt(θ) = x(t + θ) belongs to some abstract phase space B defined axiomatically;
let 0 = t0 = s0 < t1 ≤ s1 ≤ t2 < ... < tN−1 ≤ sN ≤ tN ≤ tN+1 = b, are
prefixed numbers, and f, σ, q,D(t, φ) = φ(0) + q(t, φ), φ ∈ B, gi(i = 1, ..., N), are
given functions to be specified later. The initial data {φ(t) : −∞ < t ≤ 0} is an
F0-adapted, B-valued random variable independent of the Wiener process w with
finite second moment.

We notice that the convolution integral in (1.1) is known as the Riemann-
Liouville fractional integral (see [5–7,13] and the references therein). On this subjec-
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t, the authors [6] established the existence of S-asymptotically ω-periodic solutions
for fractional order functional integro-differential equations with infinite delay. dos
Santos and Cuevas [13] considered the existence and uniqueness of an asymptoti-
cally almost automorphic mild solution to the abstract fractional partial integro-
differential neutral equation with unbounded delay. To the best of our knowledge,
there is no work reported on the existence , uniqueness and continuous dependence
of mild solutions of fractional partial neutral stochastic integro-differential equations
with infinite delay and not instantaneous impulses, which is expressed in the form
(1.1)-(1.3). To close the gap in this paper, we study this interesting problem, which
are natural generalizations of the concept of mild solution for impulsive evolution
equations well known in the theory of infinite dimensional deterministic systems.

The rest of this paper is organized as follows. In Section 2, we introduce some
notations and necessary preliminaries. In Section 3, we give the existence and
uniqueness results of mild solutions for system (1.1)-(1.3). In Section 4, continuous
dependence of mild solutions is discussed. In Section 5, an example is given to
illustrate our results.

2. Preliminaries

Let H,K be two real separable Hilbert spaces and we denote by ⟨·, ·⟩H , ⟨·, ·⟩K their
inner products and by ∥ · ∥H , ∥ · ∥K their vector norms, respectively. L(K,H) be the
space of bounded linear operators mapping K into H equipped with the usual norm
∥ · ∥H and L(H) denotes the Hilbert space of bounded linear operators from H to
H. Let {w(t) : t ≥ 0} denote an K-valued Wiener process defined on the probability
space (Ω,F , P ) with covariance operator Q, that is E⟨w(t), x⟩K⟨w(s), y⟩K = (t ∧
s)⟨Qx, y⟩K , for all x, y ∈ K, where Q is a positive, self-adjoint, trace class operator
on K. In particular, we denote w(t) an K-valued Q-Wiener process with respect to
{Ft}t≥0.

In order to define stochastic integrals with respect to the Q -Wiener process
w(t), we introduce the subspace K0 = Q1/2(K) of K which is endowed with the
inner product ⟨ũ, ṽ⟩K0 = ⟨Q−1/2ũ, Q−1/2ṽ⟩K is a Hilbert space. We assume that
there exists a complete orthonormal system {en}∞n=1 in K, a bounded sequence of
nonnegative real numbers {λn}∞n=1 such that Qen = λnen, and a sequence βn of
independent Brownian motions such that

⟨w(t), e⟩ =
∞∑

n=1

√
λn⟨en, e⟩βn(t), e ∈ K, t ∈ [0, b],

and Ft = Fw
t , where Fw

t is the σ-algebra generated by {w(s) : 0 ≤ s ≤ t}. Let
L0
2 = L2(K0,H) be the space of all Hilbert-Schmidt operators from K0 to H with

the norm ∥ ψ ∥2
L0

2
= Tr((ψQ1/2)(ψQ1/2)∗) for any ψ ∈ L0

2. Clearly for any bounded

operators ψ ∈ L(K,H) this norm reduces to ∥ ψ ∥2
L0

2
= Tr(ψQψ∗). Let Lp(Fb,H)

be the Banach space of all Fb-measurable pth power integrable random variables
with values in the Hilbert space H. Let C([0, b];Lp(F ,H)) be the Banach space
of continuous maps from [0, b] into Lp(F ,H) satisfying the condition supt∈[0,b]E ∥
x(t) ∥pH<∞.

We introduce the space PC(H) formed by all Ft-adapted measurable, H-valued
stochastic processes {x(t) : t ∈ [0, b]} such that x is continuous at t ̸= ti, x(ti) =
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x(t−i ) and x(t+i ) exists for all i = 1, ..., N. In this paper, we always assume that

PC(H) is endowed with the norm ∥ x ∥PC= (sup0≤t≤bE ∥ x(t) ∥pH)
1
p . Then

(PC(H), ∥ · ∥PC) is a Banach space. The notation Br(x,H) stands for the closed
ball with center at x and radius r > 0 in H.

In this paper, we assume that the phase space (B, ∥ · ∥B) is a seminormed
linear space of F0-measurable functions mapping (−∞, 0] into H, and satisfying
the following fundamental axioms due to Hale and Kato (see e.g., in [17]).

(A) If x : (−∞, σ + b] → H, b > 0, is such that x|[σ,σ+b] ∈ C([σ, σ + b],H) and
xσ ∈ B, then for every t ∈ [σ, σ + b] the following conditions hold:

(i) xt is in B;
(ii) ∥ x(t) ∥H≤ H̃ ∥ xt ∥B;
(iii) ∥ xt ∥B≤ K(t− σ) sup{∥ x(s) ∥H : σ ≤ s ≤ t}+M(t− σ) ∥ xσ ∥B, where

H̃ ≥ 0 is a constant; K,M : [0,∞) → [1,∞), K is continuous and M is
locally bounded, and H̃,K,M are independent of x(·).

(B) For the function x(·) in (A), the function t→ xt is continuous from [σ, σ + b]
into B.

(C) The space B is complete.

A closed and linear operator A is said to be sectorial of type ω if there exist
0 < θ < π/2,M > 0 and ω ∈ R such that its resolvent exists outside the sector
ω + Sθ := {ω + λ : λ ∈ C, | arg(−λ)| < θ} and ∥ (λ− A)−1 ∥H≤ M

|λ−ω| , λ /∈ ω + Sθ.

Sectorial operator are well studied in the literature. For a recent reference including
several examples and properties we refer the reader to Haase [16]. In order to give
an operator theoretical approach we recall the following definition (cf. [6, 7]).

Definition 2.1. Let A be a closed and linear operator with domain D(A) defined
on a Hilbert space H. We call A the generator of a solution operator if there exist
ω ∈ R and a strongly continuous function Sα : R+ → L(H) such that {λα : Re(λ) >
ω} ⊂ ρ(A) and λα−1(λα−A)−1x =

∫∞
0
e−λtSα(t)dt,Re(λ) > ω, x ∈ H. In this case,

Sα(·) is called the solution operator generated by A.

We note that, if A is sectorial of type ω with 0 < θ < π(1 − α
2 ) then A is the

generator of a solution operator given by

Sα(t) =
1

2πi

∫
Σ

e−λtλα−1(λα −A)−1dλ, (2.1)

where Σ is a suitable path lying outside the sector ω + Sα.
Cuesta [5] has proved that, if A is a sectorial operator of type ω < 0, for some

M > 0 and 0 < θ < π(1− α
2 ), there is C > 0 such that

∥ Sα(t) ∥L(H)≤
CM

1 + |ω|tα
, t ≥ 0. (2.2)

Remark 2.1. ( [23]) We note that solution operators, as well as resolvent families,
are a particular case of (a, k)-regularized families introduced in [23]. According

to [23] a solution operator Sα(t) corresponds to a (1, t
α−1

Γ(α) )-regularized family. As in

the situation of C0-semigroups we have diverse relations between a solution operator
and its generator. Moreover, the following result is a direct consequence of [23] for
Proposition 3.1 and Lemma 2.2.
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Lemma 2.1. Let Sα(t) be a solution operator on H with generator A. Then, we
have

(a) Sα(t)D(A) ⊂ D(A) and ASα(t)x = Sα(t)Ax for all x ∈ D(A), t ≥ 0.

(b) Let x ∈ D(A) and t ≥ 0. Then Sα(t)x = x+
∫ t

0
(t−s)α

Γ(α) ASα(s)xds.

(c) Let x ∈ H and t ≥ 0. Then
∫ t

0
(t−s)α

Γ(α) Sα(s)xds ∈ D(A) and

Sα(t)x = x+A

∫ t

0

(t− s)α

Γ(α)
Sα(s)xds.

Remark 2.2. ( [6]) A characterization of generators of solution operators, analo-
gous to the Hille-Yosida Theorem for C0-semigroups, can be directly deduced from
Theorem 3.4 in [23]. Results on perturbation, approximation, representation as
well as ergodic type theorems can be also deduced from the more general context
of (a, k) regularized resolvents (see [24,31]).

Note that the Laplace transform of abstract functions σ ∈ Lp(R+, H), f ∈
Lp(R+, L(K,H)) are defined by

σ̂(ρ) =

∫ ∞

0

e−ρtσ(t)dt,

f̂(ρ) =

∫ ∞

0

e−ρtf(t)dw(t).

We consider the following problem

dx(t) =

∫ t

0

(t− s)α−2

Γ(α− 1)
Ax(s)dsdt+ σ(t)dt+ f(t)dw(t), t > 0, 1 < α < 2, (2.3)

x0 = φ ∈ H. (2.4)

Formally applying the Laplace transform in (2.3)-(2.4), we obtain

λx̂(ρ)− φ = λ1−αAx̂(ρ) + σ̂(λ)dλ+ f̂(λ)dw(λ),

which establishes the following result

λx̂(ρ) = λα−1R(λα, A)φ+ λα−1R(λα, A)σ̂(λ)dλ+ λα−1R(λα, A)f̂(λ)dw(λ).

This means that

x(t) = Sα(t)φ+

∫ t

0

Sα(t− s)σ(s)ds+

∫ t

0

Sα(t− s)f(s)dw(s).

Motivated by the above discuss, we give the following definition.

Definition 2.2. An Ft-adapted stochastic process x : (−∞, b] → H is called a mild
solution of the system (1.1)-(1.3) if x0 = φ ∈ B on (−∞, 0], x|[0,b] ∈ PC([0, b],H);
and

(i) x(t) is measurable and adapted to Ft, t ≥ 0.
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(ii) x(t) ∈ H has càdlàg paths on t ∈ [0, b] a.s and for each t ∈ [0, b], x(t) satisfies
x(t) = gj(t, x(t)) for all t ∈ (tj , sj ], j = 1, ..., N, and

x(t) = Sα(t)[φ(0)− q(0, φ)] + q(t, xt)

+

∫ t

0

Sα(t− s)σ(s, xs)ds+

∫ t

0

Sα(t− s)f(s, xs)dw(s),

for all t ∈ [0, t1] and

x(t) = Sα(t− si)[gi(si, x(si))− q(si, xsi)] + q(t, xt)

+

∫ t

si

Sα(t− s)σ(s, xs)ds+

∫ t

si

Sα(t− s)f(s, xs)dw(s),

for all t ∈ (si, ti+1], i = 1, ..., N.

The next result is a consequence of the phase space axioms.

Lemma 2.2. Let x : (−∞, b] → H be an Ft-adapted measurable process such that
the F0-adapted process x0 = φ(t) ∈ L0

2(Ω,B) and x|[0,b] ∈ PC([0, b],H), then

∥ xs ∥B≤MbE ∥ φ ∥B +Kb sup
0≤s≤b

E ∥ x(s) ∥H ,

where Kb = sup{K(t) : 0 ≤ t ≤ b},Mb = sup{M(t) : 0 ≤ t ≤ b}.

Lemma 2.3. ( [10]) For any p ≥ 1 and for arbitrary L0
2(K,H)-valued predictable

process ϕ(·) such that

sup
s∈[0,t]

E

wwww∫ s

0

ϕ(v)dw(v)

wwww2p

H

≤ (p(2p− 1))p
(∫ t

0

(E ∥ ϕ(s) ∥2p
L0

2
)1/pds

)p

, t ∈ [0,∞).

In the rest of this paper, we denote by Cp = (p(p−1)/2)p/2. Further, we introduce
the following assumptions to establish our results:

(H1) The function q : [0, b] × B → H is continuous and there exists a constant
Lq > 0 such that

E ∥ q(t, ψ1)− q(t, ψ2) ∥pH≤ Lq ∥ ψ1 − ψ2 ∥pB, ψ1, ψ2 ∈ B.

(H2) The function σ : [0, b] × B → H is continuous and there exists a constant
Lσ > 0 such that

E ∥ σ(t, ψ1)− σ(t, ψ2) ∥pH≤ Lσ ∥ ψ1 − ψ2 ∥pB, ψ1, ψ2 ∈ B.

(H3) The function f : [0, b]×B → L(K,H) is continuous and there exists a constant
Lf > 0 such that

E ∥ f(t, ψ1)− f(t, ψ2) ∥pH≤ Lf ∥ ψ1 − ψ2 ∥pB, ψ1, ψ2 ∈ B.

(H4) The functions gi : (ti, si]×B → H, i = 1, ..., N, are continuous and there exist
constants γi > 0, i = 1, ..., N, such that

E ∥ gi(t, ψ1)− gi(t, ψ2) ∥pH≤ γi ∥ ψ1 − ψ2 ∥pB, ψ1, ψ2 ∈ B.



Existence results 335

3. Existence and uniqueness of mild solution

Theorem 3.1. Assume that A is sectorial of type ω < 0. If the assumptions (H1)-
(H4) are satisfied and

max
1≤i≤N

{2p−1Kp
b [2

p−1(8p−1(CM)p + 1)γi

+ 8p−1(2p−1(CM)p + 1)Lq + 3p−1(CM)p(bpLσ + Cpb
p/2Lf )]} < 1. (3.1)

Then the problem (1.1)-(1.3) has a unique mild solution on [0, b], and there exists a

constant K̃ > 0 such that

E ∥ x(t) ∥pH≤ K̃ for all t ∈ [0, b].

Proof. Consider the space Y = {x ∈ PC(H) : x(0) = φ(0)} endowed with the
uniform convergence topology. We define the operator Ψ : Y → Y by

(Ψx)(t) =



Sα(t)[φ(0)− q(0, φ)] + q(t, x̄t)

+
∫ t

0
Sα(t− s)σ(s, x̄s)ds

+
∫ t

0
Sα(t− s)f(s, x̄s)dw(s), t ∈ [0, t1], i = 0,

gi(t, x̄t), t ∈ (ti, si], i ≥ 1,
Sα(t− si)[gi(si, x̄si)− q(si, x̄si)] + q(t, x̄t)

+
∫ t

si
Sα(t− s)σ(s, x̄s)ds

+
∫ t

si
Sα(t− s)f(s, x̄s)dw(s), t ∈ (si, ti+1], i ≥ 1,

and x̄ : (−∞, 0] → H is such that x̄0 = φ and x̄ = x on [0, b]. It is clear that Ψ is
a well-defined operator from Y into Y. We show that Ψ has a fixed point, which in
turn is a mild solution of the problem (1.1)-(1.3).

For any t ∈ [0, t1], and x
∗, x∗∗ ∈ Y. From (H1)-(H4) and Lemmas 2.2, 2.3, we

have

E ∥ (Ψx∗)(t)− (Ψx∗∗)(t) ∥pH
≤3p−1E ∥ q(t, x∗t)− q(t, x∗∗t) ∥pH

+ 3p−1E

wwww∫ t

0

Sα(t− s)[σ(s, x∗s)− σ(s, x∗∗s)]ds

wwwwp

H

+ 3p−1E

wwww∫ t

0

Sα(t− s)[f(s, x∗s)− f(s, x∗∗s)]dw(s)

wwwwp

H

≤3p−1Lq ∥ x∗t − x∗∗t ∥pB +3p−1(CM)ptp−1
1

∫ t

0

(
1

1 + |ω|(t− s)α

)p

× E ∥ σ(s, x∗s)− σ(s, x∗∗s) ∥pH ds+ 3p−1Cp(CM)p
[ ∫ t

0

[(
1

1 + |ω|(t− s)α

)p

× E ∥ f(s, x∗s)− f(s, x∗∗s) ∥pH
]2/p

ds

]p/2
≤3p−1Lq ∥ x∗t − x∗∗t ∥pB

+ 3p−1(CM)ptp−1
1

∫ t

0

(
1

1 + |ω|(t− s)α

)p

Lσ ∥ x∗s − x∗∗s ∥pB ds

+ 3p−1Cp(CM)pt
p/2−1
1

∫ t

0

(
1

1 + |ω|(t− s)α

)p

Lf ∥ x∗s − x∗∗s ∥pB ds
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≤ 6p−1Kp
b [Lq + (CM)p(tp1Lσ + Cpt

p/2
1 Lf )] sup

s∈[0,b]

E ∥ x∗(s)− x∗∗(s) ∥pH

= 6p−1Kp
b [Lq + (CM)p(tp1Lσ + Cpt

p/2
1 Lf )] sup

s∈[0,b]

E ∥ x∗(s)− x∗∗(s) ∥pH

(since x̄ = x on [0, b])

≤ 6p−1Kp
b [Lq + (CM)p(tp1Lσ + Cpt

p/2
1 Lf )] ∥ x∗ − x∗∗ ∥pPC .

For any t ∈ (ti, si], i = 1, . . . , N, we have

E ∥ (Ψx∗)(t)− (Ψx∗∗)(t) ∥pH
=E ∥ q(ti, x∗ti)− q(ti, x∗∗ti) ∥

p
H

≤γi ∥ x∗ti − x∗∗ti ∥
p
B

≤2p−1γiK
p
b sup

s∈[0,b]

E ∥ x∗(s)− x∗∗(s) ∥pH

=2p−1γiK
p
b sup

s∈[0,b]

E ∥ x∗(s)− x∗∗(s) ∥pH (since x̄ = x on [0, b])

≤2p−1γiK
p
b ∥ x∗ − x∗∗ ∥pPC .

Similarly, for any t ∈ (si, ti+1], i = 1, . . . , N, we have

E ∥ (Ψx∗)(t)− (Ψx∗∗)(t) ∥pH
≤3p−1E ∥ Sα(t− ti)[gi(si, x∗si)− gi(si, x∗∗si) + q(si, x∗si)− q(si, x∗∗si)] ∥

p
H

+ 3p−1E ∥ q(t, x∗t)− q(t, x∗∗t) ∥pH

+ 3p−1E

wwww∫ t

si

Sα(t− s)[σ(s, x∗s)− σ(s, x∗∗s)]ds

wwwwp

H

+ 3p−1E

wwww∫ t

si

Sα(t− s)[f(s, x∗s)− f(s, x∗∗s)]dw(s)

wwwwp

H

≤6p−1(CM)p[γi ∥ x∗si − x∗∗si ∥
p
B +Lq ∥ x∗si − x∗∗si ∥

p
B]

+ 3p−1Lq ∥ x∗t − x∗∗t ∥pB +3p−1(CM)p(ti+1 − si)
p−1

∫ t

si

(
1

1 + |ω|(t− s)α

)p

× E ∥ σ(s, x∗s)− σ(s, x∗∗s) ∥pH ds+ 3p−1Cp(CM)p
[ ∫ t

si

[(
1

1 + |ω|(t− s)α

)p

× E ∥ f(s, x∗s)− f(s, x∗∗s) ∥pH
]2/p

ds

]p/2
≤6p−1(CM)p[γi ∥ x∗si − x∗∗si ∥

p
B +Lq ∥ x∗si − x∗∗si ∥

p
B]

+ 3p−1Lq ∥ x∗t − x∗∗t ∥pB +3p−1(CM)p(ti+1 − si)
p−1

∫ t

si

(
1

1 + |ω|(t− s)α

)p

× Lσ ∥ x∗s − x∗∗s ∥pB ds

+ 3p−1Cp(CM)p(ti+1 − si)
p/2−1

∫ t

si

(
1

1 + |ω|(t− s)α

)p

× Lf ∥ x∗s − x∗∗s ∥pB ds
≤6p−1Kp

b [Lq + 2p−1(CM)p(γi + Lq) + (CM)p((ti+1 − si)
pLσ

+ Cp(ti+1 − si)
p/2Lf )] sup

s∈[0,b]

E ∥ x∗(s)− x∗∗(s) ∥pH
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=6p−1Kp
b [Lq + 2p−1(CM)p(γi + Lq) + (CM)p((ti+1 − si)

pLσ

+ Cp(ti+1 − si)
p/2Lf )] sup

s∈[0,b]

E ∥ x∗(s)− x∗∗(s) ∥pH (since x̄ = x on [0, b])

≤6p−1Kp
b [Lq + 2p−1(CM)p(γi + Lq) + (CM)p((ti+1 − si)

pLσ

+ Cp(ti+1 − si)
p/2Lf )] ∥ x∗ − x∗∗ ∥pPC .

Thus, for all t ∈ [0, b], we have

E ∥ (Ψx∗)(t)− (Ψx∗∗)(t) ∥pH≤ L0 ∥ x∗ − x∗∗ ∥pPC .

Taking supremum over t,

∥ Ψx∗ −Ψx∗∗ ∥pPC≤ L0 ∥ x∗ − x∗∗ ∥pPC ,

where

L0 = max
1≤i≤N

{2p−1Kp
b [2

p−1(8p−1(CM)p + 1)γi

+ 8p−1(2p−1(CM)p + 1)Lq + 3p−1(CM)p(bpLσ + Cpb
p/2Lf )]} < 1.

Hence, Ψ is a contraction on Y and has a unique fixed point x ∈ Y, which is
obviously a unique mild solution of the system (1.1)-(1.3) on [0, b]. Then, we have

x(t) =



Sα(t)[φ(0)− q(0, φ)] + q(t, x̄t)

+
∫ t

0
Sα(t− s)σ(s, x̄s)ds

+
∫ t

0
Sα(t− s)f(s, x̄s)dw(s), t ∈ [0, t1], i = 0,

gi(t, x̄t), t ∈ (ti, si], i ≥ 1,
Sα(t− si)[gi(si, x̄si)− q(si, x̄si)] + q(t, x̄t)

+
∫ t

si
Sα(t− s)σ(s, x̄s)ds

+
∫ t

si
Sα(t− s)f(s, x̄s)dw(s), t ∈ (si, ti+1], i ≥ 1.

By (H1)-(H4), we have for any t ∈ [0, t1],

E ∥ x(t) ∥pH
≤4p−1E ∥ Sα(t)[φ(0)− q(0, φ)] ∥pH +4p−1E ∥ q(t, x̄t) ∥pH

+ 4p−1E

wwww∫ t

0

Sα(t− s)σ(s, x̄s)ds

wwwwp

H

+ 4p−1E

wwww∫ t

0

Sα(t− s)f(s, x̄s)dw(s)

wwwwp

H

≤8p−1(CM)p[(H̃ ∥ φ ∥B)p + 2p−1(Lq ∥ φ ∥pB +aq)] + 8p−1(Lq ∥ x̄t ∥pB +aq)

+ 4p−1(CM)ptp−1
1

∫ t

0

(
1

1 + |ω|(t− s)α

)p

E ∥ σ(s, x̄s) ∥pH ds

+ 4p−1Cp(CM)p
[ ∫ t

0

[(
1

1 + |ω|(t− s)α

)p

E ∥ f(s, x̄s) ∥pH
]2/p

ds

]p/2
≤8p−1(CM)p[(H̃ ∥ φ ∥B)p + 2p−1(Lq ∥ φ ∥pB +aq)]

+ 8p−1(Lq ∥ x̄t ∥pB +aq)

+ 8p−1(CM)ptp−1
1

∫ t

0

(
1

1 + |ω|(t− s)α

)p

(Lσ ∥ x̄s ∥pB +aσ)ds

+ 8p−1Cp(CM)pt
p/2−1
1

∫ t

0

(
1

1 + |ω|(t− s)α

)p

(Lf ∥ x̄t ∥pB +af )ds,
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where aσ = maxt∈[0,b]E ∥ σ(t, 0) ∥pH , af = maxt∈[0,b]E ∥ f(t, 0) ∥pH .
For any t ∈ (ti, si], i = 1, . . . , N, we have

E ∥ x(t) ∥pH≤ 2p−1(γi ∥ x̄t ∥pB +νi),

where νi = maxt∈[0,b]E ∥ gi(t, 0) ∥pH , i = 1, ..., N.
Similarly, for any t ∈ (si, ti+1], i = 1, . . . , N, we have

E ∥ x(t) ∥pH
≤4p−1E ∥ Sα(t− si)[gi(si, x̄si)− q(si, x̄si)] ∥

p
H

+ 4p−1E ∥ q(t, x̄t) ∥pH +4p−1E

wwww∫ t

si

Sα(t− s)σ(s, x̄s)ds

wwwwp

H

+ 4p−1E

wwww∫ t

si

Sα(t− s)f(s, x̄s)dw(s)

wwwwp

H

≤16p−1(CM)p[γi ∥ x̄si ∥
p
B +νi + Lq ∥ x̄si ∥

p
B +aq] + 8p−1(Lq ∥ x̄t ∥pB +aq)

+ 4p−1(CM)p(ti+1 − si)
p−1

∫ t

si

(
1

1 + |ω|(t− s)α

)p

E ∥ σ(s, x̄s) ∥pH ds

+ 4p−1Cp(CM)p
[ ∫ t

si

[(
1

1 + |ω|(t− s)α

)p

E ∥ f(s, x̄s) ∥pH
]2/p

ds

]p/2
≤16p−1(CM)p[γi ∥ x̄si ∥

p
B +νi + Lq ∥ x̄si ∥

p
B +aq] + 8p−1(Lq ∥ x̄t ∥pB +aq)

+ 8p−1(CM)p(ti+1 − si)
p−1

∫ t

si

(
1

1 + |ω|(t− s)α

)p

(Lσ ∥ x̄s ∥pB +aσ)ds

+ 8p−1Cp(CM)p(ti+1 − si)
p/2−1

∫ t

si

(
1

1 + |ω|(t− s)α

)p

× (Lf ∥ x̄s ∥pB +af )ds.

Thus, for all t ∈ [0, b], we have

E ∥ x(t) ∥pH ≤ M̃ + 16p−1(CM)p[γi ∥ x̄si ∥
p
B +Lq ∥ x̄si ∥

p
B] + 2p−1γi ∥ x̄t ∥pB

+ 8p−1Lq ∥ x̄t ∥pB +8p−1(CM)pbp−1

∫ t

0

Lσ ∥ x̄s ∥pB ds

+ 8p−1Cp(CM)pbp/2−1

∫ t

0

Lf ∥ x̄s ∥pB ds,

where

M̃ = 8p−1(CM)p[(H̃ ∥ φ ∥B)p + 2p−1(Lq ∥ φ ∥pB +aq)]

+ max
1≤i≤N

2p−1[8p−1(CM)p + 1]νi + 8p−1[2p−1(CM)p + 1]aq

+ 8p−1(CM)pbpaσ + 8p−1Cp(CM)pbp/2af .

By Lemma 2.2, it follows that

sup{∥ xs ∥pB: 0 ≤ s ≤ t} ≤ 2p−1(MbE ∥ φ ∥B)p

+ 2p−1Kp
b sup{E ∥ x(s) ∥pH : 0 ≤ s ≤ t}.
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Consider the function defined by

ζ(t) = 2p−1(MbE ∥ φ ∥B)p + 2p−1Kp
b sup{E ∥ x(s) ∥pH : 0 ≤ s ≤ t}, 0 ≤ t ≤ b.

For all t ∈ [0, b], we have

ζ(t) ≤ 2p−1(MbE ∥ φ ∥B)p + 2p−1Kp
b M̃ + 32p−1Kp

b (CM)p[γiζ(t) + Lqζ(t)]

+ 4p−1Kp
b γiζ(t) + 16p−1Kp

bLqζ(t) + 16p−1Kp
b (CM)pbp−1Lσ

∫ t

0

ζ(s)ds

+ 16p−1Kp
bCp(CM)pbp/2−1Lf

∫ t

0

ζ(s)ds.

Since L∗ = max1≤i≤N{4p−1Kp
b [(8

p−1(CM)p+1)γi+4p−1(2p−1(CM)p+1)Lq]} < 1,
we have

ζ(t) ≤ 1

1− L∗
[2p−1(MbE ∥ φ ∥B)p + 2p−1Kp

b M̃ ] + (K̃1 + K̃2)

∫ t

0

ζ(s)ds,

where

K̃1 = 16p−1 1

1− L∗
Kp

b (CM)pbp−1Lσ,

K̃2 = 16p−1 1

1− L∗
Kp

bCp(CM)pbp/2−1Lf .

Applying Gronwall’s inequality in the above expression, we obtain

ζ(t) ≤ 1

1− L∗
[2p−1(MbE ∥ φ ∥B)p + 2p−1Kp

b M̃ ]exp{(K̃1 + K̃2)b} := K̃.

Then for all t ∈ [0, b], we get that E ∥ x(t) ∥pH≤ K̃. This completes the proof.

4. Continuous dependence of mild solutions

Theorem 4.1. Assume that A is sectorial of type ω < 0. If the assumptions (H1)-
(H4) are satisfied and

max
1≤i≤N

{2p−1Kp
b [(8

p−1CM)p + 1)γi + 8p−1((CM)p + 1)Lq]} < 1. (4.1)

Then there exists a constant C∗ > 0 such that for each φ1, φ2 ∈ B and x1(t), x2(t)
be the corresponding mild solutions of the problem (1.1)-(1.3) with x10 = φ1, x20 = φ1

satisfy
∥ x1 − x2 ∥pPC≤ C∗ ∥ φ1 − φ2 ∥pB .

Proof. Let Y be defined as in the proof of Theorem 3.1. By Lemma 2.2, it follows
that

sup{∥ x1s − x2s ∥pB: 0 ≤ s ≤ t}
≤2p−1Mp

bE ∥ φ1 − φ2 ∥pB +2p−1Kp
b sup{E ∥ x1(s)− x2(s) ∥pH : 0 ≤ s ≤ t}, t ∈ [0, b].

For any t ∈ [0, t1], and x
1, x2 ∈ Y. Using (H1)-(H4), we have

E ∥ x1(t)− x2(t) ∥pH
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≤4p−1E ∥ Sα(t)[φ
1(0)− φ2(0)− q(0, φ1) + q(0, φ2)] ∥pH

+ 4p−1E ∥ q(t, x1t)− q(t, x2t) ∥pH

+ 4p−1E

wwww∫ t

0

Sα(t− s)[σ(s, x1s)− σ(s, x2s)]ds

wwwwp

H

+ 4p−1E

wwww∫ t

0

Sα(t− s)[f(s, x1s)− f(s, x2s)]dw(s)

wwwwp

H

≤8p−1(CM)p[E ∥ φ1(0)− φ2(0) ∥pH +Lq ∥ φ1 − φ2 ∥pB] + 4p−1Lq ∥ x1t − x2t ∥pB

+ 4p−1(CM)ptp−1
1

∫ t

0

(
1

1 + |ω|(t− s)α

)p

E ∥ σ(s, x1s)− σ(s, x2s) ∥pH ds

+ 4p−1Cp(CM)p
[ ∫ t

0

[(
1

1 + |ω|(t− s)α

)p

× E ∥ f(s, x1s)− f(s, x2s) ∥pH
]2/p

ds

]p/2
≤8p−1(CM)p(H̃p + Lq) ∥ φ1 − φ2 ∥pB +4p−1Lq ∥ x1t − x2t ∥pB

+ 4p−1(CM)ptp−1
1

∫ t

0

(
1

1 + |ω|(t− s)α

)p

Lσ ∥ x1s − x2s ∥pB ds

+ 4p−1Cp(CM)pt
p/2−1
1

∫ t

0

(
1

1 + |ω|(t− s)α

)p

Lf ∥ x1s − x2s ∥pB ds

≤8p−1(CM)p(H̃p + Lq) ∥ φ1 − φ2 ∥pB
+ 8p−1Lq[M

p
bE ∥ φ1 − φ2 ∥pB +Kp

b sup
s∈[0,t]

E ∥ x1(s)− x2(s) ∥pH ]

+ 8p−1(CM)ptp1LσM
p
bE ∥ φ1 − φ2 ∥pB

+ 8p−1Kp
b (CM)ptp−1

1 Lσ

∫ t

0

sup
s∈[0,t]

E ∥ x1(s)− x2(s) ∥pH ds

+ 8p−1Cp(CM)pt
p/2
1 LfM

p
bE ∥ φ1 − φ2 ∥pB

+ 8p−1Kp
bCp(CM)pt

p/2−1
1

∫ t

0

sup
s∈[0,t]

E ∥ x1(s)− x2(s) ∥pH ds

=8p−1[(CM)p(H̃p + Lq) + LqM
p
b + (CM)ptp1LσM

p
b

+ Cp(CM)pt
p/2
1 LfM

p
b ] ∥ φ

1 − φ2 ∥pB +8p−1LqK
p
b sup

s∈[0,t]

E ∥ x1(s)− x2(s) ∥pH

+ 8p−1Kp
b (CM)p[tp−1

1 Lσ + Cpt
p/2−1
1 Lf ]

∫ t

0

sup
s∈[0,t]

E ∥ x1(s)− x2(s) ∥pH ds.

For any t ∈ (ti, si], i = 1, . . . , N, we have

E ∥ x1(t)− x2(t) ∥pH
=E ∥ q(ti, x1ti)− q(ti, x2ti)] ∥

p
H≤ γi ∥ x1ti − x2ti ∥

p
B

≤2p−1γiM
p
bE ∥ φ1 − φ2 ∥pB +2p−1γiK

p
b sup

s∈[ti,t]

E ∥ x1(s)− x2(s) ∥pH .

Similarly, for any t ∈ (si, ti+1], i = 1, . . . , N, we have

E ∥ x1(t)− x2(t) ∥pH



Existence results 341

≤4p−1E ∥ Sα(t− ti)[gi(si, x1si)− gi(si, x2si)

+ q(si, x1si)− q(si, x2si)] ∥
p
H

+ 4p−1E ∥ q(t, x1t)− q(t, x2t) ∥pH

+ 4p−1E

wwww∫ t

si

Sα(t− s)[σ(s, x1s)− σ(s, x2s)]ds

wwwwp

H

+ 4p−1E

wwww∫ t

si

Sα(t− s)[f(s, x1s)− f(s, x2s)]dw(s)

wwwwp

H

≤8p−1(CM)p[γi ∥ x1si − x2si ∥
p
B +Lq ∥ x1si − x2si ∥

p
B]

+ 4p−1Lq ∥ x1t − x2t ∥pB

+ 4p−1(CM)p(ti+1 − si)
p−1

∫ t

si

(
1

1 + |ω|(t− s)α

)p

× E ∥ σ(s, x1s)− σ(s, x2s) ∥pH ds

+ 4p−1Cp(CM)p
[ ∫ t

si

[(
1

1 + |ω|(t− s)α

)p

× E ∥ f(s, x1s)− f(s, x2s) ∥pH
]2/p

ds

]p/2
≤8p−1(CM)p[γi ∥ x1si − x2si ∥

p
B +Lq ∥ x1si − x2si ∥

p
B]

+ 4p−1Lq ∥ x1t − x2t ∥pB

+ 4p−1(CM)p(ti+1 − si)
p−1

∫ t

si

(
1

1 + |ω|(t− s)α

)p

× Lσ ∥ x1s − x2s ∥pB ds

+ 4p−1Cp(CM)p(ti+1 − si)
p/2−1

∫ t

si

(
1

1 + |ω|(t− s)α

)p

× Lf ∥ x1s − x2s ∥pB ds
≤16p−1(CM)p(γi + Lq)[M

p
bE ∥ φ1 − φ2 ∥pB

+Kp
b sup

s∈[si,t]

E ∥ x1(s)− x2(s) ∥pH ]

+ 8p−1Lq[M
p
bE ∥ φ1 − φ2 ∥pB +Kp

b sup
s∈[si,t]

E ∥ x1(s)− x2(s) ∥pH ]

+ 8p−1(CM)p(ti+1 − si)
pLσM

p
bE ∥ φ1 − φ2 ∥pB

+ 8p−1Kp
b (CM)p(ti+1 − si)

p−1Lσ

∫ t

si

sup
s∈[si,t]

E ∥ x1(s)− x2(s) ∥pH ds

+ 8p−1Cp(CM)p(ti+1 − si)
p/2LfM

p
bE ∥ φ1 − φ2 ∥pB

+ 8p−1Kp
bCp(CM)p(ti+1 − si)

p/2−1Lf

∫ t

si

sup
s∈[si,t]

E ∥ x1(s)− x2(s) ∥pH ds

=8p−1Mp
b [2

p−1(CM)p(γi + Lq) + Lq + (CM)p(ti+1 − si)
pLσ

+ Cp(CM)p(ti+1 − si)
p/2Lf ] ∥ φ1 − φ2 ∥pB

+ 8p−1Kp
b [2

p−1(CM)p(γi + Lq) + Lq] sup
s∈[si,t]

E ∥ x1(s)− x2(s) ∥pH
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+ 8p−1Kp
b (CM)p[(ti+1 − si)

p−1Lσ + Cp(ti+1 − si)
p/2−1Lf ]

×
∫ t

si

sup
s∈[si,t]

E ∥ x1(s)− x2(s) ∥pH ds.

Thus, for all t ∈ [0, b], we have

E ∥ x1(t)− x2(t) ∥pH
≤ max

1≤i≤N
{8p−1(CM)p(H̃p + Lq) + 2p−1γiM

p
b (1 + 8p−1(CM)p)

+ 8p−1Mp
b [(2

p−1(CM)p + 1)Lq + (CM)pbpLσ + Cp(CM)pbp/2Lf ]}
× ∥ φ1 − φ2 ∥pB
+ max

1≤i≤N
{2p−1Kp

b [(8
p−1CM)p + 1)γi + 8p−1((CM)p + 1)Lq]}

× sup
s∈[0,t]

E ∥ x1(s)− x2(s) ∥pH +8p−1Kp
b (CM)p[bp−1Lσ + Cpb

p/2−1Lf ]

×
∫ t

0

sup
s∈[0,t]

E ∥ x1(s)− x2(s) ∥pH ds.

Since L∗∗ = max1≤i≤N{2p−1Kp
b [(8

p−1CM)p +1)γi +8p−1((CM)p +1)Lq]} < 1, we
have

sup
s∈[0,t]

E ∥ x1(s)− x2(s) ∥pH

≤ 1

1− L∗∗
max

1≤i≤N
{8p−1(CM)p(H̃p + Lq) + 2p−1γiM

p
b (1 + 8p−1(CM)p)

+ 8p−1Mp
b [(2

p−1(CM)p + 1)Lq + (CM)pbpLσ + Cp(CM)pbp/2Lf ]}

× ∥ φ1 − φ2 ∥pB +
1

1− L∗∗
8p−1Kp

b (CM)p[bp−1Lσ + Cpb
p/2−1Lf ]

×
∫ t

0

sup
s∈[0,t]

E ∥ x1(s)− x2(s) ∥pH ds.

Applying Gronwall’s inequality in the above expression again, we obtain

sup
s∈[0,t]

E ∥ x1(s)− x2(s) ∥pH≤ C∗ ∥ φ1 − φ2 ∥pB,

where

C∗ =
1

1− L∗∗
max

1≤i≤N
{8p−1(CM)p(H̃p + Lq) + 2p−1γiM

p
b (1 + 4p−1(CM)p)

+ 8p−1Mp
b [(2

p−1(CM)p + 1)Lq + (CM)pbpLσ + Cp(CM)pbp/2Lf ]}

× exp

{
1

1− L∗∗
8p−1Kp

b (CM)p[bpLσ + Cpb
p/2Lf ]

}
,

which implies that

∥ x1 − x2 ∥pPC≤ C∗ ∥ φ1 − φ2 ∥pB .

The proof is completed.
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5. Application

Consider the following impulsive fractional partial neutral stochastic functional
integro-differential equations of the form

dD(t, zt)(x) =J
α−1
t

(
∂2

∂x2
− ν

)
D(t, zt)(x)dt

+

∫ t

−∞
µ2(t, x, s− t)z(t, x)dsdt

+

∫ t

−∞
µ3(t, x, s− t)z(t, x)dsdw(t),

(t, x) ∈ ∪N
i=1[si, ti+1]× [0, π],

(5.1)

z(t, 0) = z(t, π) = 0, t ∈ [0, b], (5.2)

z(τ, x) = φ(τ, x), x ∈ [0, π], (5.3)

z(t, x) =

∫ t

−∞
ηi(t, x, s− t)z(s, x)ds, x ∈ [0, π], t ∈ (ti, si], (5.4)

where 0 = t0 = s0 < t1 ≤ s1 < ... < tN ≤ sN < tN+1 = b are fixed real numbers,
1 < α < 2, ν > 0 and φ is continuous and w(t) denotes a a one-dimensional standard
Wiener process in H defined on a stochastic space (Ω,F , P ). In this system,

D(t, zt)(x) = z(t, x) +

∫ t

−∞
µ1(t, x, s− t)z(s, x)ds.

Let H = L2([0, π]) with the norm ∥ · ∥ and define the operator A : D(A) ⊂
H → H by Au = u′′ − νu with the domain

D(A) := {u ∈ H : u′′ ∈ H,u(0) = u(π) = 0}.

It is well known that△u = u′′ is the infinitesimal generator of an analytic semigroup
T (t), t ≥ 0 on H. Hence, A is sectorial of type ω = −ν < 0.

Let r ≥ 0, 1 ≤ p < 1 and let h : (−∞,−r] → R be a nonnegative measurable
function which satisfies the conditions (h-5), (h-6) in the terminology of Hino et
al. [19]. Briefly, this means that h is locally integrable and there is a non-negative,
locally bounded function η on (−∞, 0] such that h(ξ + τ) ≤ η(ξ)h(τ) for all ξ ≤ 0
and θ ∈ (−∞,−r) \ Nξ, where Nξ ⊆ (−∞,−r) is a set whose Lebesgue measure
zero. We denote by PCr × Lp(h,H) the set consists of all classes of functions
φ : (−∞, 0] → H such that φ|[−r,0]

∈ PC([−r, 0],H), φ(·) is Lebesgue measurable
on (−∞,−r), and h ∥ φ ∥p is Lebesgue integrable on (−∞,−r). The seminorm is
given by

∥ φ ∥B= sup
−r≤τ≤0

∥ φ(τ) ∥ +

(∫ −r

−∞
h(τ) ∥ φ ∥p dτ

)1/p

.

The space B = PCr ×Lp(h,H) satisfies axioms (A)-(C). Moreover, when r = 0 and

p = 2, we can take H̃ = 1, M(t) = γ(−t)1/2 and K(t) = 1 + (
∫ 0

−t
h(τ)dτ)1/2, for

t ≥ 0 (see Theorem 1.3.8 in [19] for details).

Additionally, we will assume that
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(i) The functions µ1, µ2, µ3 : R3 → R is continuous and there exist continuous
functions ãj , b̃j , c̃j : R → R, j = 1, 2, such that

|µ1(t, x, s)| ≤ ã1(t)ã2(s), (t, x, s) ∈ R3,

|µ2(t, x, s)| ≤ b̃1(t)b̃2(s), (t, x, s) ∈ R3,

|µ3(t, x, s)| ≤ c̃1(t)c̃2(s), (t, x, s) ∈ R3

with l1 = (
∫ 0

−∞
(ã2(s))

2

h(s) ds)1/2 < ∞, l2 = (
∫ 0

−∞
(b̃2(s))

2

h(s) ds)1/2 < ∞, l3 =

(
∫ 0

−∞
(c̃2(s))

2

h(s) ds)1/2 <∞.

(ii) The functions ηi : R3 → R, , i = 1, . . . , N, are continuous and there exist
continuous functions d̃i : R → R such that

|ηi(t, x, s)| ≤ d̃i(s), (t, x, s) ∈ R3

with L̃i = (
∫ 0

−∞
(d̃i(s))

2

h(s) ds)1/2 <∞ for every i = 1, 2, . . . , N.

In the sequel, B will be the phase space PC0×L2(h,H). Set φ(θ)(x) = φ(θ, x) ∈
B, defining the maps q, σ : [0, b] × B → H, f : [0, b] × B × H → L(K,H), gi :
[0, b]× B → H by

q(t, φ)(x) =

∫ 0

−∞
µ1(t, x, θ)φ(θ, x)dθ, D(t, φ)(x) = φ(0)x+ q(t, φ)(x),

Jα−1
t q(t) =

∫ t

0

(t− s)α−2

Γ(α− 1)
q(s)ds, σ(t, φ)(x) =

∫ 0

−∞
µ2(t, x, θ)φ(θ, x)dθ,

f(t, φ)(x) =

∫ 0

−∞
µ3(t, x, θ)φ(θ, x)dθ, gi(t, φ)(x) =

∫ 0

−∞
ηi(t, x, θ)φ(θ, x)dθ.

Then the problem (5.1)-(5.4) can be written as system (1.1)-(1.3). Moreover,
q, σ, f, gi(i = 1, . . . , N) are bounded linear operators on B with E ∥ q ∥p≤ Lq

and E ∥ σ ∥p≤ Lσ, E ∥ f ∥p≤ Lf , E ∥ gi ∥p≤ γi, i = 1, . . . , N, where Lq = [∥
ã1 ∥∞ l1]

p, Lσ = [∥ b̃1 ∥∞ l2]
p, Lf = [∥ c̃1 ∥∞ l3]

p, γi = [L̃i]
p. It is easy to see

that with these choices, the assumptions (H1)-(H4) of Theorem 3.1 are satisfied.
Suppose that the condition (3.1) in Section 3 holds. Hence, from Theorem 3.1, the
problem (5.1)-(5.4) admits a unique mild solution on [0, b]. Further, if the condition
(4.1) holds, then due to Theorem 4.1, we get that continuous dependence of mild
solutions for the problem (5.1)-(5.4).
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